Estimates for Tamagawa numbers of diagonal cubic surfaces ${ }^{1}$

Andreas-Stephan Elsenhans ${ }^{\text {a }}$, Jörg Jahnel ${ }^{\text {b }}$
${ }^{a}$ Universität Bayreuth, Mathematisches Institut, Universitätsstraße 30, D-95447 Bayreuth, Germany
${ }^{b}$ Fachbereich 6, Mathematik, Universität Siegen, Walter-Flex-Straße 3, D-57068 Siegen, Germany

Abstract

For diagonal cubic surfaces, we give an upper bound for E. Peyre's Tamagawa type number in terms of the coefficients of the defining equation. This bound shows that the reciprocal $\frac{1}{\tau(S)}$ admits a fundamental finiteness property on the set of all diagonal cubic surfaces. As an application, we show that the infinite series of Tamagawa numbers related to the Fano cubic bundles considered by Batyrev and Tschinkel $[\mathrm{BT}]$ are indeed convergent.

Key words: Diagonal cubic surface, Diophantine equation, E. Peyre's Tamagawa-type number 2000 MSC: 11G35, 11G50, 11G40, 14J20, 14J26

1. Introduction

1.1. - A conjecture, due to Yu. I. Manin, asserts that the number of \mathbb{Q}-rational points of anticanonical height $<B$ on a del Pezzo surface S is asymptotically equal to $\tau B \log ^{\mathrm{rk} \operatorname{Pic}(S)-1} B$, for $B \rightarrow \infty$. Further, the coefficient $\tau \in \mathbb{R}$ is conjectured to be the Tamagawa-type number $\tau(S)$ introduced by E. Peyre in [Pe]. In the particular case of a cubic surface, the anticanonical height is the same as the naive height.
1.2. E. Peyre's constant. - E. Peyre's Tamagawa-type number is defined in [PT, Definition 2.4] as

$$
\tau(S):=\alpha(S) \cdot \beta(S) \cdot \lim _{s \rightarrow 1}(s-1)^{t} L\left(s, \chi_{\operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)}\right) \cdot \tau_{H}\left(S\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}}\right)
$$

for $t=\operatorname{rkPic}(S)$.
Here, the factor $\beta(S)$ is simply defined as

$$
\beta(S):=\# H^{1}\left(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)\right) .
$$

[^0]$\alpha(S)$ is given as follows [Pe, Définition 2.4]. Let $\Lambda_{\text {eff }}(S) \subset \operatorname{Pic}(S) \otimes_{\mathbb{Z}} \mathbb{R}$ be the cone generated by the effective divisors. Consider the dual cone $\Lambda_{\text {eff }}^{\vee}(S) \subset\left(\operatorname{Pic}(S) \otimes_{\mathbb{Z}} \mathbb{R}\right)^{\vee}$, defined by
$$
\Lambda_{\mathrm{eff}}^{\vee}(S):=\left\{\mu \in\left(\operatorname{Pic}(S) \otimes_{\mathbb{Z}} \mathbb{R}\right)^{\vee} \mid\langle\mu, \lambda\rangle \geq 0 \text { for every } \lambda \in \Lambda_{\mathrm{eff}}(S)\right\}
$$

Then,

$$
\alpha(S):=t \cdot \operatorname{vol}\left\{\mu \in \Lambda_{\mathrm{eff}}^{\vee}(S) \mid\langle\mu,-K\rangle \leq 1\right\} .
$$

Here, vol denotes the Lebesgue measure on $\left(\operatorname{Pic}(S) \otimes_{\mathbb{Z}} \mathbb{R}\right)^{\vee}$, normalized such that a primitive cell of the lattice $\operatorname{Pic}(S)^{\vee} \subset\left(\operatorname{Pic}(S) \otimes_{\mathbb{Z}} \mathbb{R}\right)^{\vee}$ is of measure one.

Further, $L\left(\cdot, \chi_{\operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)}\right)$ is the $\operatorname{Artin} L$-function of the $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-representation $\operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right) \otimes_{\mathbb{Z}} \mathbb{C}$ which contains the trivial representation t times as a direct summand. Therefore,

$$
L\left(s, \chi_{\operatorname{Pic}\left(s_{\overline{\mathbb{Q}}}\right)}\right)=\zeta(s)^{t} \cdot L\left(s, \chi_{P}\right)
$$

and

$$
\lim _{s \rightarrow 1}(s-1)^{t} L\left(s, \chi_{\operatorname{Pic}\left(S_{\bar{Q}}\right)}\right)=L\left(1, \chi_{P}\right)
$$

where ζ denotes the Riemann zeta function and P is a representation which does not contain trivial components. [Mu, Corollary 11.5 and Corollary 11.4] show that $L\left(s, \chi_{P}\right)$ has neither a pole nor a zero at $s=1$. Then, $L\left(1, \chi_{P}\right)>0$.

Finally, τ_{H} is the Tamagawa measure on the set $S\left(\mathbb{A}_{\mathbb{Q}}\right)$ of adelic points on S and $S\left(\mathbb{A}_{\mathfrak{Q}}\right)^{\mathrm{Br}} \subseteq S\left(\mathbb{A}_{\mathfrak{Q}}\right)$ consists of those adelic points which are orthogonal to the Brauer group $\operatorname{Br}(S)$ with respect to the Brauer-Manin pairing

$$
S\left(\mathbb{A}_{\mathbb{Q}}\right) \times \operatorname{Br}(S) \rightarrow \mathbb{Q} / \mathbb{Z},\left.\quad\left(\left\{x_{v}\right\}, \alpha\right) \mapsto \sum_{v} \operatorname{inv}_{v} \alpha\right|_{x_{v}}
$$

1.3. - As S is projective, we have

$$
S\left(\mathbb{A}_{\mathbb{Q}}\right)=\prod_{v \in \operatorname{Val}(\mathbb{Q})} S\left(\mathbb{Q}_{v}\right) .
$$

τ_{H} is defined to be a product measure $\tau_{H}:=\prod_{\nu \in \operatorname{Val(Q)})} \tau_{v}$.
For a prime number p, the local measure τ_{p} is given as follows. Let $a \in S\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)$ and put $\mathfrak{U}_{a}^{(k)}:=\left\{x \in S\left(\mathbb{Q}_{p}\right) \mid x \equiv a\left(\bmod p^{k}\right)\right\}$. Then,

$$
\tau_{p}\left(\mathfrak{U}_{a}^{(k)}\right):=\operatorname{det}\left(1-p^{-1} \operatorname{Frob}_{p} \mid \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)^{I_{p}}\right) \cdot \lim _{m \rightarrow \infty} \frac{\#\left\{y \in S\left(\mathbb{Z} / p^{m} \mathbb{Z}\right) \mid y \equiv a\left(\bmod p^{k}\right)\right\}}{p^{m \operatorname{dim} S}} .
$$

Here, $\operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)^{I_{p}}$ denotes the fixed module under the inertia group.
The measure τ_{∞} is described in [Pe, Lemme 5.4.7]. In the case of a hypersurface of degree d in \mathbf{P}^{n}, defined by the equation $f=0$, this yields

$$
\tau_{\infty}(U)=\frac{n+1-d}{2} \int_{\substack{C U \\\left|x_{0}\right|, \ldots,\left|x_{n}\right| \leq 1}} \omega_{\text {Leray }}
$$

for every Borel set $U \subset S(\mathbb{R})$. Here, $\omega_{\text {Leray }}$ is the Leray measure on the cone $C S(\mathbb{R}) \subset \mathbb{R}^{n+1}$ associated with the equation $f=0$. It is given by the differential form $\frac{1}{\left|\partial f / \partial x_{0}\right|} d x_{1} \wedge \ldots \wedge d x_{n}$.
1.4. Remark. - There is a "(hyper)surface area" $\omega_{\text {hyp }}$ typically introduced for hypersurfaces in \mathbb{R}^{n+1} in multivariable calculus. That measure is actually the canonical volume associated with the Riemannian metric $C S(\mathbb{R})$ inherits from $\mathbb{R}^{n+1}[\mathrm{Di}, 20.8 .6 .2]$. The Leray measure is related to the hypersurface area by the formula $\omega_{\text {Leray }}=\frac{1}{\|\operatorname{grad} f\|} \omega_{\text {hyp }}$.
1.5. The main result. - At least for diagonal cubic surfaces, the reciprocal $\frac{1}{\tau(S)}$ admits a fundamental finiteness property. More precisely, we will prove the following result.

Theorem. For $\mathfrak{a}=\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$ any vector, we denote by $S^{\mathfrak{a}}$ the cubic surface in $\mathbf{P}_{\mathbb{Q}}^{3}$ given by $a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=0$. Then, for each $\varepsilon>0$, there exists a constant $C(\varepsilon)>0$ such that

$$
\frac{1}{\tau\left(S^{\mathfrak{a}}\right)} \geq C(\varepsilon) \cdot \mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\frac{1}{3}-\varepsilon}
$$

1.6. Corollary (Fundamental finiteness). - For each $T>0$, there are only finitely many diagonal cubic surfaces $S^{\mathfrak{a}}: a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=0$ in $\mathbf{P}_{\mathbb{Q}}^{3}$ such that $\tau\left(S^{\mathfrak{a}}\right)>T$.
1.7. Remark. - For diagonal quartic threefolds, these results were shown in [EJ]. The case of the classical cubic surfaces is, however, more complicated.

The reason for this is that quartic threefolds are of geometric Picard rank one. Hence, the $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-representation considered was always trivial and the L-factor was automatically equal to 1 . In the situation of a diagonal cubic surface, the factors $\lim _{s \rightarrow 1}(s-1)^{t} L\left(s, \chi_{\operatorname{Pic}\left(s_{\bar{Q}}\right)}\right)$ add new difficulty.

There is also a difference concerning the factors α and β. This point is, however, of minor significance. For quartic threefolds, we always had $\alpha(S)=\beta(S)=1$. For cubic surfaces, these factors may vary but it is not at all hard to estimate them.
1.8. An application. - For Fano varieties of dimension ≥ 3, the obvious generalization of Manin's conjecture is known to be wrong. Due to Batyrev and Tschinkel [BT], there are counterexamples of Picard rank 2. These are smooth hypersurfaces $X \subset \mathbf{P}^{n} \times \mathbf{P}^{3}$ of bidegree (1,3). Such a hypersurface is equipped with a fibration into cubic surfaces given by the projection to the first factor. It is assumed that those are diagonal.

Seemingly, many people believe that the actual growth of the number of \mathbb{Q}-rational points on X is dominated by the fibres of Picard rank 4. This means, the asymptotics is expected to be $\tau B \log ^{3} B$ for

Here, $\iota: \mathbf{P}^{n} \longrightarrow\left(\mathbf{P}^{3}\right)^{\vee}$ is the linear map defined by the fibration.
As an application of Theorem 1.5, we will show that the series (1) are indeed convergent. For this, as will turn out, it is already sufficient that the Tamagawa numbers of diagonal cubic surfaces are uniformly bounded. Details will be given in section 3 .

2. Estimates for Peyre's constant

Consider a general diagonal cubic surface $S^{\left(a_{0}, \ldots, a_{3}\right)} \subset \mathbf{P}_{\mathbb{Q}}^{3}$ given by

$$
a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=0
$$

Our goal is to establish the estimate for $\tau^{\left(a_{0}, \ldots, a_{3}\right)}:=\tau\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right)$ formulated in Theorem 1.5. For this, in the subsections below, we will give an individual estimate for each of the factors occurring in the definition of $\tau\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right)$.

2.1. Estimates for α and β

2.1.1. - Recall that on a smooth cubic surface \mathscr{S} over an algebraically closed field, there are exactly 27 lines. For the Picard group, which is isomorphic to \mathbb{Z}^{7}, the classes of these lines form a system of generators.
2.1.2. Notation. - i) The set \mathscr{L} of the 27 lines is equipped with the intersection product $\langle\rangle:, \mathscr{L} \times \mathscr{L} \rightarrow\{-1,0,1\}$. The pair $(\mathscr{L},\langle\rangle$,$) is the same for all smooth cubic surfaces. It is well$ known [Ma, Theorem 23.9.ii] that the group of permutations of \mathscr{L} respecting \langle,$\rangle is isomorphic$ to $W\left(E_{6}\right)$. We fix such an isomorphism.
Denote by $F \subset \operatorname{Div}(\mathscr{S})$ the group generated by the 27 lines and by $F_{0} \subset F$ the subgroup of principal divisors. Then, F is equipped with an operation of $W\left(E_{6}\right)$ such that F_{0} is a $W\left(E_{6}\right)$ submodule. We have $\operatorname{Pic}(\mathscr{S}) \cong F / F_{0}$.
ii) If S is a smooth cubic surface over \mathbb{Q} then $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ operates canonically on the set \mathscr{L}_{S} of the 27 lines on $S_{\overline{\mathbb{Q}}}$. Fix a bijection $i_{S}: \mathscr{L}_{S} \xrightarrow{\cong} \mathscr{L}$ respecting the intersection pairing. This induces a group homomorphism $\iota_{S}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow W\left(E_{6}\right)$. We denote its image by $G \subset W\left(E_{6}\right)$.
2.1.3. Lemma. - There is a constant c such that, for all smooth cubic surfaces S over \mathbb{Q},

$$
1 \leq \beta(S) \leq c
$$

Proof. By definition, $\beta(S)=\# H^{1}\left(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)\right)$. Using the notation just introduced, we may write $H^{1}\left(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)\right)=H^{1}\left(G, F / F_{0}\right)$.

Note that this cohomology group is always finite. Indeed, since G is a finite group and F / F_{0} is a finite $\mathbb{Z}[G]$-module, the description via the standard complex shows it is finitely generated. Further, it is annihilated by $\# G$.
$H^{1}\left(G, F / F_{0}\right)$ depends only on the subgroup $G \subset W\left(E_{6}\right)$ occurring. For that, there are finitely many possibilities. This implies the claim.
2.1.4. Remarks. - i) A more precise consideration [Ma, Proposition 31.3] yields a canonical isomorphism

$$
H^{1}\left(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)\right) \cong \operatorname{Hom}\left(\left(N F \cap F_{0}\right) / N F_{0}, \mathbb{Q} / \mathbb{Z}\right) .
$$

Here, N is the norm map under the operation of G.
As an application of this, one may inspect the 350 conjugacy classes of subgroups of $W\left(E_{6}\right)$ using GAP. The calculations show that the lemma is actually true for $c=9$.
ii) Diagonal cubic surfaces actually provide only 16 of the 350 conjugacy classes. Eight of them may be realized over \mathbb{Q}, the others over $\mathbb{Q}\left(\zeta_{3}\right)$ [CTKS].
2.1.5. Lemma. - There are positive constants c_{1} and c_{2} such that, for all smooth cubic surfaces S over \mathbb{Q} satisfying $S\left(\mathbb{A}_{\mathbb{Q}}\right) \neq \emptyset$,

$$
c_{1} \leq \alpha(S) \leq c_{2} .
$$

Proof. Again, we claim that $\alpha(S)$ is completely determined by the group $G \subset W\left(E_{6}\right)$. Thus, suppose that we do not have the full information available about what surface S is but are given the group G only.

The assumption $S\left(\mathbb{A}_{\mathfrak{Q}}\right) \neq \emptyset$ makes sure that $\operatorname{Pic}(S) \cong \operatorname{Pic}\left(S_{\bar{Q}}\right)^{G}$ [KT, Remark 3.2.ii)]. We may therefore write $\operatorname{Pic}(S) \cong\left(F / F_{0}\right)^{G}$. The effective cone

$$
\Lambda_{\mathrm{eff}}(S) \subset \operatorname{Pic}(S) \otimes_{\mathbb{Z}} \mathbb{C} \cong\left(F / F_{0}\right)^{G} \otimes_{\mathbb{Z}} \mathbb{C}
$$

is generated by the symmetrizations of the classes $\ell_{1}, \ldots, \ell_{27}$ of the 27 lines in F. In particular, it is determined by G, completely. Further, we have $K=-\frac{1}{9}\left(\ell_{1}+\ldots+\ell_{27}\right)$. These data are sufficient to compute $\alpha(S)$ according to its very definition.
2.1.6. Remark. - Here, we do not know the optimal values of c_{1} and c_{2} in explicit form. $\alpha(S)$ has not yet been computed in all cases.

2.2. An estimate for the \mathbf{L}-factor

2.2.1. - In the case of the diagonal cubic surface $S^{\left(a_{0}, \ldots, a_{3}\right)} \subset \mathbf{P}_{\mathfrak{Q}}^{3}$, given by $a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=0$ for $a_{0}, \ldots, a_{3} \in \mathbb{Z} \backslash\{0\}$, the 27 lines on $S^{\left(a_{0}, \ldots, a_{3}\right)}$ may easily be written down explicitly. Indeed, for each pair $(i, j) \in(\mathbb{Z} / 3 \mathbb{Z})^{2}$, the system

$$
\begin{aligned}
& \sqrt[3]{a_{0}} x_{0}+\zeta_{3}^{i} \sqrt[3]{a_{1}} x_{1}=0 \\
& \sqrt[3]{a_{2}} x_{2}+\zeta_{3}^{j} \sqrt[3]{a_{3}} x_{3}=0
\end{aligned}
$$

of equations defines a line on $S^{\left(a_{0}, \ldots, a_{3}\right)}$. Decomposing the index set $\{0, \ldots, 3\}$ differently into two subsets of two elements each yields all the lines. In particular, we see that the 27 lines may be defined over $K=\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{a_{1} / a_{0}}, \sqrt[3]{a_{2} / a_{0}}, \sqrt[3]{a_{3} / a_{0}}\right)$.
2.2.2. - This is an abelian extension of $\mathbb{Q}\left(\zeta_{3}\right)$. Therefore, the irreducible representations of $\operatorname{Gal}(K / \mathbb{Q})$ are at most two-dimensional. Besides the trivial representation, there is the non-trivial Dirichlet character λ of $\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}$. The two-dimensional irreducible representations are actually representations of a factor group of the form $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{a_{0}^{e_{0}} \cdot \ldots \cdot a_{3}^{\varepsilon_{3}}}\right) / \mathbb{Q}\right) \cong S_{3}$ for $e_{0}, \ldots, e_{3} \in\{0,1,2\}$.
2.2.3. Lemma. - Let a and b be integers different from zero. Then,

$$
\left|\operatorname{Disc}\left(\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{a b^{2}}\right) / \mathbb{Q}\right)\right| \leq 3^{9} a^{4} b^{4}
$$

Proof. We have, at first,

$$
\begin{aligned}
\left|\operatorname{Disc}\left(\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{a b^{2}}\right) / \mathbb{Q}\right)\right| & \leq\left|\operatorname{Disc}\left(\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}\right)\right|^{3} \cdot \operatorname{Disc}\left(\mathbb{Q}\left(\sqrt[3]{a b^{2}}\right) / \mathbb{Q}\right)^{2} \\
& =27 \cdot \operatorname{Disc}\left(\mathbb{Q}\left(\sqrt[3]{a b^{2}}\right) / \mathbb{Q}\right)^{2} .
\end{aligned}
$$

Further, by [De, §4], we know

$$
\left|\operatorname{Disc}\left(\mathbb{Q}\left(\sqrt[3]{a b^{2}}\right) / \mathbb{Q}\right)\right| \leq 3^{3} a^{2} b^{2}
$$

This shows $\left|\operatorname{Disc}\left(\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{a b^{2}}\right) / \mathbb{Q}\right)\right| \leq 3^{9} a^{4} b^{4}$.
2.2.4. Proposition. - For each $\varepsilon>0$, there exist positive constants c_{1} and c_{2} such that

$$
c_{1} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\varepsilon}<\lim _{s \rightarrow 1}(s-1)^{t} L\left(s, \chi_{\operatorname{Pic}\left(S_{\frac{1}{Q}}^{\left(a_{0}, \ldots a_{3}\right)}\right)}\right)<c_{2} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\varepsilon}
$$

for all $\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$. Here, $t=\operatorname{rkPic}(S)$.
Proof. The Galois representation $\operatorname{Pic}\left(S \frac{\left(a_{0}, \ldots, a_{3}\right)}{\mathbb{Q}}\right) \otimes_{\mathbb{Z}} \mathbb{C}$ contains the trivial representation t times as a direct summand. Therefore,

$$
L\left(s, \chi_{\operatorname{Pic}\left(S S_{\mathbb{Q}}^{\left(a_{0}, \ldots a_{3}\right)}\right)}\right)=\zeta(s)^{t} \cdot L\left(s, \chi_{P}\right)
$$

where ζ denotes the Riemann zeta function and P is a representation which does not contain trivial components. All we need to show is

$$
c_{1} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\varepsilon}<L\left(1, \chi_{P}\right)<c_{2} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\varepsilon} .
$$

$L\left(\cdot, \chi_{P}\right)$ is the product [Ne , Chapter VII, Theorem (10.4).ii)] of not more than six factors of the form $L(\cdot, \lambda)$ for λ the non-trivial Dirichlet character of $\mathbb{Q}\left(\zeta_{3}\right) / \mathbb{Q}$ and at most three factors which are Artin- L-functions $L\left(\cdot, v^{K}\right)$ for two-dimensional irreducible representations.

Here, $K=\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{a_{0}^{c_{0}} \cdot \ldots \cdot a_{3}^{c_{3}}}\right)$ for certain $e_{0}, \ldots, e_{3} \in\{0,1,2\}$. As $L(1, \lambda)$ does not depend on a_{0}, \ldots, a_{3}, at all, it will suffice to show

$$
c_{1}(\varepsilon) \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\varepsilon}<L\left(1, v^{K}\right)<c_{2}(\varepsilon) \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\varepsilon}
$$

for each $\varepsilon>0$.
v^{K} is the only irreducible two-dimensional character of $\operatorname{Gal}(K / \mathbb{Q}) \cong S_{3}$. For that reason, by virtue of [Ne , Chapter VII, Corollary (10.5)], we have

$$
\begin{aligned}
\zeta_{K}(s) & =\zeta_{\mathbb{Q}}(s) \cdot L(s, \lambda) \cdot L\left(s, v^{K}\right)^{2} \\
& =\zeta_{\mathbb{Q}\left(\zeta_{3}\right)}(s) \cdot L\left(s, v^{K}\right)^{2}
\end{aligned}
$$

for a complex variable s. It, therefore, suffices in our particular situation to estimate the residue $\mathrm{res}_{s=1} \zeta_{K}(s)$ of the Dedekind zeta function of K.

An estimate from above has been given by C. L. Siegel. In view of the analytic class number formula, his [Si, Satz 1] gives

$$
\begin{aligned}
\underset{s=1}{\operatorname{res}} \zeta_{K}(s) & <C[\log \operatorname{Disc}(K / \mathbb{Q})]^{5} \\
& \leq C\left[\log \left(3^{9} a_{0}^{4} a_{1}^{4} a_{2}^{4} a_{3}^{4}\right)\right]^{5} \\
& =C\left[4 \log \left|a_{0} \cdot \ldots \cdot a_{3}\right|+9 \log 3\right]^{5}
\end{aligned}
$$

for a certain constant C. The final term is less than $c_{2}(\varepsilon) \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\varepsilon}$ for every $\varepsilon>0$.
On the other hand, H. M. Stark [St, formula (1)] shows

$$
\operatorname{res}_{s=1} \zeta_{K}(s)>C(\varepsilon) \cdot \operatorname{Disc}(K / \mathbb{Q})^{-\varepsilon / 4}
$$

for every $\varepsilon>0$ which implies $\underset{s=1}{\operatorname{res}} \zeta_{K}(s)>c_{1}(\varepsilon) \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\varepsilon}$.

2．3．An estimate for the factors at the finite places

2．3．1．Lemma．－There are two positive constants c_{1} and c_{2} such that，for all $a_{0}, \ldots, a_{3} \in \mathbb{Z} \backslash\{0\}$ ，

$$
c_{1}<\prod_{\substack{p \text { prime } \\ p \nmid ⿰ 弓 ⿱ 丿 ⿱ 日 乀, ~}} \tau_{a_{3}}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right)<c_{2} .
$$

Proof．For a prime p of good reduction，Hensel＇s Lemma implies

$$
\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right)=\operatorname{det}\left(1-p^{-1} \operatorname{Frob}_{p} \mid \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)\right) \cdot \frac{\# S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{F}_{p}\right)}{p^{2}} .
$$

Further，for the number of points on a non－singular cubic surface over a finite field，the Lefschetz trace formula can be made completely explicit［Ma，Theorem 27．1］．It shows

$$
\# S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{F}_{p}\right)=p^{2}+p \cdot \operatorname{tr}\left(\operatorname{Frob}_{p} \mid \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)\right)+1 .
$$

Denoting the eigenvalues of the Frobenius on $\operatorname{Pic}\left(S_{\bar{Q}}\right)$ by $\lambda_{1}, \ldots, \lambda_{7}$ ，we find

$$
\begin{aligned}
\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right)= & \left(1-\lambda_{1} p^{-1}\right)\left(1-\lambda_{2} p^{-1}\right) \cdot \ldots \cdot\left(1-\lambda_{7} p^{-1}\right) \\
& \cdot\left[1+\left(\lambda_{1}+\cdots+\lambda_{7}\right) p^{-1}+p^{-2}\right] \\
= & \left(1-\sigma_{1} p^{-1}+\sigma_{2} p^{-2}-\sigma_{3} p^{-3}+\ldots-\sigma_{7} p^{-7}\right)\left(1+\sigma_{1} p^{-1}+p^{-2}\right) \\
= & 1+\left(1-\sigma_{1}^{2}+\sigma_{2}\right) p^{-2}-\left(\sigma_{1}-\sigma_{1} \sigma_{2}+\sigma_{3}\right) p^{-3}+\ldots \\
& \quad \ldots-\left(\sigma_{5}-\sigma_{1} \sigma_{6}+\sigma_{7}\right) p^{-7}+\left(\sigma_{6}-\sigma_{1} \sigma_{7}\right) p^{-8}-\sigma_{7} p^{-9}
\end{aligned}
$$

where σ_{i} denote the elementary symmetric functions in $\lambda_{1}, \ldots, \lambda_{7}$ ．
We know $\left|\lambda_{i}\right|=1$ for all i ．Estimating very roughly，we have $\left|\sigma_{j}\right| \leq\binom{ 7}{j} \leq 7^{j}$ and see

$$
\begin{aligned}
& 1-99 p^{-2}-7 \cdot 99 p^{-3}-\ldots-7^{7} \cdot 99 p^{-9} \leq \tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) \leq \\
& \leq 1+99 p^{-2}+7 \cdot 99 p^{-3}+\ldots+7^{7} \cdot 99 p^{-9} .
\end{aligned}
$$

I．e．， $1-99 p^{-2} \frac{1}{1-7 / p}<\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right)<1+99 p^{-2} \frac{1}{1-7 / p}$ ．The infinite product over all $1-99 p^{-2} \frac{1}{1-7 / p}$（respectively $1+99 p^{-2} \frac{1}{1-7 / p}$ ）is convergent．

The left hand side is positive for $p>13$ ．For the small primes remaining，we need a better lower bound．For this，note that a cubic surface over a finite field \mathbb{F}_{p} always has at least one \mathbb{F}_{p}－rational point．This yields $\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) \geq(1-1 / p)^{7} / p^{2}>0$ ．

2．3．2．Remark．－It will require by far more labour to estimate the product over the finitely many bad primes，uniformly over all diagonal cubic surfaces．

2．3．3．Notation．－i）For a prime number p and an integer $x \neq 0$ ，we put $x^{(p)}:=p^{v_{p}(x)}$ ． Note $x^{(p)}=1 /\|x\|_{p}$ for the normalized p－adic valuation．
ii）For integers x_{1}, \ldots, x_{n} ，not all equal to zero，we write

$$
\operatorname{gcd}_{p}\left(x_{1}, \ldots, x_{n}\right):=\left[\operatorname{gcd}\left(x_{1}, \ldots, x_{n}\right)\right]^{(p)}
$$

Observe，if $x_{1}, \ldots, x_{n} \neq 0$ then we have $\operatorname{gcd}_{p}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{gcd}\left(x_{1}^{(p)}, \ldots, x_{n}^{(p)}\right)$ ．
iii) By putting $v(x):=\min _{\substack{\xi \in \mathbb{Z} p \\ x=(\xi \bmod p)}} v(\xi)$, we carry the p-adic valuation from \mathbb{Z}_{p} over to $\mathbb{Z} / p^{r} \mathbb{Z}$.

Note that any $0 \neq x \in \mathbb{Z} / p^{r} \mathbb{Z}$ has the form $x=\varepsilon \cdot p^{v(x)}$ where $\varepsilon \in\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{*}$ is a unit. Clearly, ε is unique only in the case $v(x)=0$.
2.3.4. Definition. - For $\left(a_{0}, \ldots, a_{3}\right) \in \mathbb{Z}^{4}, r \in \mathbb{N}$, and $v_{0}, \ldots, v_{3} \leq r$, put

$$
\begin{aligned}
N_{v_{0}, \ldots, v_{3} ; a_{0}, \ldots, a_{3}}^{(r)}:= & \left\{\left(x_{0}, \ldots, x_{3}\right) \in\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{4} \mid\right. \\
& \left.v\left(x_{0}\right)=v_{0}, \ldots, v\left(x_{3}\right)=v_{3} ; a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=0 \in \mathbb{Z} / p^{r} \mathbb{Z}\right\}
\end{aligned}
$$

For the particular case $v_{0}=\ldots=v_{3}=0$, we will write $Z_{a_{0}, \ldots, a_{3}}^{(r)}:=N_{0, \ldots, 0 ; a_{0}, \ldots, a_{3}}^{(r)}$, i.e.,

$$
Z_{a_{0}, \ldots, a_{3}}^{(r)}=\left\{\left(x_{0}, \ldots, x_{3}\right) \in\left[\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{*}\right]^{4} \mid a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=0 \in \mathbb{Z} / p^{r} \mathbb{Z}\right\}
$$

We will use the notation $z_{a_{0}, \ldots, a_{3}}^{(r)}:=\# Z_{a_{0}, \ldots, a_{3}}^{(r)}$.
2.3.5. Sublemma. - If $p^{k} \mid a_{0}, \ldots, a_{3}$ and $r>k$ then we have

$$
z_{a_{0}, \ldots, a_{3}}^{(r)}=p^{4 k} \cdot z_{a_{0} / p^{k}, \ldots, a_{3} / p^{k}}^{(r-k)} .
$$

Proof. Since $a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=p^{k}\left(a_{0} / p^{k} \cdot x_{0}^{3}+\ldots+a_{3} / p^{k} \cdot x_{3}^{3}\right)$, there is a surjection

$$
\iota: Z_{a_{0}, \ldots, a_{3}}^{(r)} \longrightarrow Z_{a_{0} / p^{k}, \ldots, a_{3} / p^{k}}^{(r-k)}
$$

given by $\left(x_{0}, \ldots, x_{3}\right) \mapsto\left(\left(x_{0} \bmod p^{r-k}\right), \ldots,\left(x_{3} \bmod p^{r-k}\right)\right)$. The kernel of the homomorphism of modules underlying ι is $\left(p^{r-k} \mathbb{Z} / p^{r} \mathbb{Z}\right)^{4}$.
2.3.6. Lemma. - Assume $\operatorname{gcd}_{p}\left(a_{0}, \ldots, a_{4}\right)=p^{k}$. Then, there is an estimate

$$
z_{a_{0}, \ldots, a_{4}}^{(r)} \leq 3 p^{3 r+k}
$$

Proof. Suppose first that $k=0$. This means, one of the coefficients is prime to p. Without restriction, assume $p \nmid a_{0}$.

For any $\left(x_{1}, x_{2}, x_{3}\right) \in\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{3}$, there appears an equation of the form $a_{0} x_{0}^{3}=c$. It cannot have more than three solutions in $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{*}$. Indeed, for p odd, this follows directly from the fact that $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{*}$ is a cyclic group. On the other hand, in the case $p=2$, we have $\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{*} \cong \mathbb{Z} / 2^{r-2} \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. Again, there are only up to three solutions possible.

The general case may now easily be deduced from Sublemma 2.3.5. Indeed, if $k<r$ then

$$
z_{a_{0}, \ldots, a_{3}}^{(r)}=p^{4 k} \cdot z_{a_{0} / p^{k}, \ldots, a_{3} / p^{k}}^{(r-k)} \leq p^{4 k} \cdot 3 p^{3(r-k)}=3 p^{3 r+k}
$$

On the other hand, if $k \geq r$ then the assertion is completely trivial since

$$
z_{a_{0}, \ldots, a_{3}}^{(r)}=\# Z_{a_{0}, \ldots, a_{3}}^{(r)}<p^{4 r} \leq p^{3 r+k}<3 p^{3 r+k}
$$

2.3.7. Remark. - The proof shows that in the case $p \equiv 2(\bmod 3)$ one could reduce the coefficient to 1 . Unfortunately, this observation does not lead to a substantial improvement of our final result.
2.3.8. Lemma. - Let $r \in \mathbb{N}$ and $v_{0}, \ldots, v_{3} \leq r$. Then,

$$
\# N_{\nu_{0}, \ldots, \nu_{3} ; a_{0}, \ldots, a_{3}}^{(r)}=\frac{z_{p^{3 v_{0}} a_{0}, \ldots, p^{3 v_{3}} a_{3}}^{(r)} \cdot \varphi\left(p^{r-\nu_{0}}\right) \cdot \ldots \cdot \varphi\left(p^{r-v_{3}}\right)}{\varphi\left(p^{r}\right)^{4}}
$$

Proof. As $p^{3 v_{0}} a_{0} x_{0}^{3}+\ldots+p^{3 v_{3}} a_{3} x_{3}^{3}=a_{0}\left(p^{\nu_{0}} x_{0}\right)^{3}+\ldots+a_{3}\left(p^{\nu_{3}} x_{3}\right)^{3}$, we have a surjection

$$
\pi: Z_{p^{3} v_{a_{0}}, \ldots, p^{33_{3}} a_{3}}^{(r)} \longrightarrow N_{v_{0}, \ldots, v_{3} ; a_{0}, \ldots, a_{3}}^{(r)}
$$

given by $\left(x_{0}, \ldots, x_{3}\right) \mapsto\left(p^{v_{0}} x_{0}, \ldots, p^{v_{3}} x_{3}\right)$.
For $i=0, \ldots, 3$, consider the mapping $\iota: \mathbb{Z} / p^{r} \mathbb{Z} \rightarrow \mathbb{Z} / p^{r} \mathbb{Z}, x \mapsto p^{v_{i} x}$. If $v_{i}=r$ then ι is the zero map. All $\varphi\left(p^{r}\right)=(p-1) p^{r-1}$ units are mapped to zero. Otherwise, observe that ι is $p^{v_{i}}: 1$ onto its image. Further, $v(\iota(x))=v_{i}$ if and only if x is a unit. By consequence, π is $\left(K^{\left(v_{0}\right)} \cdot \ldots \cdot K^{\left(v_{3}\right)}\right): 1$ when we put $K^{(v)}:=p^{v}$ for $v<r$ and $K^{(r)}:=(p-1) p^{r-1}$. Summarizing, we could have written $K^{(v)}:=\varphi\left(p^{r}\right) / \varphi\left(p^{r-v}\right)$. The assertion follows.
2.3.9. Corollary. $-\operatorname{Let}\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$. Then, for the local factor $\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right)$, one has

$$
\left.\left.\begin{array}{rl}
\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right)=\operatorname{det}\left(1-p^{-1}\right. & \operatorname{Frob} \\
p
\end{array} \right\rvert\, \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)^{I_{p}}\right) .
$$

Proof. [PT, Corollary 3.5] implies that

$$
\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right)=\operatorname{det}\left(1-p^{-1} \operatorname{Frob}{ }_{p} \mid \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)^{I_{p}}\right) \cdot \lim _{r \rightarrow \infty} \sum_{v_{0}, \ldots, v_{3}=0}^{r} \frac{\# N_{v_{0}, \ldots, v_{3} ; a_{0}, \ldots, a_{3}}^{(r)}}{p^{3 r}}
$$

Lemma 2.3.8 yields the assertion.
2.3.10. Proposition. - Let $\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$. Then, for each ε such that $0<\varepsilon<\frac{1}{3}$, one has

$$
\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) \leq\left(1+\frac{1}{p}\right)^{7} \cdot 3\left(\frac{1}{1-\frac{1}{p^{1-3 \varepsilon}}}\right)\left(\frac{1}{1-\frac{1}{p^{\varepsilon}}}\right)^{3} \cdot\left(a_{0}^{(p)} a_{1}^{(p)} a_{2}^{(p)}\right)^{\frac{1-\varepsilon}{3}}\left(a_{3}^{(p)}\right)^{\varepsilon}
$$

Proof. We use the formula from Corollary 2.3.9. The eigenvalues of the Frobenius on $\operatorname{Pic}\left(S_{\bar{Q}}\right)^{I_{p}}$ are all roots of unity. Therefore, the first factor is at most $(1+1 / p)^{7}$. Further, by Lemma 2.3.6,

$$
\begin{aligned}
z_{p^{3 v_{0}} a_{0}, \ldots, p^{33_{3}} a_{3}}^{\left(p^{3 r}\right.} & \leq 3 \operatorname{gcd}_{p}\left(p^{3 v_{0}} a_{0}, \ldots, p^{3 v_{3}} a_{3}\right) \\
& =3 \operatorname{gcd}\left(p^{3 v_{0}} a_{0}^{(p)}, \ldots, p^{3 v_{3}} a_{3}^{(p)}\right)
\end{aligned}
$$

Writing $k_{i}:=v_{p}\left(a_{i}\right)=v_{p}\left(a_{i}^{(p)}\right)$, we see

$$
\begin{aligned}
z_{p^{3 v_{0}} a_{0}, \ldots, p^{33_{3}} a_{3}} / p^{3 r} & \leq 3 \operatorname{gcd}\left(p^{3 v_{0}+k_{0}}, \ldots, p^{3 v_{3}+k_{3}}\right) \\
& =3 p^{\min \left\{3 v_{0}+k_{0}, \ldots, 3 v_{3}+k_{3}\right\}} .
\end{aligned}
$$

We estimate the minimum by a weighted arithmetic mean with weights $\frac{1-\varepsilon}{3}, \frac{1-\varepsilon}{3}, \frac{1-\varepsilon}{3}$, and ε,

$$
\begin{aligned}
\min \left\{3 v_{0}+k_{0}, \ldots, 3 v_{3}+k_{3}\right\} \leq & \frac{1-\varepsilon}{3} \cdot\left(3 v_{0}+k_{0}\right)+ \\
& \frac{1-\varepsilon}{3} \cdot\left(3 v_{1}+k_{1}\right) \\
& +\frac{1-\varepsilon}{3} \cdot\left(3 v_{2}+k_{2}\right)+\varepsilon\left(3 v_{3}+k_{3}\right) \\
= & (1-\varepsilon)\left(v_{0}+v_{1}+v_{2}\right)+3 \varepsilon v_{3} \\
& +\frac{1-\varepsilon}{3}\left(k_{0}+k_{1}+k_{2}\right)+\varepsilon k_{3} .
\end{aligned}
$$

This shows

$$
\begin{aligned}
z_{p^{3} v_{0}}^{(r)} \ldots, p^{3 r_{3} a_{3}}
\end{aligned} p^{3 r} \leq 3 p^{(1-\varepsilon)\left(v_{0}+v_{1}+v_{2}\right)+3 \varepsilon v_{3}+\frac{1-\varepsilon}{3}\left(k_{0}+k_{1}+k_{2}\right)+\varepsilon k_{3}} .
$$

We may therefore write

$$
\begin{aligned}
& \tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) \leq\left(1+\frac{1}{p}\right)^{7} \cdot 3\left(a_{0}^{(p)} a_{1}^{(p)} a_{2}^{(p)}\right)^{\frac{1-\varepsilon}{3}}\left(a_{3}^{(p)}\right)^{\varepsilon} \\
& \cdot \lim _{r \rightarrow \infty} \sum_{v_{0}, \ldots, v_{3}=0}^{r} \frac{p^{(1-\varepsilon)\left(v_{0}+v_{1}+v_{2}\right)+3 \varepsilon v_{3}} \cdot \varphi\left(p^{r-v_{0}}\right) \cdot \ldots \cdot \varphi\left(p^{r-v_{3}}\right)}{\varphi\left(p^{r}\right)^{4}} .
\end{aligned}
$$

Here, the term under the limit is precisely the product of three copies of the finite sum

$$
\sum_{v=0}^{r} \frac{p^{(1-\varepsilon) v} \cdot \varphi\left(p^{r-v}\right)}{\varphi\left(p^{r}\right)}=\sum_{v=0}^{r-1} \frac{1}{\left(p^{\varepsilon}\right)^{v}}+\frac{p}{p-1} \frac{1}{\left(p^{\varepsilon}\right)^{r}}
$$

and one copy of the finite sum

$$
\sum_{v=0}^{r} \frac{p^{3 \varepsilon v} \cdot \varphi\left(p^{r-v}\right)}{\varphi\left(p^{r}\right)}=\sum_{v=0}^{r-1} \frac{1}{\left(p^{1-3 \varepsilon}\right)^{v}}+\frac{p}{p-1} \frac{1}{\left(p^{1-3 \varepsilon}\right)^{r}}
$$

For $r \rightarrow \infty$, geometric series do appear while the additional summands tend to zero.
2.3.11. Remark. - The constants

$$
C_{p}^{(\varepsilon)}:=\left(1+\frac{1}{p}\right)^{7} \cdot 3\left(\frac{1}{1-\frac{1}{p^{1-3 \varepsilon}}}\right)\left(\frac{1}{1-\frac{1}{p^{\varepsilon}}}\right)^{3}
$$

are clearly not optimal in any sense. Note, in particular, that we did not put much effort into the bound for $\operatorname{det}\left(1-p^{-1} \operatorname{Frob} p \mid \operatorname{Pic}\left(S_{\bar{Q}}\right)^{I_{p}}\right)$.

However, and this is what is important for our application, we clearly have that $C_{p}^{(\varepsilon)}$ is bounded for $p \rightarrow \infty$, say $C_{p}^{(\varepsilon)} \leq C^{(\varepsilon)}$. We do not know of an improvement which would make the product $\prod_{p} C_{p}^{(\varepsilon)}$ converge.
2.3.12. Proposition. - For each ε such that $0<\varepsilon<\frac{1}{3}$, there exists a constant c such that

$$
\prod_{p \text { prime }} \tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) \leq c \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{1}{3}-\frac{\varepsilon}{8}} \cdot \prod_{p \text { prime }} \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}^{\frac{1}{3}-\varepsilon}
$$

for all $\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$.
Proof. The product over all primes of good reduction is bounded by virtue of Lemma 2.3.1 above. It, therefore, remains to show that

$$
\prod_{\substack{p \text { prime } \\ p \nmid a_{0}, \ldots a_{3}}} \tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) \leq c \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{1}{3}-\frac{\varepsilon}{8}} \cdot \prod_{p \text { prime }} \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}^{\frac{1}{3}-\varepsilon}
$$

For this, by Proposition 2.3.10, we have at first

$$
\begin{aligned}
\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) & \leq C_{p}^{(\varepsilon)} \cdot\left(a_{0}^{(p)} a_{1}^{(p)} a_{2}^{(p)}\right)^{\frac{1}{3}-\frac{\varepsilon}{4}} \cdot\left(a_{3}^{(p)}\right)^{\frac{3}{4} \varepsilon} \\
& =C_{p}^{(\varepsilon)} \cdot\left(a_{0}^{(p)} a_{1}^{(p)} a_{2}^{(p)} a_{3}^{(p)}\right)^{\frac{1}{3}-\frac{\varepsilon}{4}} \cdot\left(a_{3}^{(p)}\right)^{-\frac{1}{3}+\varepsilon} .
\end{aligned}
$$

Here, the indices $0, \ldots, 3$ are interchangeable. Hence, it is even allowed to write

$$
\begin{aligned}
\tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) & \leq C_{p}^{(\varepsilon)} \cdot\left(a_{0}^{(p)} a_{1}^{(p)} a_{2}^{(p)} a_{3}^{(p)}\right)^{\frac{1}{3}-\frac{\varepsilon}{4}} \cdot\left(\max _{i} a_{i}^{(p)}\right)^{-\frac{1}{3}+\varepsilon} \\
& =C_{p}^{(\varepsilon)} \cdot\left(a_{0}^{(p)} a_{1}^{(p)} a_{2}^{(p)} a_{3}^{(p)}\right)^{\frac{1}{3}-\frac{\varepsilon}{4}} \cdot \min _{i}\left\|a_{i}\right\|_{p}^{\frac{1}{3}-\varepsilon} .
\end{aligned}
$$

Now, we multiply over all prime divisors of $a_{0} \cdot \ldots \cdot a_{3}$. Thereby, on the right hand side, we may twice write the product over all primes since the two rightmost factors are equal to one for $p \nmid 3 a_{0} \cdot \ldots \cdot a_{3}$, anyway.

$$
\begin{aligned}
\prod_{\substack{p \text { prime } \\
p \nless a_{0}, \ldots a_{3}}} \tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) & \leq \prod_{\substack{p \text { prime } \\
p \nmid \beta a_{0}, \ldots a_{3}}} C_{p}^{(\varepsilon)} \cdot \prod_{p \text { prime }}\left(a_{0}^{(p)} a_{1}^{(p)} a_{2}^{(p)} a_{3}^{(p)}\right)^{\frac{1}{3}-\frac{\varepsilon}{4}} \cdot \prod_{p \text { prime }} \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}^{\frac{1}{3}-\varepsilon} \\
& =\prod_{\substack{p \text { prime } \\
p 3 a_{0}, \ldots a_{3}}} C_{p}^{(\varepsilon)} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{1}{3}-\frac{\varepsilon}{4}} \cdot \prod_{p \text { prime }} \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}^{\frac{1}{3}-\varepsilon}
\end{aligned}
$$

when we observe that $\prod_{p} a^{(p)}=|a|$. Further, we have $C_{p}^{(\varepsilon)} \leq C^{(\varepsilon)}$ and, by [Na, Theorem 7.2] together with [Na , Section 7.1, Exercise 7],

$$
\prod_{\substack{p \text { prime } \\ p \nmid 3 a_{0} \ldots a_{3}}} C^{(\varepsilon)} \leq c \cdot\left|3 a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{8}}
$$

We finally estimate $3^{\frac{\varepsilon}{8}}$ by a constant. The assertion follows.

2.4. An estimate for the factor at the infinite place

2.4.1. Proposition. - For real numbers $0<b_{0} \leq b_{1} \leq b_{2} \leq b_{3}$, we have

$$
\int_{\substack{C S^{(1, \ldots, 1)(\mathbb{R})} \\\left|x_{0}\right| \leq b_{0}, \ldots, \mid x_{3} \leq b_{3}}} \omega_{\text {Leray }}^{C S^{(1, \ldots 1)}(\mathbb{R})} \leq\left(64+\frac{64}{3} \log 3+\frac{1}{3} \sqrt[3]{3} \omega_{2}\right) b_{0}+64 b_{0} \log \frac{b_{1}}{b_{0}}
$$

where ω_{2} is the two-dimensional hypersurface measure of the l_{3}-unit sphere

$$
\begin{gathered}
S^{2}:=\left\{\left.\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}| | x_{1}\right|^{3}+\left|x_{2}\right|^{3}+\left|x_{3}\right|^{3}=1\right\} . \\
11
\end{gathered}
$$

Proof. First step. We cover the domain of integration by 25 sets as follows. We put

$$
R_{0}:=\left[-b_{0}, b_{0}\right]^{4} \cap C S^{(1, \ldots, 1)}(\mathbb{R})
$$

Further, for each $\sigma \in S_{4}$, we set

$$
\begin{aligned}
R_{\sigma}:=\left\{(x _ { 0 } , \ldots , x _ { 3 }) \in \mathbb { R } ^ { 4 } | | x _ { \sigma (0) } \left|\leq \cdots \leq\left|x_{\sigma(3)}\right|,\left|x_{i}\right| \leq b_{i}, \text { and } b_{0}\right.\right. & \left.\leq\left|x_{\sigma(3)}\right|\right\} \\
& \cap C S^{(1, \ldots, 1)}(\mathbb{R}) .
\end{aligned}
$$

Second step. One has $\int_{R_{\sigma}} \omega_{\text {Leray }}^{C C^{(1, \ldots 1)}(\mathbb{R})} \leq \int_{R_{\mathrm{id}}} \omega_{\text {Leray }}^{C C^{(1, \ldots 1)}(\mathbb{R})}$ for every $\sigma \in S_{4}$.
Consider the map $i_{\sigma}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ given by $\left(x_{0}, \ldots, x_{3}\right) \mapsto\left(x_{\sigma(0)}, \ldots, x_{\sigma(3)}\right)$. Since $C S^{(1, \ldots, 1)}(\mathbb{R})$ is defined by a symmetric cubic form, it is invariant under i_{σ}. We claim that

$$
i_{\sigma}\left(R_{\sigma}\right) \subseteq R_{\mathrm{id}} .
$$

Indeed, let $\left(x_{0}, \ldots, x_{3}\right) \in R_{\sigma}$. Then, $i_{\sigma}\left(x_{0}, \ldots, x_{3}\right)=\left(x_{\sigma(0)}, \ldots, x_{\sigma(3)}\right)$ has the properties $\left|x_{\sigma(0)}\right| \leq \ldots \leq\left|x_{\sigma(3)}\right|$ and $b_{0} \leq\left|x_{\sigma(3)}\right|$. In order to show $i_{\sigma}\left(x_{0}, \ldots, x_{3}\right) \in R_{\mathrm{id}}$, all we need to verify is $\left|x_{\sigma(i)}\right| \leq b_{i}$ for $i=0, \ldots, 3$.

For this, we use that the b_{i} are sorted. We have $\left|x_{\sigma(3)}\right| \leq b_{\sigma(3)} \leq b_{3}$. Further, $\left|x_{\sigma(2)}\right| \leq b_{\sigma(2)}$ and $\left|x_{\sigma(2)}\right| \leq\left|x_{\sigma(3)}\right| \leq b_{\sigma(3)}$ one of which is at most equal to b_{2}. Similarly, $\left|x_{\sigma(1)}\right| \leq b_{\sigma(1)}$, $\left|x_{\sigma(1)}\right| \leq\left|x_{\sigma(2)}\right| \leq b_{\sigma(2)}$, and $\left|x_{\sigma(1)}\right| \leq\left|x_{\sigma(3)}\right| \leq b_{\sigma(3)}$, the smallest of which is not larger than b_{1}. Finally, $\left|x_{\sigma(0)}\right| \leq b_{\sigma(0)},\left|x_{\sigma(0)}\right| \leq\left|x_{\sigma(1)}\right| \leq b_{\sigma(1)},\left|x_{\sigma(0)}\right| \leq\left|x_{\sigma(2)}\right| \leq b_{\sigma(2)}$, and $\left|x_{\sigma(0)}\right| \leq\left|x_{\sigma(3)}\right| \leq b_{\sigma(3)}$. This shows $\left|x_{\sigma(0)}\right| \leq b_{0}$.

Since $x_{0}^{3}+\ldots+x_{3}^{3}$ is a symmetric form, the Leray measure on $\operatorname{CS}^{(1, \ldots, 1)}(\mathbb{R})$ is invariant under the canonical operation of S_{4} on $C S^{(1, \ldots, 1)}(\mathbb{R}) \subset \mathbb{R}^{4}$. Therefore, we have $\left(i_{\sigma}\right)_{*} \omega_{\text {Leray }}^{C S^{(1, \ldots, 1)}(\mathbb{R})}=\omega_{\text {Leray }}^{C S^{(1, \ldots, 1)}(\mathbb{R})}$ for each $\sigma \in S_{4}$.

Altogether,

$$
\int_{R_{\sigma}} \omega_{\text {Leray }}^{C C^{(1, \ldots, 1)}(\mathbb{R})} \leq \int_{i_{\sigma}^{-1}\left(R_{\mathrm{id}}\right)} \omega_{\text {Leray }}^{C C^{(1, \ldots, 1)}(\mathbb{R})}=\int_{R_{\mathrm{id}}}\left(i_{\sigma}\right)_{*} \omega_{\text {Leray }}^{C C^{(1, \ldots, 1)}(\mathbb{R})}=\int_{R_{\mathrm{id}}} \omega_{\text {Leray }}^{C S^{(1, \ldots 1)}(\mathbb{R})} .
$$

Third step. We have $\int_{R_{0}} \omega_{\text {Leray }}^{C S^{(1, \ldots, 1)}(\mathbb{R})} \leq \frac{1}{3} \sqrt[3]{3} \omega_{2} b_{0}$.
By definition,

$$
\begin{aligned}
\int_{R_{0}} \omega_{\text {Leray }}^{C S^{(1, \ldots 1)}(\mathbb{R})} & =\frac{1}{3} \int_{R_{0}} \frac{1}{x_{3}^{2}} d x_{0} \wedge d x_{1} \wedge d x_{2} \\
& =\frac{1}{3} \iiint_{\pi\left(R_{0}\right)} \frac{1}{\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}\right)^{2 / 3}} d x_{0} d x_{1} d x_{2}
\end{aligned}
$$

where $\pi: C S^{(1, \ldots, 1)}(\mathbb{R}) \rightarrow \mathbb{R}^{3},\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{0}, x_{1}, x_{2}\right)$, denotes the projection to the first three coordinates.

We enlarge the domain of integration to

$$
R^{\prime}:=\left\{\left.\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}| | x_{0}\right|^{3}+\left|x_{1}\right|^{3}+\left|x_{2}\right|^{3} \leq 3 b_{0}^{3}\right\} .
$$

Then, by homogeneity, we see

$$
\iiint_{R^{\prime}} \frac{1}{\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}\right)^{2 / 3}} d x_{0} d x_{1} d x_{2}=\omega_{2} \cdot \int_{0}^{\sqrt[3]{3} b_{0}} \frac{1}{r^{2}} \cdot r^{2} d r=\omega_{2} \cdot \sqrt[3]{3} b_{0}
$$

Fourth step. We have $\int_{R_{\mathrm{id}}} \omega_{\text {Leray }}^{C S^{(1, \ldots 1)}(\mathbb{R})} \leq\left(\frac{8}{3}+\frac{8}{9} \log 3\right) b_{0}+\frac{8}{3} b_{0} \log \frac{b_{1}}{b_{0}}$.
Observe $\left|x_{3}\right|=\left|\sqrt[3]{x_{0}^{3}+x_{1}^{3}+x_{2}^{3}}\right| \leq \sqrt[3]{\left|x_{0}\right|^{3}+\left|x_{1}\right|^{3}+\left|x_{2}\right|^{3}}$. For $\left(x_{0}, \ldots, x_{3}\right) \in R_{\mathrm{id}}$, this implies $\left|x_{3}\right| \leq \sqrt[3]{3}\left|x_{2}\right|$ and $\left|x_{2}\right| \geq b_{0} / \sqrt[3]{3}$. We find

$$
\begin{aligned}
& \int_{R_{\mathrm{id}}} \omega_{\text {Leray }} C S^{(1, \ldots, 1)(\mathbb{R})}=\frac{1}{3} \int_{R_{\mathrm{id}}} \frac{1}{x_{3}^{2}} d x_{0} \wedge d x_{1} \wedge d x_{2} \\
& \leq \frac{1}{3} \int_{R_{\mathrm{id}}} \frac{1}{x_{2}^{2}} d x_{0} \wedge d x_{1} \wedge d x_{2} \\
&<\frac{1}{3} \int_{-b_{0}}^{b_{0}} \int_{\left|x_{1}\right| \in\left[\left|x_{0}\right|, b_{1}\right]} \int_{\left|x_{2}\right| \mid b_{0}, \sqrt[3]{3}} \frac{1}{x_{2} 2} d\left|x_{1}^{2}\right| \\
& x_{1} \mid \\
& \leq \frac{1}{3} \int_{-b_{0}}^{b_{0}} \int_{\left|x_{1}\right| \in\left[\left|x_{0}\right|, b_{1}\right]} \frac{2}{\max \left\{b_{0} / \sqrt[3]{3},\left|x_{1}\right|\right\}} d x_{1} d x_{0} d x_{0} \\
& \leq \frac{2}{3} \int_{-b_{0}}^{b_{0}} \int_{\left|x_{1}\right| \in\left[\left|x_{0}\right|, b_{0} / \sqrt[3]{3}\right]}^{\left.\frac{\sqrt[3]{3}}{b_{0}} d x_{1} d x_{0}+\int_{-b_{0}}^{b_{0}} \int_{\left|x_{1}\right| \in\left[b_{0} / \sqrt[3]{3}, b_{1}\right]} \frac{1}{\left|x_{1}\right|} d x_{1} d x_{0}\right]} \\
& \leq \frac{2}{3} \cdot \frac{4 b_{0}^{2}}{\sqrt[3]{3}} \cdot \frac{\sqrt[3]{3}}{b_{0}}+\frac{2}{3} \int_{-b_{0}}^{b_{0}} 2 \log \frac{\sqrt[3]{3} b_{1}}{b_{0}} d x_{0} \\
&=\frac{8}{3} b_{0}+\frac{8}{3} b_{0} \log \frac{\sqrt[3]{3} b_{1}}{b_{0}} \\
&=\left(\frac{8}{3}+\frac{8}{9} \log 3\right) b_{0}+\frac{8}{3} b_{0} \log \frac{b_{1}}{b_{0}} .
\end{aligned}
$$

2.4.2. Corollary. - For every $\varepsilon>0$, there exists a constant c such that

$$
\tau_{\infty}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}(\mathbb{R})\right) \leq c \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\frac{1}{3}+\varepsilon} \cdot \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{\infty}^{\frac{1}{3}}
$$

for each $\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$.
Proof. Our first claim is

$$
\tau_{\infty}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}(\mathbb{R})\right)=\frac{1}{2 \sqrt[3]{\left|a_{0} \cdot \ldots \cdot a_{3}\right|}} \int_{\substack{C S^{(1, \ldots)}(\mathbb{R}) \\\left|x_{0}\right| \leq \sqrt[3]{\left|a_{0}\right|}, \ldots,\left|x_{3}\right| \leq \sqrt[3]{\left|a_{3}\right|}}} \omega_{\text {Leray }}^{C S^{(1, \ldots 1)}(\mathbb{R})}
$$

Indeed, according to the definition of $\tau_{\infty}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}(\mathbb{R})\right)$, we need to show

$$
\frac{1}{6\left|a_{0}\right|} \int_{\substack{C S^{\left(a_{0}, a_{3}\right)(\mathbb{R})} \\\left|x_{0}\right| \leq 1, \ldots, x_{3} \mid \leq 1}} \frac{1}{x_{0}^{2}} d x_{1} \wedge d x_{2} \wedge d x_{3}=\frac{1}{6 \sqrt[3]{\left|a_{0} \cdot \ldots \cdot a_{3}\right|}} \int_{\substack{\left.C(1,1) \\\left|X_{0}\right| \leq \sqrt[3]{a_{0}}, \ldots, \mathbb{R}_{3}\right) \leq \sqrt[3]{a_{3}}}} \frac{1}{X_{0}^{2}} d X_{1} \wedge d X_{2} \wedge d X_{3} .
$$

For that, consider the linear mapping $l: C S^{\left(a_{0}, \ldots, a_{3}\right)}(\mathbb{R}) \rightarrow C S^{(1, \ldots, 1)}(\mathbb{R})$ given by

$$
\left(x_{0}, \ldots, x_{3}\right) \mapsto\left(\sqrt[3]{a_{0}} x_{0}, \ldots, \sqrt[3]{a_{3}} x_{3}\right)
$$

Then,

$$
l^{*}\left(\frac{1}{X_{0}^{2}} d X_{1} \wedge d X_{2} \wedge d X_{3}\right)=\frac{\sqrt[3]{a_{1} a_{2} a_{3}}}{a_{0}^{2 / 3}} \frac{1}{x_{0}^{2}} d x_{1} \wedge d x_{2} \wedge d x_{3}
$$

When we take into consideration that orientations are chosen in such a way that both integrals are positive, this immediately yields the claim.

To obtain the asserted inequality, we assume without restriction that $\left|a_{0}\right| \leq \ldots \leq\left|a_{3}\right|$. Then, Proposition 2.4.1 shows that, for certain explicit positive constants c_{1} and c_{2},

$$
\begin{aligned}
\tau_{\infty}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}(\mathbb{R})\right) & \leq\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\frac{1}{3}} \cdot\left(c_{1}\left|a_{0}\right|^{\frac{1}{3}}+c_{2}\left|a_{0}\right|^{\frac{1}{3}} \log \sqrt[3]{\frac{\left|a_{1}\right|}{\left|a_{0}\right|}}\right) \\
& =\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\frac{1}{3}} \cdot\left|a_{0}\right|^{\frac{1}{3}}\left(c_{1}+\frac{1}{3} c_{2} \log \frac{\left|a_{1}\right|}{\left|a_{0}\right|}\right) \\
& \leq\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\frac{1}{3}} \cdot \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{\infty}^{\frac{1}{3}} \cdot\left(c_{1}+\frac{1}{3} c_{2} \log \left|a_{0} \cdot \ldots \cdot a_{3}\right|\right) .
\end{aligned}
$$

There is a constant c such that $c_{1}+\frac{1}{3} c_{2} \log \left|a_{0} \cdot \ldots \cdot a_{3}\right| \leq c\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\varepsilon}$ for every $\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$.

2.5. The Tamagawa number

2.5.1. Proposition. - For every $\varepsilon>0$, there exists a constant $C>0$ such that

$$
\frac{1}{\tau^{\left(a_{0}, \ldots, a_{3}\right)}} \geq C \cdot \frac{\mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\frac{1}{3}}}{\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\varepsilon}}
$$

for each $\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$.
Proof. We may assume that ε is small, say $\varepsilon<\frac{2}{3}$. Then, immediately from the definition of $\tau^{\left(a_{0}, \ldots, a_{3}\right)}$, we have

$$
\begin{aligned}
& \tau^{\left(a_{0}, \ldots, a_{3}\right)} \\
= & \alpha\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right) \cdot \beta\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right) \cdot \lim _{s \rightarrow 1}(s-1)^{t} L\left(s, \chi_{\operatorname{Pic}\left(S\left(\frac{a_{0}}{\mathbb{Q}}, \ldots, a_{3}\right)\right.}\right) \cdot \tau_{H}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{A}_{\mathbb{Q}}\right)^{\operatorname{Br}}\right) \\
\leq & \alpha\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right) \cdot \beta\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right) \cdot \lim _{s \rightarrow 1}(s-1)^{t} L\left(s, \chi_{\operatorname{Pic}\left(S\left(\frac{a_{0}}{\left(a_{0}, \ldots a_{3}\right)}\right)\right.}\right) \cdot \tau_{H}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{A}_{\mathbb{Q}}\right)\right) \\
= & \alpha\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right) \cdot \beta\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right) \cdot \lim _{s \rightarrow 1}(s-1)^{t} L\left(s, \chi_{\operatorname{Pic}\left(S \left(S_{0}\left(a_{0}, \ldots, a_{3}\right)\right.\right.}\right) \cdot \prod_{v \in \operatorname{Val}(\mathbb{Q})} \tau_{v}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{v}\right)\right) .
\end{aligned}
$$

Let us collect estimates for the factors. First, by Proposition 2.2.4, we have

$$
\lim _{s \rightarrow 1}(s-1)^{t} L\left(s, \chi_{\operatorname{Pic}\left(S_{\left(\frac{\left.a_{0}, \ldots, a_{3}\right)}{Q}\right)}\right)<c_{1} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{16}}}\right.
$$

for a certain constant c_{1}. Further, Proposition 2.3.12 yields

$$
\prod_{p \text { prime }} \tau_{p}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\left(\mathbb{Q}_{p}\right)\right) \leq c_{2} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{1}{3}-\frac{\varepsilon}{16}} \cdot \prod_{p \text { prime }} \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}^{\frac{1}{3}-\frac{\varepsilon}{2}}
$$

Finally, Corollary 2.4 .2 shows

$$
\tau_{\infty}\left(S^{\left(a_{0}, \ldots, a_{3}\right)}(\mathbb{R})\right) \leq c \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{-\frac{1}{3}+\frac{\varepsilon}{2}} \cdot \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{\infty}^{\frac{1}{3}}
$$

We assert that the three inequalities together imply the following estimate for Peyre's constant $\tau^{\left(a_{0}, \ldots, a_{3}\right)}=\tau\left(S^{\left(a_{0}, \ldots, a_{3}\right)}\right)$,

$$
\tau^{\left(a_{0}, \ldots, a_{3}\right)} \leq c_{3} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{2}} \cdot \prod_{p \text { prime }} \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}^{\frac{1}{3}} \cdot \min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{\infty}^{\frac{1}{3}} \cdot \prod_{p \text { prime }}\left[\min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}\right]^{-\frac{\varepsilon}{2}}
$$

Indeed, this is trivial in the case $\tau^{\left(a_{0}, \ldots, a_{3}\right)}=0$. Otherwise, $S^{\left(a_{0}, \ldots, a_{3}\right)}$ has an adelic point. Lemmata 2.1.5 and 2.1.3 show that the factors α and β are bounded from above by constants. By consequence,

$$
\begin{aligned}
\frac{1}{\boldsymbol{\tau}^{\left(a_{0}, \ldots, a_{3}\right)}} & \geq \frac{1}{c_{3}} \cdot \frac{\prod_{p \text { prime }}\left[\min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}\right]^{-\frac{1}{3}} \cdot\left[\min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{\infty}\right]^{-\frac{1}{3}}}{\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{2}} \cdot \prod_{p \text { prime }}\left[\min _{i=0, \ldots, 3}\left\|a_{i}\right\|_{p}\right]^{-\frac{\varepsilon}{2}}} \\
& =\frac{1}{c_{3}} \cdot \frac{\prod_{p \text { prime }} \max _{i=0, \ldots, 3}\left\|\frac{1}{a_{i}}\right\|_{p}^{\frac{1}{3}} \cdot \max _{i=0, \ldots, 3}\left\|\frac{1}{a_{i}}\right\|_{\infty}^{\frac{1}{3}}}{\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{2}} \cdot \prod_{p \text { prime }}\left[\max _{i=0, \ldots, 3} a_{i}^{(p)}\right]^{\frac{\varepsilon}{2}}} \\
& =\frac{1}{c_{3}} \cdot \frac{\mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\frac{1}{3}}}{\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{2}} \cdot \prod_{p \text { prime }}\left[\max _{i=0, \ldots, 3} a_{i}^{(p)}\right]^{\frac{\varepsilon}{2}}}
\end{aligned}
$$

It is obvious that $\max _{i=0, \ldots, 3} a_{i}^{(p)} \leq\left|a_{0}^{(p)} \cdot \ldots \cdot a_{3}^{(p)}\right|$ and $\prod_{p \text { prime }}\left|a_{0}^{(p)} \cdot \ldots \cdot a_{3}^{(p)}\right|=\left|a_{0} \cdot \ldots \cdot a_{3}\right|$. This shows

$$
\begin{aligned}
\frac{1}{\tau^{\left(a_{0}, \ldots, a_{3}\right)}} & \geq \frac{1}{c_{3}} \cdot \frac{\mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\frac{1}{3}}}{\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{2}} \cdot\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{2}}} \\
& =\frac{1}{c_{3}} \cdot \frac{\mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\frac{1}{3}}}{\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\varepsilon}}
\end{aligned}
$$

2.5.2. Lemma. - Let $\left(a_{0}: \ldots: a_{3}\right) \in \mathbf{P}^{3}(\mathbb{Q})$ be any point such that $a_{0} \neq 0, \ldots, a_{3} \neq 0$. Then,

$$
\mathrm{H}_{\text {naive }}\left(a_{0}: \ldots: a_{3}\right) \leq \mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{3} .
$$

Proof. First, observe that $\left(a_{0}: \ldots: a_{3}\right) \mapsto\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)$ is a well-defined map. Hence, we may assume without restriction that $a_{0}, \ldots, a_{3} \in \mathbb{Z}$ and $\operatorname{gcd}\left(a_{0}, \ldots, a_{3}\right)=1$. This yields $\mathrm{H}_{\text {naive }}\left(a_{0}: \ldots: a_{3}\right)=\max _{i=0, \ldots, 3}\left|a_{i}\right|$.

On the other hand, $\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)=\left(a_{1} a_{2} a_{3}: \ldots: a_{0} a_{1} a_{2}\right)$. Consequently,

$$
\mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right) \leq\left[\max _{i=0, \ldots, 3}\left|a_{i}\right|\right]^{3}=\mathrm{H}_{\text {naive }}\left(a_{0}: \ldots: a_{3}\right)^{3}
$$

From this, the asserted inequality emerges when the roles of a_{i} and $\frac{1}{a_{i}}$ are interchanged.
2.5.3. Corollary. - Let $a_{0}, \ldots, a_{3} \in \mathbb{Z}$ such that $\operatorname{gcd}\left(a_{0}, \ldots, a_{3}\right)=1$. Then,

$$
\left|a_{0} \cdot \ldots \cdot a_{3}\right| \leq \mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{12}
$$

Proof. Observe that $\left|a_{0} \cdot \ldots \cdot a_{3}\right| \leq \max _{i=0, \ldots, 3}\left|a_{i}\right|^{4}=H_{\text {naive }}\left(a_{0}: \ldots: a_{3}\right)^{4}$ and apply Lemma 2.5.2.
2.5.4. Theorem. - For each $\varepsilon>0$, there exists a constant $C(\varepsilon)>0$ such that, for all $\left(a_{0}, \ldots, a_{3}\right) \in(\mathbb{Z} \backslash\{0\})^{4}$,

$$
\frac{1}{\tau^{\left(a_{0}, \ldots, a_{3}\right)}} \geq C(\varepsilon) \cdot \mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\frac{1}{3}-\varepsilon} .
$$

Proof. We may assume that $\operatorname{gcd}\left(a_{0}, \ldots, a_{3}\right)=1$. Then, by Proposition 2.5.1,

$$
\frac{1}{\tau^{\left(a_{0}, \ldots, a_{3}\right)}} \geq C(\varepsilon) \cdot \frac{\mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\frac{1}{3}}}{\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{s}{12}}}
$$

Corollary 2.5 .3 yields $\left|a_{0} \cdot \ldots \cdot a_{3}\right|^{\frac{\varepsilon}{12}} \leq \mathrm{H}_{\text {naive }}\left(\frac{1}{a_{0}}: \ldots: \frac{1}{a_{3}}\right)^{\varepsilon}$.
2.5.5. Corollary (Fundamental finiteness). - For each $T>0$, there are only finitely many diagonal cubic surfaces $S^{\left(a_{0}, \ldots, a_{3}\right)}: a_{0} x_{0}^{3}+\ldots+a_{3} x_{3}^{3}=0$ in $\mathbf{P}_{\mathbb{Q}}^{3}$ such that $\tau^{\left(a_{0}, \ldots, a_{3}\right)}>T$.
Proof. This is an immediate consequence of the comparison to the naive height established in Theorem 2.5.4.

3. The varieties of Batyrev-Tschinkel

3.1. Lemma. - Let m, n be positive integers such that $m \leq n+1$ and $\iota: \mathbf{P}^{m} \rightarrow \mathbf{P}^{3}$ a surjective linear map. Then, there exists a constant C such that, for every $\left(a_{0}: \ldots: a_{3}\right) \in \mathbf{P}^{3}(\mathbb{Q})$,

$$
\sum_{\substack{x \not p^{m}(\mathbb{Q}) \\ u(x)=\left(a_{0} \ldots a_{3}\right)}} \frac{1}{\mathrm{H}_{\text {naive }}^{n}(x)} \leq C \cdot \frac{1}{\mathrm{H}_{\text {naive }}^{n-m+3}\left(a_{0}: \ldots: a_{3}\right)}
$$

Proof. An automorphism of \mathbf{P}^{m} changes the naive height by a factor which is bounded. We may therefore suppose that ι is given by $\left(x_{0}: \ldots: x_{m}\right) \mapsto\left(x_{0}: \ldots: x_{3}\right)$. Further, assume $a_{0}, \ldots, a_{3} \in \mathbb{Z}$ such that $\operatorname{gcd}\left(a_{0}, \ldots, a_{3}\right)=1$. Finally, we write $\mathrm{H}:=\mathrm{H}_{\text {naive }}\left(a_{0}: \ldots: a_{3}\right)$.

Let $N \geq \mathrm{H}$ be an arbitrary integer. There are two ways a point $x=\left(x_{0}: \ldots: x_{m}\right) \in \mathbf{P}^{m}(\mathbb{Q})$ such that $\iota(x)=\left(a_{0}: \ldots: a_{3}\right)$ may have height exactly equal to N. Either, one of the coordinates x_{4}, \ldots, x_{m} is equal to N. There are at most

$$
2\left[\frac{N}{\mathrm{H}}\right](m-3)(2 N+1)^{m-4} \leq \frac{C_{1}}{\mathrm{H}} N^{m-3}
$$

such points. Or, one of the coordinates x_{0}, \ldots, x_{3} is equal to N. This is possible only when $N=k \mathrm{H}$ is an exact multiple. Then, there are at most

$$
(2 N+1)^{m-3} \leq C_{2} N^{m-3}
$$

such points. All in all, we find the estimate

$$
\sum_{\substack{x \in \mathrm{P}^{m}(\mathbb{Q}) \\(x)=\left(a_{0}, \ldots a_{3}\right)}} \frac{1}{\mathrm{H}_{\text {naive }}^{n}(x)} \leq \frac{C_{1}}{\mathrm{H}} \sum_{N=\mathrm{H}}^{\infty} \frac{1}{N^{n-m+3}}+\frac{C_{2}}{\mathrm{H}^{n-m+3}} \sum_{k=1}^{\infty} \frac{1}{k^{n-m+3}} \leq \frac{C}{\mathrm{H}^{n-m+3}} .
$$

The assumption $m \leq n+1$ assures that all the series occurring are convergent.
3.2. Proposition. - Let $\iota: \mathbf{P}^{n} \rightarrow\left(\mathbf{P}^{3}\right)^{\vee}$ be a linear map. Suppose that either $\operatorname{dim} \operatorname{im} \iota \geq 2$ or $n=1$. Then, the series

$$
\sum_{\substack{x \in \mathbf{P}^{n}(\mathbb{Q}) \\ S^{\ell(x)} \text { non- } \operatorname{singular} \\ \text { rk } \operatorname{Pic}\left(S^{L}(x) \\\right. \text { naive }}} \frac{1}{\mathrm{H}_{\text {a }}^{n}(x)}
$$

is convergent.
Proof. Note that Picard rank 4 is the maximal value which is possible for a non-singular diagonal cubic surface. It occurs for $S^{\left(a_{0} \cdots \cdots a_{3}\right)}$ if and only if all the quotients a_{i} / a_{0} are perfect cubes in \mathbb{Q}. We will distinguish three cases.
First case. $\operatorname{dim} \operatorname{im} \iota=3$.
There are at most $4(2 N+1)^{3}$ quadruples $\left(a_{0}: \ldots: a_{3}\right)$ of naive height N^{3} such that all the quotients a_{i} / a_{0} are perfect cubes. According to Lemma 3.1, the series to be considered is dominated by $\sum_{N} 4(2 N+1)^{3} \frac{C}{\left(N^{3}\right)^{3}} \leq 108 C \sum_{N} \frac{1}{N^{6}}$ which converges.
Second case. $\operatorname{dimim} \iota=2$.
Then, ι is the restriction of a surjective linear map $\mathbf{P}^{n+1} \rightarrow \mathbf{P}^{3}$ to a hyperplane. Estimating very roughly, we find the convergent series $\sum_{N} 4(2 N+1)^{3} \frac{C}{\left(N^{3}\right)^{2}} \leq 108 C \sum_{N} \frac{1}{N^{3}}$.
Third case $\operatorname{dimim} \iota=1$.
Here, by assumption, $n=1$. An automorphism of \mathbf{P}^{1} changes the naive height by a factor which is bounded. Thus, without restriction, we may suppose that ι is given by

$$
\left(x_{0}: x_{1}\right) \mapsto\left(x_{0}: x_{1}: l_{1}\left(x_{0}, x_{1}\right): l_{2}\left(x_{0}, x_{1}\right)\right)
$$

for two linear forms l_{1}, l_{2}. As $\mathrm{H}_{\text {naive }}\left(x_{0}: x_{1}: l_{1}\left(x_{0}, x_{1}\right): l_{2}\left(x_{0}, x_{1}\right)\right) \geq \mathrm{H}_{\text {naive }}\left(x_{0}: x_{1}\right)$, the contribution of $\left(x_{0}: x_{1}\right) \in \mathbf{P}^{1}(\mathbb{Q})$ is estimated by $\frac{1}{\mathrm{H}_{\text {naive }}\left(x_{0}: x_{1}\right)}$. Further, we only consider pairs such that x_{1} / x_{0} a perfect cube. There are $\leq 2(2 N+1)$ such pairs $\left(x_{0}: x_{1}\right)$ of naive height N^{3}. The series $\sum_{N} 2(2 N+1) \frac{1}{N^{3}} \leq 6 \sum_{N} \frac{1}{N^{2}}$ converges.
3.3. Corollary (The Batyrev-Tschinkel varieties). - Let $X \subset \mathbf{P}^{n} \times \mathbf{P}^{3}$ be a smooth hypersurface given by a bihomogeneous form of the shape

$$
\iota_{0}\left(x_{0}, \ldots, x_{n}\right) y_{0}^{3}+\cdots+\iota_{3}\left(x_{0}, \ldots, x_{n}\right) y_{3}^{3}
$$

Suppose that $\iota_{0}, \ldots, \iota_{3}$ are linear forms, not all proportional to each other. Then, the series

$$
\sum_{\substack{x \in \mathrm{P}^{n}(\mathbb{Q}) \\ s^{\iota}(x) \text { non-singular } \\ \text { re } \\ \text { ricic }(S t(x))=4}} \frac{1}{\mathrm{H}_{\text {naive }}^{n}(x)} \tau\left(S^{\iota(x)}\right)
$$

converges. Here, $\iota: \mathbf{P}^{n} \rightarrow\left(\mathbf{P}^{3}\right)^{\vee}$ is the linear map defined by $\iota_{0}, \ldots, \iota_{3}$.
Proof. Theorem 2.5.4 immediately implies that the factors $\tau\left(S^{\iota(x)}\right)$ are bounded. Further, as X is smooth [BT, Proposition 1.1], we have $\operatorname{dimim} \iota=\min (n, 3)$. Thus, the assertion is a direct consequence of Lemma 3.2.

References

[BT] Batyrev, V. V., Tschinkel, Y.: Rational points on some Fano cubic bundles, C. R. Acad. Sci. Paris 323 (1996), 41-46
[CTKS] Colliot-Thélène, J.-L., Kanevsky, D., and Sansuc, J.-J.: Arithmétique des surfaces cubiques diagonales, in: Diophantine approximation and transcendence theory (Bonn 1985), Lecture Notes in Math. 1290, Springer, Berlin 1987, 1-108
[De] Dedekind, R.: Über die Anzahl der Idealklassen in reinen kubischen Zahlkörpern, J. Reine Angew. Math. 121 (1900), 40-123
[Di] Dieudonné, J.: Éléments d'analyse, Tome IV, Gauthier-Villars, Paris 1977
[EJ] Elsenhans, A.-S. and Jahnel, J.: On the smallest point on a diagonal quartic threefold, J. Ramanujan Math. Soc. 22 (2007), 189-204
[KT] Kresch, A. and Tschinkel, Y.: Effectivity of Brauer-Manin obstructions, Adv. Math. 218 (2008), 1-27
[Ma] Manin, Yu. I.: Cubic forms, North-Holland Publishing Co. and American Elsevier Publishing Co., AmsterdamLondon and New York 1974
[Mc] Marcus, D. A.: Number fields, Springer, New York-Heidelberg 1977
[Mu] Murty, M. R.: Applications of symmetric power L-functions, in: Lectures on automorphic L-functions, Fields Inst. Monogr. 20, Amer. Math. Soc., Providence 2004, 203-283
[Na] Nathanson, M. B.: Elementary methods in number theory, Graduate Texts in Mathematics 195, Springer, New York 2000
[Ne] Neukirch, J.: Algebraic number theory, Grundlehren der Mathematischen Wissenschaften 322, Springer, Berlin 1999
[Pe] Peyre, E.: Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J. 79 (1995), 101-218
[PT] Peyre, E. and Tschinkel, Y.: Tamagawa numbers of diagonal cubic surfaces, numerical evidence, Math. Comp. 70 (2001), 367-387
[Si] Siegel, C. L.: Abschätzung von Einheiten, Nachr. Akad. Wiss. Göttingen, Math.-Phys. K1. II 1969 (1969), 71-86
[St] Stark, H. M.: Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135-152

[^0]: Email addresses: stephan.elsenhans@uni-bayreuth.de (Andreas-Stephan Elsenhans), jahnel@mathematik.uni-siegen.de (Jörg Jahnel)

 URL: http://www.staff.uni-bayreuth.de/~btm216 (Andreas-Stephan Elsenhans), http://www.uni-math.gwdg.de/jahnel (Jörg Jahnel)
 ${ }^{1}$ The computer part of this work was executed on the Sun Fire V20z Servers of the Gauß Laboratory for Scientific Computing at the Göttingen Mathematical Institute. Both authors are grateful to Prof. Y. Tschinkel for the permission to use these machines as well as to the system administrators for their support.

