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Abstract

For line bundles on arithmetic varieties we construct height functions
using arithmetic intersection theory. In the case of an arithmetic surface,
generically of genus g, for line bundles of degree g equivalence is shown to
the height on the Jacobian defined by Θ. We recover the classical formula
due to Faltings and Hriljac for the Néron-Tate height on the Jacobian in
terms of the intersection pairing on the arithmetic surface.

1 Introduction

In this paper we will suggest a construction for height functions for line bundles
on arithmetic varieties. Following the philosophy of [BoGS] heights should be
objects in arithmetic geometry analogous to degrees in algebraic geometry. So
let K be a number field, OK its ring of integers and X/OK an arithmetic variety
by which we will mean a scheme, projective and flat over OK . In order to have a
good intersection product available we assume X to be regular. Its generic fiber
will be denoted by X/K. Then we have to fix a metrized line bundle (T , ‖.‖) or,
equivalently, its first Chern class

∧
c1 (T , ‖.‖) = (T, gT ) ∈

∧
CH1 (X ).

The height of a line bundle L on X should be the arithmetic degree of the

intersection of
∧
c1 (L) with (T, gT )dim X . For this a natural hermitian metric has

to be chosen on L. We fix a Kähler metric ω0 on X (C), invariant under complex
conjugation F∞, as in [Ar]. Then it is well known that the condition on the
Chern form to be harmonic defines ‖.‖ up to a locally constant factor.

In order to determine this factor we require

∧
deg

(
∧
c1

(
det Rπ∗L, ‖.‖Q

))
= 0.

Here π : X −→ Spec OK is the structural morphism and ‖.‖Q is Quillen’s metric
([Qu], [BGS]) at the infinite places of K.
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1.1 Fact. a) If the Euler characteristic χ(LK) does not vanish, such a metric
exists.
b)

∧
c1 (L, ‖.‖) is uniquely determined up to a summand (0, C), where

C = (Cσ)σ:K↪→C is a system of constants on X ×SpecK,σ Spec C with∑
σ:K↪→C

Cσ = 0 (and Cσ = Cσ̄).

1.2 Fact. Such (0, C) ∈
∧

CH1 (X ) are numerically trivial.

1.3 We note that in order to prove the Fact 1.1 one mainly uses the following
Lemma. Let f : X −→ Y be a smooth proper map of complex manifolds, where
X is equipped with a Kähler form ω and Y is connected, and E be a holomorphic
vector bundle on X. For a hermitian metric ‖.‖ on E and a constant factor
D > 0 we have

‖.‖Q,(E,D·‖.‖) = ‖.‖Q,(E,‖.‖) ·Dχ(EK)

on the line bundle det Rπ∗E on Y .

1.4 Now we can state our fundamental
Definition. The height of the line bundle L is given by

hT ,ω0(L) :=
∧

deg π∗
[ ∧

c1 (L, ‖.‖) · (T, gT )dim X
]
,

where ‖.‖ is one of the distinguished metrics specified above.

1.5 An arithmetic surface is an arithmetic variety of absolute dimension 2. In
this paper we will analyze Definition 1.4 in that case. Our main result is
Theorem (Equivalence) . Let π : C −→ OK be a regular arithmetic surface.
Denote by C := C ×SpecOK

Spec K its generic fiber. Assume C to be connected
and to admit a K-valued point x ∈ C(K) and let Θ be the Theta divisor on the
Jacobian J = Picg(C) (transferred from Picg−1(C) by x), where g denotes the
genus of C. On

CC :=
∐

σ:K↪→C

(
C ×SpecK,σ Spec C

)
(C)

let ω be a Kähler form invariant under F∞.
Then, for line bundles L ∈ Pic(C), fiber-by-fiber of degree g and of degree of

absolute value less than H on every irreducible component of the special fibers of
C (with some constant H ∈ N)

hx,ω(L) = hΘ(LK) + O(1),

where hΘ is the height on J defined using the ample divisor Θ.

1.6 Remark. Another connection between heights on the Jacobian of a curve
and arithmetic intersection theory was obtained by Faltings [Fa84] and Hriljac
[Hr]. Recently it has been generalized to higher dimensions and higher codimen-
sion Chow groups by Künnemann [Kü]. They write down an explicit formula for
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the Néron-Tate height pairing on the Jacobian (higher Picard variety) in terms of
arithmetic intersection theory. The main point is that they consider line bundles
(cycles) algebraically equivalent to zero. So there is no need to scale a metric
(to specify the infinite part of the arithmetic cycles occuring). We recover the
Faltings-Hriljac formula for the Néron-Tate height by considering some kind of
asymptotic limit over the heights constructed here.

1.7 Theorem (Asymptotic behaviour) . Let π : C −→ OK be a regular arith-
metic surface. Equip CC with a Kähler form ω invariant under complex conjuga-
tion F∞.

Let E and M be line bundles on C equipped with a distinguished hermitian

metric und L ∈
∧

Pic (C) be a hermitian line bundle. Assume n ∈ N is chosen such
that χ(EK ⊗M⊗n

K ). Then

χ(EK ⊗M⊗n
K )hL(E ⊗M⊗n) = χ(EK)hL(E)

+ n [(deg(MK)hL(E) +χ(EK)D − deg(LK)B]

+ n2[deg(MK)D − deg(LK)
A

2
].

Here χ always denotes the Euler characteristic and A, B and D are abbreviations
for the arithmetic intersection numbers

A :=
∧

deg π∗(
∧
c1 (M)2),

B :=
∧

deg π∗
( ∧

c1 (M)
( ∧

c1 (E) +
1

2

∧
c1 (Tf )

))
and

D :=
∧

deg π∗(
∧
c1 (M)

∧
c1 (L)).

By
∧
c1 (Tf ) we mean the first arithmetic Chern class of the relative tangent bundle

equipped with the metric associated with ω.

1.8 Remark. Consider the special case, where deg(EC) = g, deg(LC) = 1
and deg(MC) = 0. Then hL(E ⊗M⊗n) is a quadratic polynomial in n, whose

leading coefficient is just −1
2
A = −1

2

∧
deg π∗(

∧
c1 (M)2), one half of the term

considered by Faltings and Hriljac. In fact we have reproven the coincidence
of the Néron-Tate height on the Jacobian with the arithmetic self-intersection

number −
∧

deg π∗(
∧
c1 (M)2) since the Néron-Tate height is actually defined as a

limit of the type considered.

1.9 Corollary. Let Θ be the Theta divisor on Pic0(C) (transferred from
Picg−1(C) by x). Then

hNT,Θ(MK) = −1

2

∧
deg π∗(

∧
c1 (M)2).

1.10 Corollary (Faltings, Hriljac) .

hNT,Θ+Θ−(MK) = −
∧

deg π∗(
∧
c1 (M)2).

Proof. The endomorphism [−1] does not change the right hand side. 2
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1.11 Remark. The proof of the equivalence theorem is relatively long but
mainly consists of using elementary algebraic geometry and analysis. There is
another (even more involved?) proof for that theorem in [J1]. To the contrary the
asymptotic behaviour is an almost direct application of the arithmatic Riemann-
Roch theorem.

We note once more that Definition 1.4 works in every dimension. We deal
with the case of dimension greater than two in another paper [J2].

2 Proof of the Equivalence Theorem

2.1 Divisors versus points of the Jacobian

2.1.1 The remainder of this paper is devoted to the proof of Theorem 1.5.
So let C/K be a regular proper algebraic curve of genus g with C(K) 6= ∅.
We consider a regular projective model C/OK . Denote by J = Picg

C/K the
Jacobian of C. When x ∈ C(K) is chosen we have a canonical isomorphism
Picg−1

C/K −→ Picg
C/K = J and thus the divisor Θ on J . Θ induces a closed

embedding i
′
: J ↪→ PN

K and a ”naive” height for K-valued points of J :

hΘ(D) := log

 ∏
ν∈MK

max {‖i(D)0‖ν , . . . , ‖i(D)N‖ν}

 .

Accordingly j∗(Θ) induces a morphism i : Cg j−→ J
i
′

−→ PN
K and a height

function hj∗(Θ) for K-valued points of Cg. Here j denotes the natural map sending
a divisor to its associated line bundle. A general construction for heights defined
by a divisor, the ”height machine”, is given in [CS, Chapter VI, Theorem 3.3].

The underlying height h for K-valued points of PN
K is a height in the sense

of Arakelov theory [BoGS] as follows: We choose the regular projective model
PN
OK

⊇ PN
K . Every K-valued point y of PN

K can be extended uniquely to an

OK-valued point y of PN
OK

. Let O(1) be the hermitian line bundle on PN
OK

,
where the hermitian metrics at the infinite places are given by

‖xi‖ :=

(∣∣∣∣x0

xi

∣∣∣∣2 + . . . + 1 + . . . +
∣∣∣∣xN

xi

∣∣∣∣2
)− 1

2

.

Then h = hO(1) is the height defined by O(1) in the sense of [BoGS, Definition

3.1.; formula (3.1.6)].

2.1.2 Remark. We need a better understanding of O(j∗(Θ)). By
Riemann’s Theorem [GH, Chapter 2, §7] one has Θ = 1

(g−1)!
j∗((x) × Cg−1),

where j : Cg p−→ C(g) c−→ J factors into a morphism finite flat of degree g! and
a birational morphism. So j∗(Θ) is an effective divisor containing the summands
π∗k(x), where πk : Cg −→ C denotes k-th projection.

O
(
j∗ (Θ)

)
=

g⊗
k=1

π∗k
(
O(x)

)
⊗O

(
p∗(R)

)
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Intuitively, the divisor R on C(g) corresponds to the divisors on C moving in a
linear system. This can be made precise, but we will not need that here.

2.1.3 Remark. It is a difficulty that there are no regular projective mod-
els available for J and Cg, such that arithmetic intersection theory does not
work immediately. So we follow [BoGS, Remark after Proposition 3.2.1.] and
consider a projective (not necessarily regular) model of Cg, namely
Cg := C ×SpecOK

. . . ×SpecOK
C. Hereon let U be a line bundle extending⊗g

k=1 π∗kO(x) equipped with a hermitian metric.
Consider more generally a projective (singular) arithmetic variety X/OK and

a hermitian line bundle U on X . Then there is a morphism ι : X −→ P into a
projective variety P smooth over Spec OK and a line bundle UP on P such that
ι∗(UP) = U (see [Fu, Lemma 3.2.], cf. [BoGS, Remark 2.3.1.ii)]). We can even
choose ι in such a way that the hermitian metric on U is a pullback of one on
UP (e.g. as a closed embedding).

ι∗
(
UP

)
= U

Then for an OK-valued point y of X one defines

hU
(
y
)

:= hUP

(
ι∗(y)

)
=

∧
deg

( ∧
c1 (UP )

∣∣∣ι∗(y)
)
,

where (.|.) denotes the pairing
∧

CH1 (P ) × Z1(P ) −→
∧

CH1 (Spec OK)Q from
[BoGS, 2.3.]. In [BoGS, Remark after Proposition 3.2.1.] independence of this
definition of the ι chosen is shown. In particular it becomes clear at this point

that the pairing
( ∧

c1 (.)
∣∣∣.) can be extended to arbitrary (singular) projective

arithmetic varieties over OK and satisfies the projection formula( ∧
c1 (L)

∣∣∣f∗(Z)
)

=
( ∧

c1 (f ∗(L))
∣∣∣Z).

2.1.4 Lemma. Let X/OK be a (singular) projective arithmetic variety and
X/K its generic fiber which is assumed to be regular. Further, let D be a divisor
on X and U be a hermitian line bundle extending O(D). Then hD = hU + O(1)
for K-valued points of X, i.e. the naive height defined by the divisor D and the
height in the sense of Arakelow theory are equivalent.
Proof. This is proven between the lines of [BoGS]. 2

2.1.5 The height defined by an extension U of
⊗g

k=1 π∗k(O(x)) is understood by
the following
Proposition. On C/OK let S be the line bundle O(x), where x denotes the clo-
sure of x in C, equipped with a hermitian metric. For L-valued points
P = (P1, . . . , Pg) of Cg we consider the divisor P := (P1) + . . . + (Pg) on C.
Then

hS(P ) = hU(P ) + O([L : K]),
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i.e. there is a universal constant A such that the difference of the two heights is
bounded by A[L : K] for all number fields L.

Proof. By [BoGS, Proposition 3.2.2.ii)] we may assume U = O
(∑g

k=1 π∗k(x)
)
,

where x is the closure of x in C. The extensions of P and P over C, respectively
Cg will be denoted by (P1) + . . . + (Pg), respectively (P1, . . . , Pg). Then

hS
(
(P1) + . . . + (Pg)

)
=

∧
deg

( ∧
c1 (S)

∣∣∣(P1) + . . . + (Pg)
)

=
g∑

k=1

∧
deg

( ∧
c1 (S)

∣∣∣(Pk)
)

=
g∑

k=1

∧
deg

( ∧
c1

(
π∗k(S)

)∣∣∣(P1, . . . , Pg)
)

=
∧

deg

(
∧
c1

( g⊗
k=1

π∗k
(
S
)) ∣∣∣∣ (P1, . . . , Pg

))
.

But by construction
⊗g

k=1 π∗k(S) is the line bundle U , equipped with a hermitian

metric (and by definition the formula
( ∧

c1 (
⊗

k Lk)
∣∣∣Z) =

∑
k

( ∧
c1 (Lk)

∣∣∣Z) holds

in singular case, too). So we have

hS
(
(P1) + . . . + (Pg)

)
= h

U
′

(
(P1, . . . , Pg)

)
,

where U
′
differs from U only by the hermitian metric. The claim follows from

[BoGS, Proposition 3.2.2.i)]. 2

2.1.6 Corollary. Let P ∈ Cg(L) and P be the associated divisor on C. Then

hΘ(O(P )) = hS(P ) + hR(p∗P ) + O([L : K]),

where hR denotes the height for L-valued points of C(g) defined by R.

2.2 An observation concerning the tautological line
bundle

In this section we start analyzing the fundamental definition 1.3. First we will
consider only varieties over number fields and forget about integral models.

2.2.1 Definition. Let ∆ be the diagonal in C × C. Then

E :=
g⊗

k=1

π∗k,g+1

(
O(∆)

)
will be called the tautological line bundle on Cg × C. Note that the restriction
of E to {(P1, . . . , Pg)} × C equals O(P1 + . . . + Pg). By construction E is the
pullback of some line bundle E, said to be the tautological one on C(g) × C.

E = (p× id)∗(E)
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2.2.2 Proposition. We have det Rπ∗E = OC(g)(−R).

2.2.3 This will be a direct consequence of the following
Lemma. Let E := E ⊗ π∗C(O(−x)) be a tautological line bundle fiber-by-fiber of
degree g − 1. Then

det Rπ∗E = OC(g)

(
− c∗(Θ)

)
.

Proof. The canonical map c : C(g) −→ J is given by E using Picard functoriality.
So for a tautological line bundle M, fiber-by-fiber of degree g on J ×C, one has

E = (c× id)∗M⊗ π∗H,

where H is a line bundle on C(g). Putting M0 := M ⊗ π∗CO(−x), where
πC : J × C −→ C denotes here the canonical projection from J × C, we get

E = (c× id)∗M0 ⊗ π∗H.

It follows

det Rπ∗E ∼= det Rπ∗
[
(c× id)∗M0 ⊗ π∗H

]
= det Rπ∗

[
(c× id)∗M0

]
= c∗ det Rπ∗M0,

where we first used the projection formula, which is particularly simple here, since
line bundles, fiber-by-fiber of degree g−1, have relative Euler characteristic 0, and
afterwords noted that the determinant of cohomology commutes with arbitrary
base change [KM]. But by [MB, Proposition 2.4.2] or [Fa, p. 396] we know
det Rπ∗M0 = OJ(−Θ). The assertion follows. 2

2.2.4 Proof of the Proposition. The short exact sequence

0 −→ E −→ E −→ E|C(g)×{x} −→ 0

gives

det Rπ∗E = det Rπ∗E ⊗ O
(

1

g!
p∗

( g∑
k=1

π∗k(x)

))

= O (−c∗(Θ))⊗O
(

1

g!
p∗

( g∑
k=1

π∗k(x)

))
= O(−R).

2

2.2.5 Corollary. det Rπ∗(E ⊗ π∗O(R)) = OC(g).
Proof. This is the projection formula for the determinant of cohomology. 2
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2.2.6 Remark. Every degree g line bundle on C is represented by a K-valued
point of the symmetric power C(g).

Indeed, by Riemann-Roch such a line bundle admits a section s. div(s) is
defined over K, i.e. it is a Gal(K/K)-invariant formal sum of g K-valued points.
But this defines just a Gal(K/K)-invariant K-valued point of the symmetric
power C(g) and those descend to K-valued points.

We note that this phenomenon is no more true when working with the power
Cg. So we prefer the symmetric power in what follows in order to be not forced
to deal with field extensions all the time.

2.3 An integral model for the symmetric power

2.3.1 Remark. We want to lift the results of the previous subsection to the
level of models over OK . So we need a model I for C(g) satisfying the following
two conditions simultaneously.

i) Every K-valued point of C(g) extends to an OK-valued point of I.
ii) The tautological line bundle E on C(g)×C can be extended to a line bundle

I ×SpecOK
C.

We note that i) could be realized when I was proper while ii) is possible when
I ×SpecOK

C would be regular, but in general there are no smooth proper models
for C(g).

2.3.2 Proposition. There exists a scheme I over OK satisfying the following
conditions.

i) I ×SpecOK
Spec K ∼= C(g),

ii) Every K-valued point of C(g) extends to an OK-valued point of I,
iii) I is smooth over OK.

Proof. First consider the scheme-theoretic symmetric power I ′ := Cg/Sg. We
note particularly that this object really exists. In fact we know that every finite
set of points in Cg lies in an affine subscheme as this is clearly true for the
projective space Pn

Z . So Cg can be covered by powers of affine subsets of C and
those are invariant under the action of the symmetric group.

It is clear that I ′ is a model of C(g) over OK . As the image of Cg under
the projection map it is clearly proper, so K-valued points can be extended to
OK-valued ones.

Let I be the smooth locus of I ′. Everything have to show now is that
the extension of a K-valued point of C(g) automatically lands in the smooth
locus. But that is a standard argument. (Compare [CS, Ch. VIII by M. Artin,
Proposition (1.15)].) 2

2.3.3 I is smooth over OK , consequently I ×SpecOK
C is smooth over C and

therefore regular. The tautological line bundle E on C(g) × C, fiber-by-fiber of
degree g, can be extended over I ×SpecOK

C. For this let E = O(D) with some
Weil divisor D on C(g)×C. Its closure D in I×SpecOK

C is obviously flat over OK

and therefore it has codimension 1. We choose the extension O(D) and denote
it by F ′.
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F ′ is a perfect complex of OI×SpecOK
C-modules. For the existence of the

Knudsen-Mumford determinant det Rπ∗F ′ we need that

π : I ×SpecOK
C −→ I

has finite Tor-dimension. But this is clear by [SGA 6, Exposé III, Proposition
3.6] as π is a projective morphism into a regular scheme.

F ′ has, relative to π, Euler characteristic 1. Therefore F ′ can be changed by
an inverse image of a line bundle on I, in such a way, that we are allowed to
assume

det Rπ∗F ∼= OI .

Obviously, F is an extension of E ⊗ O(R) to the integral model I × C.

2.4 Analytic Part

For simplicity assume the Kähler form ω on CC =
∐

σ:K↪→C

(
C×SpecOK ,σSpec C

)
(C)

is normalized by ∫
(C×SpecOK,σSpecC)(C)

ω = 1

for every σ.

2.4.1 Fact. On FC there exists a hermitian metric h such that for every point
y ∈ C(g)(C) the curvature form satisfies

c1(FC,y, hy) = gω

on ({y} × C)(C) ∼= C(C).
Proof. The statement is local in C(g)(C) by partition of unity. By the Theorem
on cohomology and base change R0π∗FC(g−1) is locally free and commutes with
arbitrary base change. Hence there exists, locally on C(g)(C), a rational section
s of F that is neither undefined nor identically zero in any fiber.

First we choose an arbitrary hermitian metric ‖.‖ on FC. Then

ω
′
:= −dCdc

C log ‖s‖2 (2)

defines a smooth (1, 1)-form on (C(g) × C)(C)\div(s). Since construction (2)
is independent of s as soon as it makes sense at a point, we obtain ω

′
as a

smooth (1, 1)-form on (C(g)×C)(C) closed under dC and cohomologous to gω on
{y} × C(C) for any y ∈ C(g)(C).

The setup ‖.‖h = f · ‖.‖ gives the equation

ω
′ − gω = dCdc

C log |f |2. (3)

But ddc is an elliptic differential operator on the Riemann surface C(C), so by
Hodge theory it permits a Green‘s operator G compact with respect to every
Sobolew norm ‖.‖α. Consequently, there exists a solution f of (3) being smooth
on (C(g)×C)(C). 2
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2.4.2 We note, that det Rπ∗F ∼= OI and the isomorphism is uniquely deter-
mined up to units of OK . Namely, one has AutOI(OI) = Γ(I,O∗

I) and already
Γ(C(g),O∗

C(g)) consists of constants only. In particular, there is a unitary section,
uniquely determined up to units of OK ,

1 ∈ Γ(I, det Rπ∗F).

2.4.3 Corollary. Let R ∈ R. Then, on FC there exists exactly one hermitian
metric h, such that for every point y ∈ C(g)(C)

i) the curvature form c1(FC,y, hy) = gω and
ii) for the Quillen metric one has hQ,h(1) = R, where 1∈Γ({y}, det Rπ∗FC,y).

Proof. Let h be the hermitian metric from the preceeding fact. We may replace
h by f ·h with f ∈ C∞(C(g)(C)) without any effort on the curvature forms, since
they are invariant under scalation. As F has relative Euler characteristic 1,

h :=
R

hQ,h(1)
· h

exactly satisfies the conditions required. 2

2.4.4 We have to consider FC on C(g)(C) × (
∐

σ:K↪→C C(C)). The metric h on
FC has to be invariant under F∞, its curvature form is required to be gω and we
want to realise ∏

σ:K↪→C

hQ,h(1) = 1 (4)

simultaneously for all y ∈ C(g)(C).
The first is possible since ω is invariant under F∞ and the corollary above

already gives conditions uniquely determining h. (4) can be obtained by scalation
with a constant factor over all C(g)(C)× (

∐
σ:K↪→C C(C)).

Altogether, for every line bundle of degree g on C we have found a distin-
guished hermitian metric and seen that it depends, in some sense, continuously
on the moduli space J . One obtains

2.4.5 Proposition. Let K be a number field and (C/OK , ω) a regular connected
Arakelov surface. Then, on the (non proper) Arakelov variety (I×SpecOK

C, π∗Cω)
there is a hermitian line bundle F with the following properties.
a)

F|C(g)×C = E ⊗ π∗O(R)

is the modified tautological line bundle found in Corollary 2.2.5.
b) The hermitian metric h on F|∐

σ:K↪→C
(C(g)×C)(C) is invariant under F∞ and has

curvature form gω.
c) For any y ∈ C(g)(K) one has {y} ⊆ I and

∧
deg

(
∧
c1

(
det Rπ∗(F|{y}×SpecOK

C, hF ,y), ‖.‖Q,h

))
= 0.
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2.5 Decomposition into two summands

2.5.1 Remark. Decompose F into a tensor product K⊗π∗R of hermitian line
bundles, where K is an extension of E to the model I ×SpecOK

C and R extends
O(R) to I. Then for any OK-valued point y : Spec OK −→ I one has

hx,ω

(
F|y×SpecOK

C
)

=
∧

deg π∗
[ ∧
c1

(
K|y×SpecOK

C
)
· (x, gx)

]
+

∧
deg π∗

[ ∧
c1

(
π∗R|y×SpecOK

C
)
· (x, gx)

]
.

2.5.2 Let us investigate the first summand. We have K|C(g)×C = E and this line
bundle has a canonical section s, which can be extended over the finite places.
Using this section we obtain the arithmetic cycle (div (s),− log ‖s‖2) representing

∧
c1 (K) ∈

∧
CH1 (I ×SpecOK

C) .

The scheme part div(s) of this cycle is an extension of the tautological divisor
representing c1(E) ∈ CH1(C(g) × C) (whose restriction to {(x1, . . . , xg)} × C is
(x1)+. . .+(xg)). So div(s) is the closure of that divisor, possibly plus a finite sum
of divisors over the finite places. Consequently, if y corresponds to the K-valued
point in C(g) representing to the divisor D on C, then

c1

(
K|y×SpecOK

C
)

=
(
D
)

+ (correction terms),

where D denotes the closure of D over C and the correction terms are vertical
divisors which (over all the y) occur only over a finite amount of finite places.
Their intersection numbers with (x, gx) are obviously bounded.

The infinite part f of
∧
c1 (K) = (D, f) is a function on (C(g) × C)\div (s)

whose pullback to Cg × C satisfies all the assumptions of Lemma 2.6.4 below.
We obtain

∧
deg π∗

[ ∧
c1

(
K|y×SpecOK

C
)
· (x, gx)

]
=

∧
deg

(
∧
c1

(
O(x)

) ∣∣∣∣ (D|y×Spec OK
C
))

+
1

2

∑
σ:K↪→C

∫
C(C)

fDωx

= hS(D) + O(1).

2.5.3 The second summand is simpler. One has

∧
c1

(
π∗R|y×SpecOK

C
)
· (x, gx) = π∗

∧
c1 (R|y) · (x, gx)

=
∧
c1 (R|y) + a

(
gxωR(y)

)
,

when one identifies I ×Spec OK
{x} with I. The integral

∫
C(C) gxωR(.) depends

smoothly on the parameter, in particular it is bounded. On the other hand,

the push-forward of
∧
c1 (R|y) to Spec OK is by definition =

( ∧
c1 (R)

∣∣∣ y
)
. Now

Lemma 2.1.4 gives
∧

deg
( ∧
c1 (R)

∣∣∣ y
)

= hR(D),

where D is the divisor corresponding to the restriction of y to C(g).
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2.5.4 We obtain
Proposition. Assume L = O(D), where D is the closure of some divisor on C.
Then Theorem 1.5 is true.
Proof. By the computations above and Corollary 2.1.6 this is now proven for
line bundles coming by restriction from F . This way one can realize the line
bundles O(D) on the generic fiber C for arbitrary divisors D (defined over K)
of degree g over C. Consider the degrees

degF|y×SpecOK
Cp,i

for OK-valued points y of I, where Cp,i denote the irreducible components of the
special fiber Cp. They are even defined for O/p-valued points, where the bar de-
notes algebraic closure here, and are locally constant over the special fiber Ip. In
particular they are bounded since I is of finite type by construction. The Propo-
sition follows from Lemma 2.6.3 below. 2

2.6 Some technical Lemmata

2.6.1 Lemma. (Fibers do not change the height.)
If L is a line bundle on C/OK with χ(L) 6= 0, then

hx,ω (L ⊗O(p)) = hx,ω(L)

for every prime ideal p ⊆ OK.
Proof. One has O(p) = π∗(p−1), hence by projection formula

det Rπ∗ (L ⊗O(p)) ∼= det Rπ∗L ⊗O(p)−χ(L).

Let ‖.‖ be one of the distinguished metrics on the line bundle LC on
∐

σ:K↪→C C(C).
We put ‖.‖p = C · ‖.‖ for a distinguished hermitian metric on (L⊗O(p))C = LC.
It follows hQ,det Rπ∗(L⊗O(p)) = Cχ(L) · hQ,det Rπ∗L and

∧
deg

(
det Rπ∗(L ⊗O(p)), hQ,det Rπ∗(L⊗O(p))

)
=

∧
deg

(
det Rπ∗L, hQ,det Rπ∗L

)
+ χ(L)

[
[K : Q] log C − log(]O/p)

]
.

Thus a distinguished hermitian metric on (L ⊗ O(p))C can be given by

‖.‖p = (]O/p)
1

[K:Q] · ‖.‖ and it follows

∧
c1 (L⊗O(p), ‖.‖p) =

∧
c1 (L, ‖.‖)+π∗

(
p;− 2

[K:Q]
log(]O/p), . . . ,− 2

[K:Q]
log(]O/p)

)
.

But the arithmetic cycle(
p;− 2

[K : Q]
log(]O/p), . . . ,− 2

[K : Q]
log(]O/p)

)
∈

∧
CH1 (Spec OK)

vanishes after multiplication with the class number ]Pic (Spec OK), hence it is
torsion and therefore numerically trivial. 2
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2.6.2 Lemma. Let F be some vertical divisor on C/OK. Then, for line bun-
dles L/C, fiber-by-fiber of degree g, and of bounded degrees on the irreducible
components of the special fibers

hx,ω(L(F )) = hx,ω(L) + O(1).

Proof. By Lemma 2.6.1 we may assume that E := −F is effective. Using
induction we are reduced to the case E is an irreducible curve. We have a short
exact sequence

0 −→ L(F ) −→ L −→ LE −→ 0

inducing the isomorphism

det Rπ∗L(F ) ∼= det Rπ∗L ⊗ (det Rπ∗LE)∨.

But det Rπ∗LE depends only on the Euler characteristic of LE and for the degree
of that bundle there are only finitely many possibilities. So up to numerical
equivalence there are only finitely possibilities for

∧
c1

(
L(F ), ‖.‖L(F )

)
− ∧

c1

(
L, ‖.‖L

)
,

where ‖.‖L and ‖.‖L(F ) denote distinguished hermitian metrics. 2

2.6.3 Lemma. Consider line bundles L, generically of degree g on C, equipped
with a section s ∈ Γ(C,LC) over the generic fiber, and assume the degrees
degL|Cp,i

of the restrictions of L to the irreducible components of the special
fibers to be fixed. Then

hx,ω(L) = hx,ω

(
O
(
div(s)

))
+ O(1).

Proof. We have L = L′
(E), where L′

= O
(
div(s)

)
is a line bundle induced

by a horizontal divisor and E is a vertical divisor. By Lemma 2.6.1 we may
assume E to be concentrated in the reducible fibers of C. So, using induction,
let E be in one such fiber Cp. Then for the degrees degO(E)|Cp,i

there are
only finitely many possibilities. But by [Fa, Theorem 4.a)] the intersection form
on Cp is negative semi-definite where only multiples of the fiber have square
0. Hence, for E there are only finitely many possibilities up to addition of the
whole fiber, which does not change the height. Lemma 2.6.2 gives the claim.
2

2.6.4 Lemma. Let X be a compact Riemann surface and g ∈ N be a natural
number. Denote by ∆ the diagonal in X×X, by δM the δ-distribution defined by
M and by πi : Xg ×X −→ X (resp. πi,g+1 : Xg ×X −→ X ×X) the canonical
projection on the i-th component (resp. to the product of the i-th and (g + 1)-th
component.) Further let

f : (Xg ×X)\
g⋃

i=1

π−1
i,g+1(∆) −→ C
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be a smooth function such that the restriction of

−dXdc
Xf + δ∆ ◦ π1,g+1 + . . . + δ∆ ◦ πg,g+1 = ρ,

to {(x1, . . . , xg)}×X is a smooth (1, 1)-form smoothly varying with (x1, . . . , xg).
Let ω be a smooth (1, 1)-form on X. Then∫

X
f(x1, . . . , xg, ·)ω

depends smoothly on (x1, . . . , xg) ∈ Xg.
Proof. Without restriction we may assume

∫
X ω = 1. Then, for any x ∈ X

there exists a function h ∈ C∞(X\{x}), having a logarithmic singularity in x,
such that ω = −ddch + δx. It follows∫

X
f(x1, . . . , xg, ·)ω = −

∫
X

f(x1, . . . , xg, ·)ddch + f(x1, . . . , xg, x)

= −
∫

X

(
dXdc

Xf(x1, . . . , xg, ·)
)
h + f(x1, . . . , xg, x)

=
∫

X
ρ(x1, . . . , xg, ·)h

− h(x1)− . . .− h(xg) + f(x1, . . . , xg, x)

=
∫

X
ρ(x1, . . . , xg, ·)h

−
[
h(x1)−G(x, x1)

]
− . . .−

[
h(xg)−G(x, xg)

]
−

[
G(x, x1) + . . . + G(x, xg)− f(x1, . . . , xg, x)

]
,

where G is the Green’s function of X. Because h has only a logarithmic sin-
gularity it is allowed to differentiate under the integral sign. So the integral is
smooth. The other summands are solutions of equations of the form ddcF = σ
with a smooth (1, 1)-form σ on X satisfying

∫
X σ = 0 (in x1, . . . , xg, respectively

x). Since ddc is elliptic, these solutions exist as smooth functions and are unique
up to constants. In particular, also the last summand must depend smoothly on
(x1, . . . , xg), even when some of the xi equal x. Note that the symmetry of the
Green’s function is used here essentially. 2

3 Asymptotic Behaviour

3.1 This is a direct computation using the arithmetic Riemann-Roch Theorem.
Proposition. Let π : C −→ Spec OK be an arithmetic surface and assume CC

to be equipped with a Kähler form ω invariant under complex conjugation F∞.
Let E be a line bundle on C equipped with a distinguished hermitian metric and
M∈

∧
Pic (C) be a hermitian line bundle. Then

∧
deg

( ∧
c1

(
det Rπ∗(E ⊗M⊗n

), ‖.‖Q

))
=

1

2
An2 + Bn,
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where A and B denote the arithmetic intersection numbers

A :=
∧

deg π∗
( ∧

c1 (M)2
)

and

B :=
∧

deg π∗
( ∧

c1 (M)
( ∧

c1 (E) +
1

2

∧
c1 (Tf )

))
and

∧
c1 (TF ) is the arithmetic Chern class of the relative tangent bundle equipped

with the hermitian metric associated with ω.
Proof. The arithmetic Riemann-Roch Theorem [GS92, Fa92] states

∧
deg

( ∧
c1

(
det Rπ∗(E ⊗M⊗n

), ‖.‖Q

))
=

∧
deg

(
π∗

( ∧
ch (E)

∧
ch (M⊗n

)
∧

Td (Tf )
))(1)

+
1

2

[∫
X(C)

(
ch(EC) ch(M⊗n

C ) Td(Tf,C) R(Tf,C)
)(1,1)

]
.

Here
∧
ch and

∧
Td denote the arithmetic Chern character, respectively Todd genus,

while ch, Td and R are the Chern character form, the Todd form and the R-genus
in the sense of Chern-Weil theory, respectively. The superscripts (1) and (1,1)

indicate restriction to the codimension one Chow group, respectively to forms of
type (1, 1). It is obvious that the right hand side is a quadratic polynomial in n,
whose absolute term is 0, since E carries a distinguished hermitian metric. As
we work with line bundles on an arithmetic surface there are the identities

∧
ch (M⊗n

) = 1+
∧
c1 (M)n +

1

2

∧
c1 (M)2n2

and
ch(M⊗n

C ) = 1 + c1(MC)n.

Thus for the coefficient of n2 we get

1

2

∧
deg π∗

( ∧
c1 (M)2

)
and the coefficient of n is

∧
deg π∗

( ∧
c1 (M)

( ∧
c1 (E) +

1

2

∧
c1 (Tf )

))
.

The term with the integral does not play any role in both calculations, since
R(Tf,C) starts with a (1, 1)-form. 2

3.2 Corollary. Theorem 1.7 is true.
Proof. The height of E ⊗M⊗n is given by the intersection number of its first

arithmetic Chern class with
∧
c1 (L), where the hermitian metric on E ⊗M⊗n has

to be corrected appropriately. The Proposition above gives

∧
c1

(
det Rπ∗(E ⊗M⊗n

), ‖.‖Q

)
− ∧

c1

(
det Rπ∗(E ⊗M⊗n), ‖.‖Q,dist

)
= a(An2+2Bn),
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where ‖.‖Q,dist denotes the Quillen metric induced by some distinguished hermi-
tian metric on E ⊗M⊗n, i.e. one making the arithmetic degree vanish. Lemma
1.3 implies that there exists a distinguished hermitian metric satisfying

∧
c1

(
E ⊗M⊗n

)
− ∧

c1

(
E ⊗M⊗n, ‖.‖dist

)
= a

(
An2 + 2Bn

χ(EK ⊗M⊗n
K )

)
.

Therefore we obtain for the height of E ⊗M⊗n the following formula.

hL(E ⊗M⊗n) = hL(E)+
∧

deg
( ∧

c1 (L)
∧
c1 (M)

)
n− An2 + 2Bn

2χ(EK ⊗M⊗n
K )

degLK

Using Riemann-Roch for curves it follows that

χ(EK ⊗M⊗n
K )hL(E ⊗M⊗n) = χ(EK ⊗M⊗n

K )
(
hL(E) + nD

)
−

(1

2
An2 + Bn

)
degLK

=
(
χ(EK) + deg(MK) n

)(
hL(E) + nD

)
−

(1

2
An2 + Bn

)
deg LK

= χ(EK)hL(E)

+ n [(deg (MK)hL(E) + χ(EK)D − deg(LK)B]

+ n2[deg(MK)D − deg(LK)
A

2
].

2
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