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Abstract

For diagonal cubic surfaces, we give an upper bound for E. Peyre’s Tamagawa type number in
terms of the coefficients of the defining equation. This bound shows that the reciprocal 1

τ(S)
admits a fundamental finiteness property on the set of all diagonal cubic surfaces. As an appli-
cation, we show that the infinite series of Tamagawa numbers related to the Fano cubic bundles
considered by Batyrev and Tschinkel [BT] are indeed convergent.
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1. Introduction

1.1. –––– A conjecture, due to Yu. I. Manin, asserts that the number ofQ-rational points of
anticanonical height< B on a del Pezzo surfaceS is asymptotically equal toτB logrk Pic(S)−1 B,
for B→ ∞. Further, the coefficientτ ∈ R is conjectured to be the Tamagawa-type numberτ(S)
introduced by E. Peyre in [Pe]. In the particular case of a cubic surface, the anticanonical height
is the same as the naive height.

1.2.E. Peyre’s constant. ––––E. Peyre’s Tamagawa-type number is defined in [PT, Defini-
tion 2.4] as

τ(S) := α(S)·β(S) · lim
s→1

(s− 1)tL (s, χPic(SQ)) · τH
(

S(AQ)Br)

for t = rk Pic(S).
Here, the factorβ(S) is simply defined as

β(S) := #H1(Gal(Q/Q),Pic(SQ)
)

.
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α(S) is given as follows [Pe, Définition 2.4]. LetΛeff(S) ⊂ Pic(S) ⊗Z R be the cone generated
by the effective divisors. Consider the dual coneΛ∨eff(S) ⊂ (Pic(S) ⊗Z R)∨, defined by

Λ
∨
eff(S) := {µ ∈ (Pic(S) ⊗Z R)∨ | 〈µ, λ〉 ≥ 0 for everyλ ∈ Λeff(S)} .

Then,
α(S) := t · vol { µ ∈ Λ∨eff(S) | 〈µ,−K〉 ≤ 1 } .

Here, vol denotes the Lebesgue measure on (Pic(S) ⊗Z R)∨, normalized such that a primitive
cell of the lattice Pic(S)∨ ⊂ (Pic(S) ⊗Z R)∨ is of measure one.

Further,L ( · , χPic(SQ)) is the ArtinL -function of the Gal(Q/Q)-representation Pic(SQ)⊗ZC
which contains the trivial representationt times as a direct summand. Therefore,

L (s, χPic(SQ)) = ζ(s)t · L (s, χP)

and
lim
s→1

(s− 1)tL (s, χPic(SQ)) = L (1, χP)

whereζ denotes the Riemann zeta function andP is a representation which does not contain
trivial components. [Mu, Corollary 11.5 and Corollary 11.4] show thatL (s, χP) has neither a
pole nor a zero ats= 1. Then,L (1, χP) > 0.

Finally, τH is the Tamagawa measureon the setS(AQ) of adelic points onS and
S(AQ)Br ⊆ S(AQ) consists of those adelic points which are orthogonal to theBrauer group
Br(S) with respect to the Brauer-Manin pairing

S(AQ) × Br(S)→ Q/Z, ({xν}, α) 7→
∑

ν

invν α|xν .

1.3. –––– As S is projective, we have

S(AQ) =
∏

ν∈Val(Q)

S(Qν).
τH is defined to be a product measureτH :=

∏

ν∈Val(Q) τν.
For a prime numberp, the local measureτp is given as follows. Leta ∈ S(Z/pkZ) and

putU(k)
a := { x ∈ S(Qp) | x ≡ a (mod pk) }. Then,

τp(U(k)
a ) := det(1− p−1 Frobp | Pic(SQ)Ip) · lim

m→∞

#{ y ∈ S(Z/pmZ) | y ≡ a (mod pk) }
pmdimS

.

Here, Pic(SQ)Ip denotes the fixed module under the inertia group.
The measureτ∞ is described in [Pe, Lemme 5.4.7]. In the case of a hypersurface of degreed

in Pn, defined by the equationf = 0, this yields

τ∞(U) =
n+ 1− d

2

∫

CU
|x0|, ... ,|xn|≤1

ωLeray

for every Borel setU ⊂ S(R). Here,ωLeray is theLeray measureon the coneCS(R) ⊂ Rn+1

associated with the equationf = 0. It is given by the differential form 1
|∂ f /∂x0| dx1∧ . . . ∧ dxn.

2



1.4. Remark. –––– There is a “(hyper)surface area”ωhyp typically introduced for hypersurfaces
inRn+1 in multivariable calculus. That measure is actually the canonical volume associated with
the Riemannian metricCS(R) inherits fromRn+1 [Di, 20.8.6.2]. The Leray measure is related
to the hypersurface area by the formulaωLeray =

1
‖ grad f ‖ ωhyp.

1.5.The main result. –––– At least for diagonal cubic surfaces, the reciprocal1
τ(S) admits a fun-

damental finiteness property. More precisely, we will provethe following result.

Theorem. For a = (a0, . . . , a3) ∈ (Z\{0})4 any vector, we denote by Sa the cubic surface inP3Q
given by a0x3

0 + . . . + a3x3
3 = 0. Then, for eachε > 0, there exists a constant C(ε) > 0 such that

1
τ(Sa)

≥ C(ε) · Hnaive
( 1

a0
: . . . : 1

a3

)
1
3−ε.

1.6. Corollary (Fundamental finiteness). —– For each T> 0, there are only finitely many di-
agonal cubic surfaces Sa : a0x3

0 + . . . + a3x3
3 = 0 in P3Q such thatτ(Sa) > T.

1.7. Remark. –––– For diagonal quartic threefolds, these results were shown in [EJ]. The case
of the classical cubic surfaces is, however, more complicated.

The reason for this is that quartic threefolds are of geometric Picard rank one. Hence, the
Gal(Q/Q)-representation considered was always trivial and theL-factor was automatically equal
to 1. In the situation of a diagonal cubic surface, the factors lim

s→1
(s− 1)tL (s, χPic(SQ)) add new dif-

ficulty.
There is also a difference concerning the factorsα andβ. This point is, however, of mi-

nor significance. For quartic threefolds, we always hadα(S) = β(S) = 1. For cubic surfaces,
these factors may vary but it is not at all hard to estimate them.

1.8.An application. –––– For Fano varieties of dimension≥ 3, the obvious generalization of
Manin’s conjecture is known to be wrong. Due to Batyrev and Tschinkel [BT], there are coun-
terexamples of Picard rank 2. These are smooth hypersurfaces X ⊂ Pn×P3 of bidegree (1, 3).
Such a hypersurface is equipped with a fibration into cubic surfaces given by the projection to
the first factor. It is assumed that those are diagonal.

Seemingly, many people believe that the actual growth of thenumber ofQ-rational points
on X is dominated by the fibres of Picard rank 4. This means, the asymptotics is expected to be
τB log3B for

τ :=
∑

x∈Pn(Q)
Sι(x) non−singular

rk Pic(Sι(x) )=4

1
Hn

naive(x)
τ(Sι(x)) . (1)

Here,ι : Pn−→ (P3)∨ is the linear map defined by the fibration.
As an application of Theorem 1.5, we will show that the series(1) are indeed convergent.

For this, as will turn out, it is already sufficient that the Tamagawa numbers of diagonal cubic
surfaces are uniformly bounded. Details will be given in section 3.
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2. Estimates for Peyre’s constant

Consider a general diagonal cubic surfaceS(a0,...,a3) ⊂ P3Q given by

a0x3
0 + . . . + a3x3

3 = 0 .

Our goal is to establish the estimate forτ(a0,...,a3) := τ(S(a0,...,a3)) formulated in Theorem 1.5.
For this, in the subsections below, we will give an individual estimate for each of the factors
occurring in the definition ofτ(S(a0,...,a3)).

2.1. Estimates forα andβ

2.1.1. –––– Recall that on a smooth cubic surfaceS over an algebraically closed field, there are
exactly 27 lines. For the Picard group, which is isomorphic toZ7, the classes of these lines form
a system of generators.

2.1.2. Notation. –––– i) The setL of the 27 lines is equipped with the intersection product
〈 , 〉 : L×L → {−1, 0, 1}. The pair (L , 〈 , 〉) is the same for all smooth cubic surfaces. It is well
known [Ma, Theorem 23.9.ii] that the group of permutations of L respecting〈 , 〉 is isomorphic
to W(E6). We fix such an isomorphism.

Denote byF ⊂ Div(S ) the group generated by the 27 lines and byF0 ⊂ F the subgroup of
principal divisors. Then,F is equipped with an operation ofW(E6) such thatF0 is a W(E6)-
submodule. We have Pic(S ) � F/F0.

ii) If S is a smooth cubic surface overQ then Gal(Q/Q) operates canonically on the setLS of the
27 lines onSQ. Fix a bijectioniS : LS

�−→ L respecting the intersection pairing. This induces
a group homomorphismιS : Gal(Q/Q)→W(E6). We denote its image byG ⊂W(E6).

2.1.3. Lemma. –––– There is a constant c such that, for all smooth cubic surfacesS overQ,

1 ≤ β(S) ≤ c .

Proof. By definition,β(S) = #H1(Gal(Q/Q),Pic(SQ)
)

. Using the notation just introduced, we
may writeH1(Gal(Q/Q),Pic(SQ)

)

= H1(G, F/F0).
Note that this cohomology group is always finite. Indeed, sinceG is a finite group andF/F0 is

a finiteZ[G]-module, the description via the standard complex shows itis finitely generated.
Further, it is annihilated by #G.

H1(G, F/F0) depends only on the subgroupG ⊂W(E6) occurring. For that, there are finitely
many possibilities. This implies the claim. �

2.1.4. Remarks. –––– i) A more precise consideration [Ma, Proposition 31.3] yields a canonical
isomorphism

H1(Gal(Q/Q),Pic(SQ)
)

� Hom
(

(NF ∩ F0)/NF0,Q/Z)

.

Here,N is the norm map under the operation ofG.

As an application of this, one may inspect the 350 conjugacy classes of subgroups ofW(E6)
usingGAP. The calculations show that the lemma is actually true forc = 9.

ii) Diagonal cubic surfaces actually provide only 16 of the 350 conjugacy classes. Eight of them
may be realized overQ, the others overQ(ζ3) [CTKS].
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2.1.5. Lemma. –––– There are positive constants c1 and c2 such that, for all smooth cubic sur-
faces S overQ satisfying S(AQ) , ∅,

c1 ≤ α(S) ≤ c2.

Proof. Again, we claim thatα(S) is completely determined by the groupG ⊂W(E6). Thus, sup-
pose that we do not have the full information available aboutwhat surfaceS is but are given the
groupG only.

The assumptionS(AQ) , ∅ makes sure that Pic(S) � Pic(SQ)G [KT, Remark 3.2.ii)].
We may therefore write Pic(S) � (F/F0)G. The effective cone

Λeff(S) ⊂ Pic(S)⊗ZC � (F/F0)G⊗ZC
is generated by the symmetrizations of the classesℓ1, . . . , ℓ27 of the 27 lines inF. In particular, it
is determined byG, completely. Further, we haveK = − 1

9(ℓ1+ . . .+ℓ27). These data are sufficient
to computeα(S) according to its very definition. �

2.1.6. Remark. –––– Here, we do not know the optimal values ofc1 andc2 in explicit form.
α(S) has not yet been computed in all cases.

2.2. An estimate for theL-factor

2.2.1. –––– In the case of the diagonal cubic surfaceS(a0,...,a3) ⊂ P3Q, given by
a0x3

0 + . . . + a3x3
3 = 0 for a0, . . . , a3 ∈ Z \ {0}, the 27 lines onS(a0,...,a3) may easily be writ-

ten down explicitly. Indeed, for each pair (i, j) ∈ (Z/3Z)2, the system

3
√

a0 x0 + ζ
i
3

3
√

a1 x1 = 0
3
√

a2 x2 + ζ
j
3

3
√

a3 x3 = 0

of equations defines a line onS(a0,...,a3). Decomposing the index set{0, . . . , 3} differently into two
subsets of two elements each yields all the lines. In particular, we see that the 27 lines may be
defined overK = Q(

ζ3,
3
√

a1/a0,
3
√

a2/a0,
3
√

a3/a0
)

.

2.2.2. –––– This is an abelian extension ofQ(ζ3). Therefore, the irreducible representations
of Gal(K/Q) are at most two-dimensional. Besides the trivial representation, there is the
non-trivial Dirichlet characterλ of Q(ζ3)/Q. The two-dimensional irreducible representations
are actually representations of a factor group of the form Gal

(Q(ζ3, 3
√

ae0

0 · . . . · a
e3

3 )/Q)

� S3

for e0, . . . , e3 ∈ {0, 1, 2}.

2.2.3. Lemma. –––– Let a and b be integers different from zero. Then,
∣

∣

∣ Disc
(Q(ζ3,

3
√

ab2)/Q)

∣

∣

∣ ≤ 39a4b4.

Proof. We have, at first,
∣

∣

∣ Disc
(Q(ζ3,

3
√

ab2)/Q)

∣

∣

∣ ≤
∣

∣

∣ Disc
(Q(ζ3)/Q)

∣

∣

∣

3 · Disc
(Q(

3
√

ab2)/Q)2

= 27 · Disc
(Q(

3
√

ab2)/Q)2
.

Further, by [De,§4], we know
∣

∣

∣ Disc
(Q(

3
√

ab2)/Q)

∣

∣

∣ ≤ 33a2b2 .

This shows
∣

∣

∣ Disc
(Q(ζ3,

3
√

ab2)/Q)

∣

∣

∣ ≤ 39a4b4. �
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2.2.4. Proposition. –––– For eachε > 0, there exist positive constants c1 and c2 such that

c1 · |a0 · . . . · a3|−ε < lim
s→1

(s− 1)tL
(

s, χPic(S
(a0,...,a3)Q )

)

< c2 · |a0 · . . . · a3|ε

for all (a0, . . . , a3) ∈ (Z\{0})4. Here, t= rk Pic(S).

Proof. The Galois representation Pic(S(a0,...,a3)Q ) ⊗Z C contains the trivial representationt times
as a direct summand. Therefore,

L
(

s, χ
Pic(S

(a0,...,a3)Q )

)

= ζ(s)t · L (s, χP)

whereζ denotes the Riemann zeta function andP is a representation which does not contain
trivial components. All we need to show is

c1 · |a0 · . . . · a3|−ε < L (1, χP) < c2 · |a0 · . . . · a3|ε.

L ( · , χP) is the product [Ne, Chapter VII, Theorem (10.4).ii)] of notmore than six factors of the
form L ( · , λ) for λ the non-trivial Dirichlet character ofQ(ζ3)/Q and at most three factors which
are Artin-L-functionsL ( · , νK) for two-dimensional irreducible representations.

Here,K = Q(ζ3, 3
√

ae0

0 · . . . · a
e3

3 ) for certaine0, . . . , e3 ∈ {0, 1, 2}. As L (1, λ) does not depend
ona0, . . . , a3, at all, it will suffice to show

c1(ε) · |a0 · . . . · a3|−ε < L (1, νK) < c2(ε) · |a0 · . . . · a3|ε

for eachε > 0.
νK is the only irreducible two-dimensional character of Gal(K/Q) � S3. For that reason, by

virtue of [Ne, Chapter VII, Corollary (10.5)], we have

ζK(s) = ζQ(s) · L (s, λ) · L (s, νK)2

= ζQ(ζ3)(s) · L (s, νK)2

for a complex variables. It, therefore, suffices in our particular situation to estimate the residue
ress=1 ζK(s) of the Dedekind zeta function ofK.

An estimate from above has been given by C. L. Siegel. In view of the analytic class number
formula, his [Si, Satz 1] gives

res
s=1
ζK(s) < C [log Disc(K/Q)]5

≤ C [log(39a4
0a4

1a4
2a

4
3)]5

= C [4 log |a0 · . . . · a3| + 9 log 3]5

for a certain constantC. The final term is less thanc2(ε) · |a0 · . . . · a3|ε for everyε > 0.
On the other hand, H. M. Stark [St, formula (1)] shows

res
s=1
ζK(s) > C(ε)·Disc(K/Q)−ε/4

for everyε > 0 which implies res
s=1
ζK(s) > c1(ε)·|a0 · . . . · a3|−ε. �
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2.3. An estimate for the factors at the finite places

2.3.1. Lemma. –––– There are two positive constants c1 and c2 such that, for all
a0, . . . , a3 ∈ Z\{0},

c1 <
∏

pprime
p∤3a0·····a3

τp
(

S(a0,...,a3)(Qp)
)

< c2 .

Proof. For a primep of good reduction, Hensel’s Lemma implies

τp
(

S(a0,...,a3)(Qp)
)

= det
(

1− p−1 Frobp | Pic(SQ)
) ·

#S(a0,...,a3)(Fp)

p2
.

Further, for the number of points on a non-singular cubic surface over a finite field, the Lefschetz
trace formula can be made completely explicit [Ma, Theorem 27.1]. It shows

#S(a0,...,a3)(Fp) = p2
+ p · tr(Frobp | Pic(SQ)

)

+ 1 .

Denoting the eigenvalues of the Frobenius on Pic(SQ) by λ1, . . . , λ7, we find

τp
(

S(a0,...,a3)(Qp)
)

= (1− λ1p−1)(1− λ2p−1) · . . . · (1− λ7p−1)

· [1 + (λ1 + · · · + λ7)p−1
+ p−2]

= (1− σ1p−1
+ σ2p−2 − σ3p−3

+ . . . − σ7p−7)(1+ σ1p−1
+ p−2)

= 1+ (1− σ2
1 + σ2)p−2 − (σ1 − σ1σ2 + σ3)p−3

+ . . .

. . . − (σ5 − σ1σ6 + σ7)p−7
+ (σ6 − σ1σ7)p−8 − σ7p−9

whereσi denote the elementary symmetric functions inλ1, . . . , λ7.
We know|λi | = 1 for all i. Estimating very roughly, we have|σ j | ≤ ( 7

j ) ≤ 7 j and see

1− 99p−2 − 7·99p−3 − . . . − 77·99p−9 ≤ τp
(

S(a0,...,a3)(Qp)
) ≤

≤ 1+ 99p−2
+ 7·99p−3

+. . .+ 77·99p−9 .

I.e., 1− 99p−2 1
1−7/p < τp

(

S(a0,...,a3)(Qp)
)

< 1+ 99p−2 1
1−7/p. The infinite product over all

1− 99p−2 1
1−7/p (respectively 1+ 99p−2 1

1−7/p) is convergent.
The left hand side is positive forp > 13. For the small primes remaining, we need a better

lower bound. For this, note that a cubic surface over a finite field Fp always has at least oneFp-rational point. This yieldsτp
(

S(a0,...,a3)(Qp)
) ≥ (1− 1/p)7/p2 > 0. �

2.3.2. Remark. –––– It will require by far more labour to estimate the product over the finitely
many bad primes, uniformly over all diagonal cubic surfaces.

2.3.3. Notation. –––– i) For a prime numberp and an integerx , 0, we putx(p) := pνp(x).
Notex(p)

= 1/‖x‖p for the normalizedp-adic valuation.

ii) For integersx1, . . . , xn, not all equal to zero, we write

gcdp(x1, . . . , xn) := [gcd(x1, . . . , xn)](p).

Observe, ifx1, . . . , xn , 0 then we have gcdp(x1, . . . , xn) = gcd(x(p)
1 , . . . , x

(p)
n ).
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iii) By putting ν(x) :=min
ξ∈Zp

x=(ξ mod pr )

ν(ξ), we carry thep-adic valuationfromZp over toZ/prZ.

Note that any 0, x ∈ Z/prZ has the formx = ε·pν(x) whereε ∈ (Z/prZ)∗ is a unit. Clearly,ε is
unique only in the caseν(x) = 0.

2.3.4. Definition. –––– For (a0, . . . , a3) ∈ Z4, r ∈ N, andν0, . . . , ν3 ≤ r, put

N(r)
ν0,...,ν3;a0,...,a3

:= { (x0, . . . , x3) ∈ (Z/prZ)4 |
ν(x0) = ν0, . . . ,ν(x3) = ν3; a0x3

0 + . . . + a3x3
3 = 0 ∈ Z/prZ } .

For the particular caseν0 = . . . = ν3 = 0, we will write Z(r)
a0,...,a3

:= N(r)
0,...,0;a0,...,a3

, i.e.,

Z(r)
a0,...,a3

= { (x0, . . . , x3) ∈ [(Z/prZ)∗]4 | a0x3
0 + . . . + a3x3

3 = 0 ∈ Z/prZ } .
We will use the notationz(r)

a0,...,a3
:= #Z(r)

a0,...,a3
.

2.3.5. Sublemma. ––––If pk|a0, . . . , a3 and r> k then we have

z(r)
a0,...,a3

= p4k · z(r−k)
a0/pk,...,a3/pk .

Proof. Sincea0x3
0 + . . . + a3x3

3 = pk(a0/pk · x3
0 + . . . + a3/pk · x3

3), there is a surjection

ι : Z(r)
a0,...,a3

−→ Z(r−k)
a0/pk,...,a3/pk ,

given by (x0, . . . , x3) 7→ (

(x0 mod pr−k), . . . , (x3 mod pr−k)
)

. The kernel of the homomorphism
of modules underlyingι is (pr−kZ/prZ)4. �

2.3.6. Lemma. –––– Assumegcdp(a0, . . . , a4) = pk. Then, there is an estimate

z(r)
a0,...,a4

≤ 3p3r+k.

Proof. Suppose first thatk = 0. This means, one of the coefficients is prime top. Without re-
striction, assumep ∤ a0.

For any (x1, x2, x3) ∈ (Z/prZ)3, there appears an equation of the forma0x3
0 = c. It can-

not have more than three solutions in (Z/prZ)∗. Indeed, forp odd, this follows directly from
the fact that (Z/prZ)∗ is a cyclic group. On the other hand, in the casep = 2, we have
(Z/2rZ)∗ � Z/2r−2Z × Z/2Z. Again, there are only up to three solutions possible.

The general case may now easily be deduced from Sublemma 2.3.5. Indeed, ifk < r then

z(r)
a0,...,a3

= p4k · z(r−k)
a0/pk,...,a3/pk ≤ p4k · 3p3(r−k)

= 3p3r+k.

On the other hand, ifk ≥ r then the assertion is completely trivial since

z(r)
a0,...,a3

= #Z(r)
a0,...,a3

< p4r ≤ p3r+k < 3p3r+k. �

2.3.7. Remark. –––– The proof shows that in the casep ≡ 2 (mod 3) one could reduce the
coefficient to 1. Unfortunately, this observation does not lead toa substantial improvement of
our final result.
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2.3.8. Lemma. –––– Let r ∈ N andν0, . . . , ν3 ≤ r. Then,

#N(r)
ν0,...,ν3;a0,...,a3

=

z(r)
p3ν0a0, ... ,p3ν3a3

· ϕ(pr−ν0) · . . . · ϕ(pr−ν3)

ϕ(pr)4
.

Proof. As p3ν0a0x3
0 + . . . + p3ν3a3x3

3 = a0(pν0x0)3
+ . . . + a3(pν3x3)3, we have a surjection

π : Z(r)
p3ν0a0,...,p3ν3a3

−→ N(r)
ν0,...,ν3;a0,...,a3

,

given by (x0, . . . , x3) 7→ (pν0x0, . . . , pν3x3).
For i = 0, . . . , 3, consider the mappingι : Z/prZ → Z/prZ, x 7→ pνix. If νi = r then ι is

the zero map. Allϕ(pr) = (p − 1)pr−1 units are mapped to zero. Otherwise, observe thatι is
pνi : 1 onto its image. Further,ν(ι(x)) = νi if and only if x is a unit. By consequence,π is
(K(ν0) · . . . · K(ν3)) : 1 when we putK(ν) := pν for ν < r andK(r) := (p− 1)pr−1. Summarizing, we
could have writtenK(ν) := ϕ(pr )/ϕ(pr−ν). The assertion follows. �

2.3.9. Corollary. –––– Let (a0, . . . , a3) ∈ (Z\{0})4. Then, for the local factorτp
(

S(a0,...,a3)(Qp)
)

,
one has

τp
(

S(a0,...,a3)(Qp)
)

= det
(

1− p−1 Frobp | Pic(SQ)Ip
)

· lim
r→∞

r
∑

ν0,...,ν3=0

z(r)
p3ν0a0, ... ,p3ν3a3

· ϕ(pr−ν0) · . . . · ϕ(pr−ν3)

p3r · ϕ(pr)4
.

Proof. [PT, Corollary 3.5] implies that

τp
(

S(a0,...,a3)(Qp)
)

= det
(

1− p−1 Frobp | Pic(SQ)Ip
) · lim

r→∞

r
∑

ν0,...,ν3=0

#N(r)
ν0,...,ν3;a0,...,a3

p3r
.

Lemma 2.3.8 yields the assertion. �

2.3.10. Proposition. ––––Let (a0, . . . , a3) ∈ (Z\{0})4. Then, for eachε such that0 < ε < 1
3, one

has

τp
(

S(a0,...,a3)(Qp)
) ≤

(

1+
1
p

)7
· 3

( 1

1− 1
p1−3ε

)( 1

1− 1
pε

)3
· (a(p)

0 a(p)
1 a(p)

2

)
1−ε
3
(

a(p)
3

)ε
.

Proof. We use the formula from Corollary 2.3.9. The eigenvalues of the Frobenius on Pic(SQ)Ip

are all roots of unity. Therefore, the first factor is at most (1+ 1/p)7. Further, by Lemma 2.3.6,

z(r)
p3ν0a0, ... ,p3ν3a3

/p3r ≤ 3 gcdp(p3ν0a0, . . . , p
3ν3a3)

= 3 gcd
(

p3ν0a(p)
0 , . . . , p

3ν3a(p)
3

)

.

Writing ki := νp(ai) = νp(a(p)
i ), we see

z(r)
p3ν0a0, ... ,p3ν3a3

/p3r ≤ 3 gcd(p3ν0+k0, . . . , p3ν3+k3)

= 3pmin{3ν0+k0, ... ,3ν3+k3}.

9



We estimate the minimum by a weighted arithmetic mean with weights 1−ε
3 , 1−ε

3 , 1−ε
3 , andε,

min{3ν0 + k0, . . . , 3ν3 + k3} ≤
1− ε

3
· (3ν0 + k0) +

1− ε
3
· (3ν1 + k1)

+
1− ε

3
· (3ν2 + k2) + ε(3ν3 + k3)

= (1− ε)(ν0 + ν1 + ν2) + 3εν3

+
1− ε

3
(k0 + k1 + k2) + εk3 .

This shows

z(r)
p3ν0a0, ... ,p3ν3a3

/p3r ≤ 3p(1−ε)(ν0+ν1+ν2)+3εν3+ 1−ε
3 (k0+k1+k2)+εk3

= 3p(1−ε)(ν0+ν1+ν2)+3εν3 · (a(p)
0 a(p)

1 a(p)
2

)
1−ε
3
(

a(p)
3

)ε
.

We may therefore write

τp
(

S(a0,...,a3)(Qp)
) ≤

(

1+
1
p

)7
· 3(a(p)

0 a(p)
1 a(p)

2

)
1−ε
3
(

a(p)
3

)ε

· lim
r→∞

r
∑

ν0,...,ν3=0

p(1−ε)(ν0+ν1+ν2)+3εν3 · ϕ(pr−ν0) · . . . · ϕ(pr−ν3)
ϕ(pr )4

.

Here, the term under the limit is precisely the product of three copies of the finite sum

r
∑

ν=0

p(1−ε)ν · ϕ(pr−ν)
ϕ(pr)

=

r−1
∑

ν=0

1
(pε)ν

+
p

p− 1
1

(pε)r

and one copy of the finite sum

r
∑

ν=0

p3εν · ϕ(pr−ν)
ϕ(pr )

=

r−1
∑

ν=0

1
(p1−3ε)ν

+
p

p− 1
1

(p1−3ε)r
.

For r → ∞, geometric series do appear while the additional summands tend to zero. �

2.3.11. Remark. –––– The constants

C(ε)
p :=

(

1+
1
p

)7
· 3

( 1

1− 1
p1−3ε

)( 1

1− 1
pε

)3

are clearly not optimal in any sense. Note, in particular, that we did not put much effort into the
bound for det

(

1− p−1 Frobp | Pic(SQ)Ip
)

.
However, and this is what is important for our application, we clearly have thatC(ε)

p is
bounded forp→ ∞, sayC(ε)

p ≤ C(ε). We do not know of an improvement which would make the
product

∏

p C(ε)
p converge.

2.3.12. Proposition. ––––For eachε such that0 < ε < 1
3, there exists a constant c such that

∏

pprime

τp
(

S(a0,...,a3)(Qp)
) ≤ c · |a0 · . . . · a3|

1
3−
ε
8 ·

∏

pprime

min
i=0,...,3

‖ai ‖
1
3−ε
p

10



for all (a0, . . . , a3) ∈ (Z\{0})4.

Proof. The product over all primes of good reduction is bounded by virtue of Lemma 2.3.1 above.
It, therefore, remains to show that

∏

pprime
p|3a0...a3

τp
(

S(a0,...,a3)(Qp)
) ≤ c · |a0 · . . . · a3|

1
3−
ε
8 ·

∏

pprime

min
i=0,...,3

‖ai ‖
1
3−ε
p .

For this, by Proposition 2.3.10, we have at first

τp
(

S(a0,...,a3)(Qp)
) ≤ C(ε)

p ·
(

a(p)
0 a(p)

1 a(p)
2

)
1
3−
ε
4 · (a(p)

3 )
3
4ε

= C(ε)
p ·

(

a(p)
0 a(p)

1 a(p)
2 a(p)

3

)
1
3−
ε
4 · (a(p)

3 )−
1
3+ε.

Here, the indices 0, . . . , 3 are interchangeable. Hence, it is even allowed to write

τp
(

S(a0,...,a3)(Qp)
) ≤ C(ε)

p ·
(

a(p)
0 a(p)

1 a(p)
2 a(p)

3

)
1
3−
ε
4 · (max

i
a(p)

i

)− 1
3+ε

= C(ε)
p ·

(

a(p)
0 a(p)

1 a(p)
2 a(p)

3

)
1
3−
ε
4 ·min

i
‖ai ‖

1
3−ε
p .

Now, we multiply over all prime divisors ofa0 · . . . · a3. Thereby, on the right hand side, we
may twice write the product over all primes since the two rightmost factors are equal to one for
p ∤ 3a0 · . . . · a3, anyway.

∏

pprime
p|3a0...a3

τp
(

S(a0,...,a3)(Qp)
) ≤

∏

pprime
p|3a0...a3

C(ε)
p ·

∏

pprime

(

a(p)
0 a(p)

1 a(p)
2 a(p)

3

)
1
3−
ε
4 ·

∏

pprime

min
i=0,...,3

‖ai ‖
1
3−ε
p

=

∏

pprime
p|3a0...a3

C(ε)
p · |a0 · . . . · a3|

1
3−
ε
4 ·

∏

pprime

min
i=0,...,3

‖ai ‖
1
3−ε
p

when we observe that
∏

p a(p)
= |a|. Further, we haveC(ε)

p ≤ C(ε) and, by [Na, Theorem 7.2]
together with [Na, Section 7.1, Exercise 7],

∏

pprime
p|3a0...a3

C(ε) ≤ c · |3a0 · . . . · a3|
ε
8 .

We finally estimate 3
ε
8 by a constant. The assertion follows. �

2.4. An estimate for the factor at the infinite place

2.4.1. Proposition. –––– For real numbers0 < b0 ≤ b1 ≤ b2 ≤ b3, we have
∫

CS(1,...,1)(R)

|x0|≤b0, ... ,|x3|≤b3

ω
CS(1,...,1)(R)
Leray ≤

(

64+
64
3

log 3+
1
3

3
√

3ω2

)

b0 + 64b0 log
b1

b0

whereω2 is the two-dimensional hypersurface measure of the l3-unit sphere

S2 := { (x1, x2, x3) ∈ R3 | |x1|3 + |x2|3 + |x3|3 = 1 } .
11



Proof. First step.We cover the domain of integration by 25 sets as follows. We put

R0 := [−b0, b0]
4 ∩CS(1,...,1)(R) .

Further, for eachσ ∈ S4, we set

Rσ := { (x0, . . . , x3) ∈ R4 | |xσ(0)| ≤ · · · ≤ |xσ(3)|, |xi | ≤ bi , andb0 ≤ |xσ(3)| }
∩CS(1,...,1)(R) .

Second step.One has
∫

Rσ
ω

CS(1,...,1)(R)
Leray ≤

∫

Rid
ω

CS(1,...,1)(R)
Leray for everyσ ∈ S4.

Consider the mapiσ : R4 → R4 given by (x0, . . . , x3) 7→ (xσ(0), . . . , xσ(3)). SinceCS(1,...,1)(R) is
defined by a symmetric cubic form, it is invariant underiσ. We claim that

iσ(Rσ) ⊆ Rid .

Indeed, let (x0, . . . , x3) ∈ Rσ. Then, iσ(x0, . . . , x3) = (xσ(0), . . . , xσ(3)) has the properties
|xσ(0)| ≤ . . . ≤ |xσ(3)| andb0 ≤ |xσ(3)|. In order to showiσ(x0, . . . , x3) ∈ Rid, all we need to verify
is |xσ(i) | ≤ bi for i = 0, . . . , 3.

For this, we use that thebi are sorted. We have|xσ(3)| ≤ bσ(3) ≤ b3. Further,|xσ(2)| ≤ bσ(2)

and |xσ(2)| ≤ |xσ(3)| ≤ bσ(3) one of which is at most equal tob2. Similarly, |xσ(1)| ≤ bσ(1),
|xσ(1)| ≤ |xσ(2)| ≤ bσ(2), and|xσ(1)| ≤ |xσ(3)| ≤ bσ(3), the smallest of which is not larger thanb1.
Finally, |xσ(0)| ≤ bσ(0), |xσ(0)| ≤ |xσ(1)| ≤ bσ(1), |xσ(0)| ≤ |xσ(2)| ≤ bσ(2), and|xσ(0)| ≤ |xσ(3)| ≤ bσ(3).
This shows|xσ(0)| ≤ b0.

Since x3
0 + . . . + x3

3 is a symmetric form, the Leray measure onCS(1,...,1)(R) is in-
variant under the canonical operation ofS4 on CS(1,...,1)(R) ⊂ R4. Therefore, we have
(iσ)∗ω

CS(1,...,1)(R)
Leray = ω

CS(1,...,1)(R)
Leray for eachσ ∈ S4.

Altogether,
∫

Rσ

ω
CS(1,...,1)(R)
Leray ≤

∫

i−1
σ (Rid)

ω
CS(1,...,1)(R)
Leray =

∫

Rid

(iσ)∗ ω
CS(1,...,1)(R)
Leray =

∫

Rid

ω
CS(1,...,1)(R)
Leray .

Third step.We have
∫

R0
ω

CS(1,...,1)(R)
Leray ≤ 1

3
3
√

3ω2b0.

By definition,
∫

R0

ω
CS(1,...,1)(R)
Leray =

1
3

∫

R0

1

x2
3

dx0 ∧ dx1 ∧ dx2

=
1
3

∫∫∫

π(R0)

1

(x3
0 + x3

1 + x3
2)2/3

dx0 dx1 dx2

whereπ : CS(1,...,1)(R) → R3, (x0, x1, x2, x3) 7→ (x0, x1, x2), denotes the projection to the first
three coordinates.

We enlarge the domain of integration to

R′ := { (x1, x2, x3) ∈ R3 | |x0|3 + |x1|3 + |x2|3 ≤ 3b3
0 } .
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Then, by homogeneity, we see
∫∫∫

R′

1

(x3
0 + x3

1 + x3
2)2/3

dx0 dx1 dx2 = ω2 ·

3√3b0
∫

0

1
r2
· r2 dr = ω2 ·

3
√

3b0 .

Fourth step.We have
∫

Rid
ω

CS(1,...,1)(R)
Leray ≤ ( 8

3 +
8
9 log 3)b0 +

8
3b0 log b1

b0
.

Observe|x3| =
∣

∣

∣

3

√

x3
0 + x3

1 + x3
2

∣

∣

∣ ≤ 3
√

|x0|3 + |x1|3 + |x2|3. For (x0, . . . , x3) ∈ Rid, this implies
|x3| ≤ 3

√
3 |x2| and|x2| ≥ b0/

3
√

3. We find
∫

Rid

ω
CS(1,...,1)(R)
Leray =

1
3

∫

Rid

1

x2
3

dx0 ∧ dx1 ∧ dx2

≤ 1
3

∫

Rid

1

x2
2

dx0 ∧ dx1 ∧ dx2

<
1
3

b0
∫

−b0

∫

|x1|∈[|x0|,b1]

∫

|x2 |≥b0/
3√3

|x2 |≥|x1 |

1

x2
2

dx2 dx1 dx0

≤ 1
3

b0
∫

−b0

∫

|x1|∈[|x0|,b1]

2

max{b0/
3
√

3, |x1|}
dx1 dx0

≤ 2
3



























b0
∫

−b0

∫

|x1|∈[|x0|,b0/
3√3]

3
√

3
b0

dx1 dx0 +

b0
∫

−b0

∫

|x1|∈[b0/
3√3,b1]

1
|x1|

dx1 dx0



























≤ 2
3
·

4b2
0

3
√

3
·

3
√

3
b0
+

2
3

b0
∫

−b0

2 log
3
√

3b1

b0
dx0

=
8
3

b0 +
8
3

b0 log
3
√

3b1

b0

=

(8
3
+

8
9

log 3
)

b0 +
8
3

b0 log
b1

b0
. �

2.4.2. Corollary. –––– For everyε > 0, there exists a constant c such that

τ∞
(

S(a0,...,a3)(R)
) ≤ c · |a0 · . . . · a3|−

1
3+ε · min

i=0,...,3
‖ai ‖

1
3
∞

for each(a0, . . . , a3) ∈ (Z\{0})4.

Proof. Our first claim is

τ∞
(

S(a0,...,a3)(R)
)

=
1

2 3
√
|a0 · . . . · a3|

∫

CS(1,...,1)(R)
|x0|≤ 3√|a0|, ... ,|x3|≤ 3√|a3|

ω
CS(1,...,1)(R)
Leray .
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Indeed, according to the definition ofτ∞
(

S(a0,...,a3)(R)
)

, we need to show

1
6 |a0|

∫

CS(a0,...,a3)(R)
|x0|≤1, ... ,|x3|≤1

1

x2
0

dx1 ∧ dx2 ∧ dx3 =
1

6 3
√
|a0 · . . . · a3|

∫

CS(1,...,1)(R)
|X0|≤ 3√|a0|, ... ,|X3|≤ 3√|a3|

1

X2
0

dX1 ∧ dX2 ∧ dX3 .

For that, consider the linear mappingl : CS(a0,...,a3)(R)→ CS(1,...,1)(R) given by

(x0, . . . , x3) 7→ ( 3
√

a0x0, . . . ,
3
√

a3x3) .

Then,

l∗
( 1

X2
0

dX1 ∧ dX2 ∧ dX3

)

=

3
√

a1a2a3

a2/3
0

1

x2
0

dx1 ∧ dx2 ∧ dx3.

When we take into consideration that orientations are chosen in such a way that both integrals
are positive, this immediately yields the claim.

To obtain the asserted inequality, we assume without restriction that |a0| ≤ . . . ≤ |a3|.
Then, Proposition 2.4.1 shows that, for certain explicit positive constantsc1 andc2,

τ∞
(

S(a0,...,a3)(R)
) ≤ |a0 · . . . · a3|−

1
3 ·

(

c1|a0|
1
3 + c2|a0|

1
3 log 3

√

|a1|
|a0|

)

= |a0 · . . . · a3|−
1
3 · |a0|

1
3

(

c1 +
1
3

c2 log
|a1|
|a0|

)

≤ |a0 · . . . · a3|−
1
3 · min

i=0,...,3
‖ai ‖

1
3
∞ ·

(

c1 +
1
3

c2 log |a0 · . . . · a3|
)

.

There is a constantc such thatc1 +
1
3 c2 log |a0 · . . . · a3| ≤ c|a0 · . . . · a3|ε for every

(a0, . . . , a3) ∈ (Z\{0})4. �

2.5. The Tamagawa number

2.5.1. Proposition. –––– For everyε > 0, there exists a constant C> 0 such that

1
τ(a0,...,a3)

≥ C ·
Hnaive

( 1
a0

: . . . : 1
a3

)
1
3

|a0 · . . . · a3|ε

for each(a0, . . . , a3) ∈ (Z\{0})4.

Proof. We may assume thatε is small, sayε < 2
3. Then, immediately from the definition

of τ(a0,...,a3), we have

τ(a0,...,a3)

= α(S(a0,...,a3))·β(S(a0,...,a3)) · lim
s→1

(s− 1)tL
(

s, χPic(S
(a0,...,a3)Q )

) · τH
(

S(a0,...,a3)(AQ)Br)

≤ α(S(a0,...,a3))·β(S(a0,...,a3)) · lim
s→1

(s− 1)tL
(

s, χ
Pic(S

(a0,...,a3)Q )

) · τH
(

S(a0,...,a3)(AQ)
)

= α(S(a0,...,a3))·β(S(a0,...,a3)) · lim
s→1

(s− 1)tL
(

s, χPic(S
(a0,...,a3)Q )

) ·
∏

ν∈Val(Q)

τν
(

S(a0,...,a3)(Qν)).
14



Let us collect estimates for the factors. First, by Proposition 2.2.4, we have

lim
s→1

(s− 1)tL
(

s, χ
Pic(S

(a0,...,a3)Q )

)

< c1 · |a0 · . . . · a3|
ε
16

for a certain constantc1. Further, Proposition 2.3.12 yields

∏

pprime

τp
(

S(a0,...,a3)(Qp)
) ≤ c2 · |a0 · . . . · a3|

1
3−

ε
16 ·

∏

pprime

min
i=0,...,3

‖ai ‖
1
3−
ε
2

p .

Finally, Corollary 2.4.2 shows

τ∞
(

S(a0,...,a3)(R)
) ≤ c · |a0 · . . . · a3|−

1
3+
ε
2 · min

i=0,...,3
‖ai ‖

1
3
∞.

We assert that the three inequalities together imply the following estimate for Peyre’s constant
τ(a0,...,a3)

= τ(S(a0,...,a3)),

τ(a0,...,a3) ≤ c3 · |a0 · . . . · a3|
ε
2 ·

∏

pprime

min
i=0,...,3

‖ai ‖
1
3
p · min

i=0,...,3
‖ai ‖

1
3
∞ ·

∏

pprime

[

min
i=0,...,3

‖ai ‖p
]− ε2
.

Indeed, this is trivial in the caseτ(a0,...,a3)
= 0. Otherwise,S(a0,...,a3) has an adelic point. Lem-

mata 2.1.5 and 2.1.3 show that the factorsα andβ are bounded from above by constants. By con-
sequence,

1
τ(a0,...,a3)

≥ 1
c3
·

∏

pprime

[

min
i=0,...,3

‖ai ‖p
]− 1

3 ·
[

min
i=0,...,3

‖ai ‖∞
]− 1

3

|a0 · . . . · a3|
ε
2 · ∏

pprime

[

min
i=0,...,3

‖ai ‖p
]− ε2

=
1
c3
·

∏

pprime
max

i=0,...,3

∥

∥

∥

∥

1
ai

∥

∥

∥

∥

1
3

p
· max

i=0,...,3

∥

∥

∥

∥

1
ai

∥

∥

∥

∥

1
3

∞

|a0 · . . . · a3|
ε
2 ·

∏

pprime

[

max
i=0,...,3

a(p)
i

]
ε
2

=
1
c3
·

Hnaive
( 1

a0
: . . . : 1

a3

)
1
3

|a0 · . . . · a3|
ε
2 · ∏

pprime

[

max
i=0,...,3

a(p)
i

]
ε
2
.

It is obvious that max
i=0,...,3

a(p)
i ≤ |a

(p)
0 · . . . · a

(p)
3 | and

∏

pprime
|a(p)

0 · . . . · a
(p)
3 | = |a0 · . . . · a3|. This shows

1
τ(a0,...,a3)

≥ 1
c3
·

Hnaive
( 1

a0
: . . . : 1

a3

)
1
3

|a0 · . . . · a3|
ε
2 · |a0 · . . . · a3|

ε
2

=
1
c3
·

Hnaive
( 1

a0
: . . . : 1

a3

)
1
3

|a0 · . . . · a3|ε
. �

2.5.2. Lemma. –––– Let (a0 : . . . : a3) ∈ P3(Q) be any point such that a0 , 0, . . . , a3 , 0.
Then,

Hnaive(a0 : . . . : a3) ≤ Hnaive( 1
a0

: . . . : 1
a3

)3 .
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Proof. First, observe that (a0 : . . . : a3) 7→
( 1

a0
: . . . : 1

a3

)

is a well-defined map. Hence, we
may assume without restriction thata0, . . . , a3 ∈ Z and gcd(a0, . . . , a3) = 1. This yields
Hnaive(a0 : . . . : a3) = maxi=0,...,3|ai |.

On the other hand, (1a0
: . . . : 1

a3
) = (a1a2a3 : . . . : a0a1a2). Consequently,

Hnaive
( 1

a0
: . . . : 1

a3

) ≤ [ max
i=0,...,3

|ai |]3
= Hnaive(a0 : . . . : a3)3 .

From this, the asserted inequality emerges when the roles ofai and 1
ai

are interchanged. �

2.5.3. Corollary. –––– Let a0, . . . , a3 ∈ Z such thatgcd(a0, . . . , a3) = 1. Then,

|a0 · . . . · a3| ≤ Hnaive
( 1

a0
: . . . : 1

a3

)12
.

Proof. Observe that|a0 · . . . · a3| ≤ max
i=0,...,3

|ai |4 = Hnaive(a0 : . . . : a3)4 and apply Lemma 2.5.2.
�

2.5.4. Theorem. ––––For eachε > 0, there exists a constant C(ε) > 0 such that, for all
(a0, . . . , a3) ∈ (Z\{0})4,

1
τ(a0,...,a3)

≥ C(ε) · Hnaive
( 1

a0
: . . . : 1

a3

)
1
3−ε.

Proof. We may assume that gcd(a0, . . . , a3) = 1. Then, by Proposition 2.5.1,

1
τ(a0,...,a3)

≥ C(ε) ·
Hnaive

( 1
a0

: . . . : 1
a3

)
1
3

|a0 · . . . · a3|
ε
12

.

Corollary 2.5.3 yields|a0 · . . . · a3|
ε
12 ≤ Hnaive

( 1
a0

: . . . : 1
a3

)ε. �

2.5.5. Corollary (Fundamental finiteness). —– For each T > 0, there are only finitely many
diagonal cubic surfaces S(a0,...,a3) : a0x3

0 + . . . + a3x3
3 = 0 in P3Q such thatτ(a0,...,a3) > T.

Proof. This is an immediate consequence of the comparison to the naive height established in
Theorem 2.5.4. �

3. The varieties of Batyrev-Tschinkel

3.1. Lemma. –––– Let m, n be positive integers such that m≤ n+ 1 and ι : Pm−→ P3 a surjec-
tive linear map. Then, there exists a constant C such that, for every(a0 : . . . : a3) ∈ P3(Q),

∑

x∈Pm(Q)
ι(x)=(a0:...:a3)

1
Hn

naive(x)
≤ C· 1

Hn−m+3
naive (a0 : . . . :a3)

.

Proof. An automorphism ofPm changes the naive height by a factor which is bounded. We may
therefore suppose thatι is given by (x0 : . . . : xm) 7→ (x0 : . . . : x3). Further, assume
a0, . . . , a3 ∈ Z such that gcd(a0, . . . , a3) = 1. Finally, we write H := Hnaive(a0 : . . . :a3).
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Let N ≥ H be an arbitrary integer. There are two ways a pointx = (x0 : . . . : xm) ∈ Pm(Q)
such thatι(x) = (a0 : . . . : a3) may have height exactly equal toN. Either, one of the coordinates
x4, . . . , xm is equal toN. There are at most

2[ N
H ](m− 3)(2N + 1)m−4 ≤ C1

H Nm−3

such points. Or, one of the coordinatesx0, . . . , x3 is equal toN. This is possible only when
N = kH is an exact multiple. Then, there are at most

(2N + 1)m−3 ≤ C2Nm−3

such points. All in all, we find the estimate

∑

x∈Pm(Q)
ι(x)=(a0:...:a3)

1
Hn

naive(x)
≤ C1

H

∞
∑

N=H

1
Nn−m+3

+
C2

Hn−m+3

∞
∑

k=1

1
kn−m+3

≤ C
Hn−m+3

.

The assumptionm≤ n+ 1 assures that all the series occurring are convergent. �

3.2. Proposition. –––– Let ι : Pn−→ (P3)∨ be a linear map. Suppose that eitherdim im ι ≥ 2
or n = 1. Then, the series

∑

x∈Pn(Q)
Sι(x) non−singular

rk Pic(Sι(x) )=4

1
Hn

naive(x)

is convergent.

Proof. Note that Picard rank 4 is the maximal value which is possiblefor a non-singular diagonal
cubic surface. It occurs forS(a0:...:a3) if and only if all the quotientsai/a0 are perfect cubes inQ.
We will distinguish three cases.

First case.dim im ι = 3.

There are at most 4(2N + 1)3 quadruples (a0 : . . . : a3) of naive heightN3 such that all the quo-
tientsai/a0 are perfect cubes. According to Lemma 3.1, the series to be considered is dominated
by

∑

N
4(2N + 1)3 C

(N3)3 ≤ 108C
∑

N

1
N6 which converges.

Second case.dim im ι = 2.

Then,ι is the restriction of a surjective linear mapPn+1 → P3 to a hyperplane. Estimating very
roughly, we find the convergent series

∑

N
4(2N + 1)3 C

(N3)2 ≤ 108C
∑

N

1
N3 .

Third case.dim im ι = 1.

Here, by assumption,n = 1. An automorphism ofP1 changes the naive height by a factor which
is bounded. Thus, without restriction, we may suppose thatι is given by

(x0 : x1) 7→ (x0 : x1 : l1(x0, x1) : l2(x0, x1))

for two linear formsl1, l2. As Hnaive(x0 : x1 : l1(x0, x1) : l2(x0, x1)) ≥ Hnaive(x0 : x1), the
contribution of (x0 : x1) ∈ P1(Q) is estimated by 1

Hnaive(x0:x1) . Further, we only consider pairs
such thatx1/x0 a perfect cube. There are≤ 2(2N + 1) such pairs (x0 : x1) of naive heightN3.
The series

∑

N
2(2N + 1) 1

N3 ≤ 6
∑

N

1
N2 converges. �
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3.3. Corollary (The Batyrev-Tschinkel varieties). —– Let X⊂ Pn×P3 be a smooth hypersur-
face given by a bihomogeneous form of the shape

ι0(x0, . . . , xn) y3
0 + · · · + ι3(x0, . . . , xn) y3

3 .

Suppose thatι0, . . . , ι3 are linear forms, not all proportional to each other. Then, the series

∑

x∈Pn(Q)
Sι(x) non−singular

rk Pic(Sι(x) )=4

1
Hn

naive(x)
τ(Sι(x))

converges. Here,ι : Pn−→ (P3)∨ is the linear map defined byι0, . . . , ι3.

Proof. Theorem 2.5.4 immediately implies that the factorsτ(Sι(x)) are bounded. Further, as
X is smooth [BT, Proposition 1.1], we have dim imι = min(n, 3). Thus, the assertion is a direct
consequence of Lemma 3.2. �
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