# Experiments with the Brauer-Manin obstruction 

Jörg Jahnel<br>University of Siegen<br>University of Sydney, The magma group<br>March 7, 2013<br>joint work with<br>Andreas-Stephan Elsenhans (Sydney)

## A Diophantine equation

## Example

Consider the Diophantine equation
$3 x^{3}+2 x^{2} z+x y^{2}-2 x y z-2 x y w-x z w+2 x w^{2}-y z w-y w^{2}-z^{3}+z^{2} w=0$.

## Observation

There are 18 non-trivial solutions of height $\leq 10$ :
$(0: 0: 0: 1),(0: 0: 1: 1),(0: 1: 0: 0),(0: 2:-3: 9),(0: 3:-2: 4),(0: 4:-6:-3),(0: 9:-6:-2)$,
$(1:-6: 5:-8),(1: 0: 5: 4),(2:-4:-3:-1),(2:-2:-3:-1),(2: 2: 3: 5),(3:-6:-5:-2)$,
$(3: 6:-1: 8),(3: 6: 3: 2),(4:-2: 9: 1),(4: 4: 6: 1),(4: 8: 0: 7)$,

## Fact

There are no solutions $(x: y: z: w) \in \mathbf{P}^{3}(\mathbb{Z})$ such that the reduction modulo 3 is $(1: 0: 0: 0),(1: 0: 1: 1)$, or $(1: 0: 1:-1)$.
Thus, weak approximation is violated.

## A Diophantine equation II

Modulo 3, this equation has exactly ten solutions, six of which occur as reductions of integral solutions. These are $(0: 0: 0: 1),(0: 0: 1: 1)$, $(0: 1: 0: 0),(1: 0:-1: 1),(1: 1: 0: 1)$, and $(1:-1: 0: 1)$.
Further, there are the three solutions given above and (1:1:1:0). The latter does not lift to a 3 -adic solution.

## Remark

From the geometric point of view,
$3 x^{3}+2 x^{2} z+x y^{2}-2 x y z-2 x y w-x z w+2 x w^{2}-y z w-y w^{2}-z^{3}+z^{2} w=0$ defines a smooth cubic surface $C$ over $\mathbb{Q}$. Classical algebraic geometry gives us a lot of information about such surfaces.
In our case, $C$ has bad reduction at 2,3 , and 5 . The reduction modulo 3 is of the type of a Cayley cubic, having four isolated singular points. Among these, $(1: 1: 0: 1)$ is the only $\mathbb{F}_{3}$-rational one. The three others are defined over $\mathbb{F}_{27}$.

## Another Diophantine equation

## Example

Consider the Diophantine equation

$$
z^{2}=x(x-1)(x-25) u(u+25)(u+36) .
$$

Trivial solutions：$x \in\{0,1,25\}$ or $u \in\{0,-25,-36\}$ ．

## Observation

There are 64 non－trivial solutions of height $<100$ ：

```
(-2, -24; \pm216), (9, -24; \pm576), (-2, -3; \pm594), (4, -18; 土756), (5, -20; \pm800), (4, -14; 土924), (-5, -20; \pm1200),
(9, -3; \pm1584), (29, -29; 士1624), (10, -40;\pm1800), (5,-45;\pm1800), (8,-8;\pm1904), (-7,-18; 土2016),
(4,-50;\pm2100), (22,-11;\pm2310), (-7, -14; 士2464), (-5,-45;\pm2700), (18, -8; \pm2856), (-10,-11; \pm3850),
(-15,-40;\pm4800), (-7, -50; \pm5600), (-24, -40; \pm8400), (5, -80; 土8800), (-5, -80; \pm13200), (-32, -44; 士20064),
(14, -88; 土24024), (-55, -11; \pm30800), (-63, -11; \pm36960), (-27, -64; \pm52416), (64, 14; \pm65520), (64, 27; \pm117936)
(-56, -63; \pm129276),
```


## Another Diophantine equation II

## Fact

There are no solutions $(x, u, z) \in \mathbb{Z}^{3}$ such that $x \equiv 2(\bmod 5)$ and $u \equiv 5$ (mod 25).
Thus, weak approximation is violated.
Observe that $x=2$ and $u=5$ lead to a solution in 5-adic integers. Indeed, $2 \cdot(2-1) \cdot(2-25) \cdot 5 \cdot(5+25) \cdot(5+36)=-11316 \cdot 5^{2}$ is a 5 -adic square.

## Remark

From the geometric point of view, $z^{2}=x(x-1)(x-25) u(u+25)(u+36)$ defines a $K 3$ surface $S$ over $\mathbb{Q}$, more precisely a Kummer surface. It is obtained form the product $E \times E^{\prime}$ of the elliptic curves

$$
E: y^{2}=x(x-1)(x-25) \text { and } E^{\prime}: y^{\prime 2}=u(u+25)(u+36)
$$

by identifying $\left(x, y, u, y^{\prime}\right)$ with $\left(x,-y, u,-y^{\prime}\right)$.

## The Hilbert symbol

## Definition

For $k$ a local field and $0 \neq \alpha, \beta \in k$ define $(\alpha, \beta)_{k} \in \frac{1}{2} \mathbb{Z} / \mathbb{Z}$ by

$$
(\alpha, \beta)_{k}:= \begin{cases}0 & \text { if } \alpha X^{2}+\beta Y^{2}-Z^{2} \text { non-trivially represents } 0 \text { over } k, \\ \frac{1}{2} & \text { otherwise }\end{cases}
$$

This is called the Hilbert symbol of $\alpha$ and $\beta$.

## Fact

For $0 \neq \alpha, \beta \in \mathbb{Q}$, there is the sum formula $\sum(\alpha, \beta)_{p}=0$.

$$
p \in\{2,3,5, \ldots ; \infty\}
$$

## The Hilbert symbol II

For $3 x^{3}+2 x^{2} z+x y^{2}-2 x y z-2 x y w-x z w+2 x w^{2}-y z w-y w^{2}-z^{3}+z^{2} w=0$, there is a homogeneous form $F_{30} \in \mathbb{Q}[x, y, z, w]$ of degree 30 such that

- for every real or $p$-adic solutions $(p \neq 3)$, one automatically has $\left(F_{30}(x, y, z, w),-3\right)_{p}=0$.
- There are 3 -adic solutions such that $\left(F_{30}(x, y, z, w),-3\right)_{p}=\frac{1}{2}$.

For the equation $z^{2}=x(x-1)(x-25) u(u+25)(u+36)$, we may show the following

- For every non-trivial real or $p$-adic solution $(p \neq 5)$, one automatically has $((x-1)(x-25),(u+25)(u+36))_{p}=0$.
- There are, however, non-trivial 5-adic solutions such that $((x-1)(x-25),(u+25)(u+36))_{5}=\frac{1}{2}$.

Thus, $C\left(\mathbb{Q}_{3}\right)$ and $S\left(\mathbb{Q}_{5}\right)$ split into two sorts of points (red and green points). We have colourings on these p-adic manifolds. Only one sort may be approximated by $\mathbb{Q}$-rational points.

## The Brauer group

## Definition

Let $S$ be any scheme. Then the (cohomological) Brauer group of $S$ is defined by $\operatorname{Br}(S):=H_{\text {êt }}^{2}\left(S, \mathbb{G}_{m}\right)$.

## Remarks

(1) This definition is not very explicit. In general, Brauer groups are not easily computable.
(2) One has $\operatorname{Br}\left(\mathbb{Q}_{p}\right) \cong \mathbb{Q} / \mathbb{Z}, \operatorname{Br}(\mathbb{R}) \cong \frac{1}{2} \mathbb{Z} / \mathbb{Z}$, and

$$
\operatorname{Br}(\mathbb{Q})=\operatorname{ker}\left(\underset{p \in\{2,3,5, \ldots\}}{\bigoplus} \operatorname{Br}\left(\mathbb{Q}_{p}\right) \underset{\nu: \ldots \rightarrow \mathbb{K}}{\oplus} \underset{K}{\bigoplus} \operatorname{Br}(\mathbb{R}) \rightarrow \mathbb{Q} / \mathbb{Z}\right) .
$$

(3) Let $\alpha \in \operatorname{Br}(S)$ be any Brauer class. Then, for every $K$-rational point $p \in S(K)$, there is $\left.\alpha\right|_{p} \in \operatorname{Br}(\operatorname{Spec} K)$.
Hence, an adelic point not fulfilling the condition that the sum zero cannot be approximated by $\mathbb{Q}$-rational points.
This is called the Brauer-Manin obstruction to weak approximation.

## The Brauer group II

The cohomological Brauer group of a variety $S$ over a field $k$ is equipped with a canonical filtration, defined by the Hochschild-Serre spectral sequence.
(1) $\operatorname{Br}_{0}(S) \subseteq \operatorname{Br}(S)$ is the image of $\operatorname{Br}(k)$ under the natural map. At least when $S$ has a $k$-rational point, $\operatorname{Br}_{0}(S) \cong \operatorname{Br}(k) . \operatorname{Br}_{0}(S)$ does not contribute to the Brauer-Manin obstruction.
© One has

$$
\operatorname{Br}_{1}(S) / \operatorname{Br}_{0}(S) \cong H^{1}\left(\operatorname{Gal}\left(k^{\text {sep }} / k\right), \operatorname{Pic}\left(S_{k s e p}\right)\right) .
$$

This subquotient is called the algebraic part of the Brauer group. For $k$ a number field, it is responsible for the so-called algebraic BrauerManin obstruction.

- Finally, $\operatorname{Br}(S) / \operatorname{Br}_{1}(S)$ injects into $\operatorname{Br}\left(S_{k}\right.$ sep $)$. This quotient is called the transcendental part of the Brauer group. For $k$ a number field, the corresponding obstruction is called a transcendental Brauer-Manin obstruction.


## Smooth cubic surfaces-Algebraic Brauer-Manin obstruction

Let $C \subset \mathbf{P}^{3}$ be a smooth cubic surface over an algebraically closed field.

- $C$ is isomorphic to $\mathbf{P}^{2}$, blown up in six points. These are in general position.
- C contains precisely 27 lines.
- The configuration of the 27 lines is highly symmetric. The group of all permutations respecting the intersection pairing is isomorphic to the Weyl group $W\left(E_{6}\right)$ of order 51840.
- There are many combinatorial structures determined by the 27 lines. For example, the are 72 sixers of mutually skew lines, forming 36 double-sixes.
- There is a pentahedron associated with general $C$ (Sylvester).
- There are (at least) two kinds of moduli spaces, coming out of the classical invariant theory.
- The coarse moduli space of smooth cubic surfaces (Salmon, Clebsch).
- The fine moduli space of marked cubic surfaces (Cayley, Coble).


## The Brauer group of smooth cubic surfaces

## Lemma

Let $C$ be a smooth cubic surface over an algebraically closed field. Then $\operatorname{Br}(C)=0$.

Idea of proof: One has $\operatorname{Br}\left(\mathbf{P}^{2}\right)=0$ and a blow-up does not change the Brauer group.

## Corollary

Let $C$ be a smooth cubic surface over a field $k$ of characteristic zero.

- Then the transcendental part $\operatorname{Br}(C) / \operatorname{Br}_{1}(C)$ of the Brauer group vanishes.
- The canonical map

$$
\delta: H^{1}\left(\operatorname{Gal}(\bar{k} / k), \operatorname{Pic}\left(C_{\bar{k}}\right)\right) \longrightarrow \operatorname{Br}(C) / \operatorname{Br}(k)
$$

is an isomorphism.

## The Brauer group of smooth cubic surfaces II

## Theorem (Manin 1969)

Let $C$ be a smooth cubic surface over a field $k$. Then

$$
H^{1}\left(\operatorname{Gal}(\bar{k} / k), \operatorname{Pic}\left(C_{\bar{k}}\right)\right) \cong \operatorname{Hom}\left(\left(N F \cap F_{0}\right) / N F_{0}, \mathbb{Q} / \mathbb{Z}\right)
$$

Here, $F \subset \operatorname{Div}(C)$ is the subgroup generated by the 27 lines on $C . F_{0} \subset F$ is the subgroup pf all principal divisors in F. Finally, $N$ is the norm map from the field of definition of the 27 lines to $k$.

Thus, the $\operatorname{Gal}(\bar{k} / k)$-module structure on $F \cong \mathbb{Z}^{27}$, i.e. the Galois operation on the 27 lines, determines the $\operatorname{Brauer}$ group $\operatorname{Br}(C) / \operatorname{Br}(k)$ completely.

## Remark

$\operatorname{Gal}(\bar{k} / k)$ permutes the 27 lines in such a way that the intersection matrix is respected. Thus, every smooth cubic surface over $k$ defines a homomorphism $\varrho: \operatorname{Gal}(\bar{k} / k) \rightarrow W\left(E_{6}\right) \subseteq S_{27}$. The subgroup im $\varrho$ determines the Brauer group.

## Systematic computation

There are 350 conjugacy classes of subgroups in $W\left(E_{6}\right)$.
It turns out that $H^{1}\left(\operatorname{Gal}(\bar{k} / k), \operatorname{Pic}\left(C_{\bar{k}}\right)\right)$ is isomorphic to

0 $\mathbb{Z} / 2 \mathbb{Z}$ for 65 classes,
$\mathbb{Z} / 3 \mathbb{Z}$ for 16 classes,
$(\mathbb{Z} / 2 \mathbb{Z})^{2}$ for 11 classes,
$(\mathbb{Z} / 3 \mathbb{Z})^{2} \quad$ for one class.

## Fact (Swinnerton-Dyer 1993, Elsenhans + J. 2009)

Let $C$ be a smooth cubic surface over a field $k$.
(1) If $H^{1}\left(\operatorname{Gal}(\bar{k} / k), \operatorname{Pic}\left(C_{\bar{k}}\right)\right)=\mathbb{Z} / 2 \mathbb{Z}$ then, on $C$, there is a Galois-invariant double-six.
(2) If $H^{1}\left(\operatorname{Gal}(\bar{k} / k), \operatorname{Pic}\left(C_{\bar{k}}\right)\right)=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ then, on $C$, there are three Galois-invariant double-sixes that are azygetic to each other. Azygeticity means every pair has six lines in common.

## The hexahedral form

We constructed examples over $\mathbb{Q}$ for each of the 350 conjugacy classes.
Cubic surfaces with a Galois invariant double-six are related to the hexahedral form.

## Definition (Hexahedral form)

The cubic surface $S^{\left(a_{0}, \ldots, a_{5}\right)}$ given in $\mathbf{P}^{5}$ by

$$
\begin{aligned}
X_{0}^{3}+X_{1}^{3}+X_{2}^{3}+X_{3}^{3}+X_{4}^{3}+X_{5}^{3} & =0 \\
X_{0}+X_{1}+X_{2}+X_{3}+X_{4}+X_{5} & =0 \\
a_{0} X_{0}+a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}+a_{5} X_{5} & =0
\end{aligned}
$$

is said to be in hexahedral form.

## Remarks

- There are the 15 obvious lines given by the equations $X_{i_{0}}+X_{i_{1}}=X_{i_{2}}+X_{i_{3}}=X_{i_{4}}+X_{i_{5}}=0$ for $\left\{i_{0}, \ldots, i_{5}\right\}=\{0, \ldots, 5\}$.


## The hexahedral form II

## Remarks (continued)

- The twelve non-obvious lines form a double-six. I.e., a configuration of the type $\left\{I_{0}, \ldots, I_{5}, I_{0}^{\prime}, \ldots, I_{5}^{\prime}\right\}$ with $I_{i}$ meeting $I_{j}^{\prime}$ if and only if $I \neq j$, the $I_{i}$ being pairwise skew, and the $I_{i}^{\prime}$ being pairwise skew.
- The group of all permutations of $\left\{I_{0}, \ldots, I_{5}, I_{0}^{\prime}, \ldots, I_{5}^{\prime}\right\}$ respecting the intersection product is isomorphic to $S_{6} \times \mathbb{Z} / 2 \mathbb{Z}$ of order 1440 , generated by the permutations of the indices and the flip.
- A permutation of the coordinates $X_{0}, \ldots, X_{5}$ operates on the double-six as an element of $S_{6} \subset S_{6} \times \mathbb{Z} / 2 \mathbb{Z}$. However, an outer automorphism of $S_{6}$ comes in!
- A cubic surface has 45 tritangent planes cutting the surface in three lines. There are 15 obvious tritangent planes, given by $X_{j_{0}}+X_{j_{1}}=0$ for $0 \leq j_{0}<j_{1} \leq 5$, and 30 non-obvious ones.
Every obvious tritangent plane contains three obvious lines. A nonobvious plane contains two non-obvious lines and one obvious line.


## The hexahedral form III

## Definition

Let $\sigma_{i}$ denote the $i$-th elementary symmetric function in $a_{0}, \ldots, a_{5}$. Then, the form

$$
d_{4}:=\sigma_{2}^{2}-4 \sigma_{4}+\sigma_{1}\left(2 \sigma_{3}-\frac{3}{2} \sigma_{1} \sigma_{2}+\frac{5}{16} \sigma_{1}^{3}\right)
$$

is called the Coble quartic.

## Theorem (Coble 1915)

The field of definition of the 27 lines on $S^{\left(a_{0}, \ldots, a_{5}\right)}$ is $\mathbb{Q}\left(\sqrt{d_{4}}\right)$.

## The trace construction

## Algorithm (Trace construction-Computation of the Galois descent)

Given a separable polynomial $f \in \mathbb{Q}[T]$ of degree six, this algorithm computes a cubic surface $S_{\left(a_{0}, \ldots, a_{5}\right)}$.
(1) Compute, according to the definition, the traces $t_{i}:=\operatorname{tr} T^{i}$ for $i=0, \ldots, 5$. Use these values to compute $t_{6}:=\operatorname{tr} T^{6}$.
(2) Determine the kernel of the $2 \times 6$-matrix

$$
\left(\begin{array}{cccccc}
t_{0} & t_{1} & t_{2} & t_{3} & t_{4} & t_{5} \\
t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & t_{6}
\end{array}\right) .
$$

Choose linearly independent kernel vectors $\left(c_{i}^{0}, \ldots, c_{i}^{5}\right) \in \mathbb{Q}^{6}$ for $i=0, \ldots, 3$.
(3) Compute the term $\left[\sum_{j=0}^{5}\left(c_{0}^{j} x_{0}+\ldots+c_{3}^{j} x_{3}\right) T^{j}\right]^{3}$ modulo $f(T)$. This is a cubic form in $x_{0}, \ldots, x_{3}$ with coefficients in $\mathbb{Q}[T] /(f)$.
(9) Finally, apply the trace coefficient-wise and output the resulting cubic form in $x_{0}, \ldots, x_{3}$ with 20 rational coefficients.

## The trace construction II

## Remark

$S_{\left(a_{0}, \ldots, a_{5}\right)}$ is a cubic surface over $\mathbb{Q}$ such that $S_{\left(a_{0}, \ldots, a_{5}\right)} \times S_{\text {Sect } \mathbb{Q}} S$ pec $\overline{\mathbb{Q}}$ is isomorphic to the surface $S^{\left(a_{0}, \ldots, a_{5}\right)}$ in $\mathbf{P}^{5}$ given by

$$
\begin{aligned}
x_{0}^{3}+X_{1}^{3}+X_{2}^{3}+X_{3}^{3}+X_{4}^{3}+X_{5}^{3} & =0 \\
X_{0}+X_{1}+X_{2}+X_{3}+X_{4}+X_{5} & =0 \\
a_{0} x_{0}+a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}+a_{5} x_{5} & =0
\end{aligned}
$$

Here, $a_{0}, \ldots, a_{5} \in \overline{\mathbb{Q}}$ are the zeroes of $f$.

## Proposition (Elsenhans+J. 2009)

An element $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ flips the double-six if and only if it defines the conjugation of $\mathbb{Q}(\sqrt{D})$ for $D:=d_{4} \cdot \Delta(f)$.

## The local evaluation map

## Proposition (Elsenhans+J. 2009)

Let $f \in \mathbb{Q}[T]$ be a polynomial of degree six and $C:=S_{\left(a_{0}, \ldots, a_{5}\right)}$ be the corresponding cubic surface. Then there is a Brauer class $\alpha \in \operatorname{Br}(C)_{2}$ such that, for every prime $p$, the local evaluation map

$$
\mathrm{ev}_{\alpha}: C\left(\mathbb{Q}_{p}\right) \rightarrow \frac{1}{2} \mathbb{Z} / \mathbb{Z}
$$

is given by

$$
(x: y: z: w) \mapsto \mathrm{ev}_{\alpha}(x: y: z: w)=\left(\frac{F_{30}(x, y, z, w)}{F_{15}^{2}(x, y, z, w)}, D\right)_{p}
$$

for every $(x: y: z: w) \in C\left(\mathbb{Q}_{p}\right)$, not contained in any of the 27 lines.
Here, $D:=d_{4} \cdot \Delta(f), F_{15}$ is a product of linear forms corresponding to the 15 obvious tritangent planes and $F_{30}$ is a product of linear forms corresponding to the 30 non-obvious tritangent planes.

## The local evaluation map II

Idea of proof (only for generic orbit structure [12, 15]):

- Manin's formula: Need a rational function $F$ such that $\operatorname{div} F=N D$ for a (non-principal) divisor $D \in \operatorname{Div}\left(C_{\mathbb{Q}(\sqrt{D})}\right)$.
- Put $D_{1}:=\sum_{\text {Inon-obv. line }} I$ and $D_{2}:=\sum_{\text {lobv. line }} l$. Then the intersection matrix is

$$
\left(\begin{array}{ll}
48 & 60 \\
60 & 75
\end{array}\right)
$$

Thus, $5 D_{1}-4 D_{2}$ is a principal divisor.

- On the other hand, $\operatorname{div} F_{30}=5 D_{1}+2 D_{2}$ and $\operatorname{div} F_{15}=3 D_{2}$. Hence, $5 D_{1}-4 D_{2}=\operatorname{div}\left(F_{30} / F_{15}^{2}\right)$.
- Finally, over $\mathbb{Q}(\sqrt{D})$, the double-six is split, $D_{1}=D_{1}^{(1)}+D_{1}^{(2)}$. Therefore,

$$
5 D_{1}-4 D_{2}=N_{\mathbb{Q}(\sqrt{D}) / \mathbb{Q}}\left(5 D_{1}^{(1)}-2 D_{2}\right)
$$

## Constancy of the evaluation map

## Proposition (Elsenhans+J. 2009)

Let $C$ be a non-singular cubic surface and $\alpha \in \operatorname{Br}(C)$. Then, for a prime number $p$ such that

- the field extension $\mathbb{Q}(\sqrt{D}) / \mathbb{Q}$ splitting the double-six is unramified at $p$,
- the reduction $C_{p}$ is geometrically irreducible and no $\mathbb{Q}_{p}$-rational point on $C$ reduces to a singularity of $C_{p}$, the value of $\mathrm{ev}_{\alpha}(x)$ is independent of $x \in C\left(\mathbb{Q}_{p}\right)$.

In particular, the evaluation is constant on $C\left(\mathbb{Q}_{p}\right)$, for $p$ any prime of good reduction.

## Back to the introductory example

The equation
$3 x^{3}+2 x^{2} z+x y^{2}-2 x y z-2 x y w-x z w+2 x w^{2}-y z w-y w^{2}-z^{3}+z^{2} w=0$
was obtained using the starting polynomial

$$
F:=T\left(T^{5}-60 T^{3}-90 T^{2}+675 T+810\right)
$$

One has $\operatorname{disc}(F)=-2^{12} 3^{21} 5^{8} 13^{2}$, while Coble's radicand $d_{4}$ is a perfect square. Thus, $D=-3$.

The proposition shows that the local evaluation map is constant for all primes $p \neq 2,3,5$, and $\infty$. Constancy at 2,5 , and $\infty$ is true as well.

## Transcendental Brauer-Manin obstruction Particular Kummer surfaces

## Proposition (Skorobogatov/Zarhin 2011)

Let $E: y^{2}=x(x-a)(x-b)$ and $E^{\prime}: v^{2}=u\left(u-a^{\prime}\right)\left(u-b^{\prime}\right)$ be two elliptic curves over a field $k$, chark $=0$. Suppose that their 2-torsion points are defined over $k$ and that $E_{\bar{k}}$ and $E_{\bar{k}}^{\prime}$ are not isogenous to each other.
Further, let $S:=\operatorname{Kum}\left(E \times E^{\prime}\right)$ be the corresponding Kummer surface. Then

$$
\operatorname{Br}(S)_{2} / \operatorname{Br}(k)_{2}=\operatorname{im}\left(\operatorname{Br}(S)_{2} \rightarrow \operatorname{Br}\left(S_{\bar{k}}\right)_{2}\right) \cong \operatorname{ker}\left(\mu: \mathbb{F}_{2}^{4} \rightarrow\left(k^{*} / k^{* 2}\right)^{4}\right)
$$

where $\mu$ is given by the matrix

$$
M_{a b a^{\prime} b^{\prime}}:=\left(\begin{array}{cccc}
1 & a b & a^{\prime} b^{\prime} & -a a^{\prime} \\
a b & 1 & a a^{\prime} & a^{\prime}\left(a^{\prime}-b^{\prime}\right) \\
a^{\prime} b^{\prime} & a a^{\prime} & 1 & a(a-b) \\
-a a^{\prime} & a^{\prime}\left(a^{\prime}-b^{\prime}\right) & a(a-b) & 1
\end{array}\right) .
$$

## Transcendental Brauer-Manin obstruction Particular Kummer surfaces II

## Remarks

(1) In general, there is the short exact sequence

$$
0 \rightarrow \operatorname{Pic}(S) / 2 \operatorname{Pic}(S) \rightarrow H_{e t t}^{2}\left(S, \mu_{2}\right) \rightarrow \operatorname{Br}(S)_{2} \rightarrow 0
$$

(2) $S:=\operatorname{Kum}\left(E \times E^{\prime}\right)$ over algebraically closed field $k$. Then $\operatorname{Br}(S)_{2} \cong \mathbb{F}_{2}^{4}$. More canonically,

$$
\operatorname{Br}(S)_{2} \cong H_{e \mathrm{et}}^{2}\left(E \times E^{\prime}, \mu_{2}\right) /\left(H_{\text {ett }}^{2}\left(E, \mu_{2}\right) \oplus H_{\text {ett }}^{2}\left(E^{\prime}, \mu_{2}\right)\right) \cong \operatorname{Hom}\left(E[2], E^{\prime}[2]\right) .
$$

(3) $S:=\operatorname{Kum}\left(E \times E^{\prime}\right)$ over an arbitrary field $k$, chark $=0$. Then the assumption that the 2-torsion points are defined over $k$ implies that $\operatorname{Gal}(\bar{k} / k)$ operates trivially on $\operatorname{Br}\left(S_{\bar{k}}\right)_{2}$. Nevertheless, in general,

$$
\operatorname{Br}(S)_{2} / \operatorname{Br}(k)_{2} \varsubsetneqq \operatorname{Br}\left(S_{\bar{k}}\right)_{2}^{\operatorname{Gal}(\bar{k} / k)} \cong \mathbb{F}_{2}^{4}
$$

## Algebraic versus transcendental Brauer-Manin obstruction

- Algebraic Brauer-Manin obstruction:

Explicit computations have been done for many classes of varieties.
Most examples were Fano.
Cubic surfaces:
The example from above is rather typical.
The classical counterexamples to the Hasse principle (Mordell and Cassels/Guy) are in fact algebraic Brauer-Manin obstruction (Manin).
Computations for diagonal quartic surfaces, due to M. Bright.

- Transcendental Brauer-Manin obstruction:

Much less understood, seemingly more difficult.
First explicit example: Harari 1993.
Literature still very small. Often enormous efforts.
E.g., a whole Ph.D. thesis on one diagonal quartic surface, by Th. Preu.

## The local evaluation map

## Remark

The result of Skorobogatov/Zarhin gives us a class of varieties, for which the transcendental Brauer group is exceptionally well accessible. The same is true for the local evaluation map.

## Fact

Over the function field $k(S)$, each of the 16 vectors in $\mathbb{F}_{2}^{4}$ defines a Brauer class. Consider the four quaternion algebras

$$
A_{\mu, \nu}:=\left((x-\mu)(x-b),(u-\nu)\left(u-b^{\prime}\right)\right), \quad \mu=0, a, \nu=0, a^{\prime}
$$

Then $e_{1}$ corresponds to $A_{a, a^{\prime}}, e_{2}$ to $A_{a, 0}, e_{3}$ to $A_{0, a^{\prime}}$, and $e_{4}$ to $A_{0,0}$.

## The local evaluation map II

## Lemma

Let $k$ be a local field, char $k=0, a, b, a^{\prime}, b^{\prime} \in k$ be such that

$$
E: y^{2}=x(x-a)(x-b) \quad \text { and } \quad E^{\prime}: v^{2}=u\left(u-a^{\prime}\right)\left(u-b^{\prime}\right)
$$

are elliptic curves. Consider $S:=\mathrm{Kum}\left(E \times E^{\prime}\right)$, given explicitly by

$$
z^{2}=x(x-a)(x-b) u\left(u-a^{\prime}\right)\left(u-b^{\prime}\right)
$$

Let $\alpha \in \operatorname{Br}(S)$ be a Brauer class, represented over $k(S)$ by the central simple algebra $\bigotimes_{i} A_{\mu_{i}, \nu_{i}}$.
Then the local evaluation map $\mathrm{ev}_{\alpha}: S(k) \rightarrow \frac{1}{2} \mathbb{Z} / \mathbb{Z}$ is given by

$$
(x, u ; z) \mapsto \operatorname{ev}_{\alpha}((x, u ; z))=\sum_{i}\left(\left(x-\mu_{i}\right)(x-b),\left(u-\nu_{i}\right)\left(u-b^{\prime}\right)\right)_{k}
$$

## Constancy near the singular points

## Lemma (Elsenhans+J. 2012)

Let $p>2$ be a prime number and $a, b, a^{\prime}, b^{\prime} \in \mathbb{Z}_{p}$ be such that $E: y^{2}=x(x-a)(x-b)$ and $E^{\prime}: v^{2}=u\left(u-a^{\prime}\right)\left(u-b^{\prime}\right)$ are elliptic curves, not isogenous to each other. Suppose $\operatorname{gcd}(a, b)=\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$ and put

$$
I:=\max \left(\nu_{p}(a), \nu_{p}(b), \nu_{p}(a-b), \nu_{p}\left(a^{\prime}\right), \nu_{p}\left(b^{\prime}\right), \nu_{p}\left(a^{\prime}-b^{\prime}\right)\right) .
$$

Consider the surface $S$ over $\mathbb{Q}_{p}$, given by

$$
z^{2}=x(x-a)(x-b) u\left(u-a^{\prime}\right)\left(u-b^{\prime}\right) .
$$

Then, for every $\alpha \in \operatorname{Br}(S)_{2}$, the evaluation map $S\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q} / \mathbb{Z}$ is constant on the subset

$$
\begin{aligned}
T:=\{(x, u ; z) & \in S\left(\mathbb{Q}_{p}\right) \mid \nu_{p}(x)<0 \text { or } \nu_{p}(u)<0 \text { or } \\
& \left.x \equiv \mu, u \equiv \nu\left(\bmod p^{\prime+1}\right), \mu=0, a, b, \nu=0, a^{\prime}, b^{\prime}\right\} .
\end{aligned}
$$

## The case of good reduction

## Proposition

Let $E: y^{2}=x(x-a)(x-b)$ and $E^{\prime}: v^{2}=u\left(u-a^{\prime}\right)\left(u-b^{\prime}\right)$ be two elliptic curves over a local field $k$, not isogenous to each other. Suppose that $a, b, a^{\prime}, b^{\prime} \in k$. Further, let $S:=\operatorname{Kum}\left(E \times E^{\prime}\right)$ be the corresponding Kummer surface.
Suppose that either $k=\mathbb{R}$ or $k$ is a $p$-adic field and both $E$ and $E^{\prime}$ have good reduction. Then, for every $\alpha \in \operatorname{Br}(S)_{2}$, the evaluation map $\mathrm{ev}_{\alpha}: S(k) \rightarrow \mathbb{Q} / \mathbb{Z}$ is constant.

- The case $k=\mathbb{Q}_{p}$ is a particular case of a very general result, due to J.-L. Colliot-Thélène and A. N. Skorobogatov. It also follows from the lemma above.


## The case of good reduction II

- $k=\mathbb{R}$ : Without loss of generality, suppose $a>b>0$ and $a^{\prime}>b^{\prime}>0$. Then

$$
M_{a b a^{\prime} b^{\prime}}=\left(\begin{array}{l}
+++- \\
++++ \\
++++ \\
-+++
\end{array}\right)
$$

has kernel $\left\langle e_{2}, e_{3}\right\rangle$. Representatives for $e_{2}$ and $e_{3}$ are $\left((x-a)(x-b), u\left(u-b^{\prime}\right)\right)_{\mathbb{R}}$ and $\left(x(x-b),\left(u-a^{\prime}\right)\left(u-b^{\prime}\right)\right)_{\mathbb{R}}$.
$e_{2}:\left((x-a)(x-b), u\left(u-b^{\prime}\right)\right)_{\mathbb{R}}=\frac{1}{2}$ would mean $(x-a)(x-b)<0$ and $u\left(u-b^{\prime}\right)<0$. Hence, $b<x<a$ and $0<u<b^{\prime}$. But then $x(x-a)(x-b) u\left(u-a^{\prime}\right)\left(u-b^{\prime}\right)<0$. There is no real point on $S$ corresponding to $(x, u)$.
For $e_{3}$, the argument is analogous.

## An algorithm determining the local evaluation map

## Algorithm

Let the parameters $a, b, a^{\prime}, b^{\prime} \in \mathbb{Z}$, a Brauer class $\alpha \in \operatorname{Br}(S)_{2}$ as a combination of Hilbert symbols, and a prime number $p$ be given.
(1) Calculate $I:=\max \left(\nu_{p}(a), \nu_{p}(b), \nu_{p}(a-b), \nu_{p}\left(a^{\prime}\right), \nu_{p}\left(b^{\prime}\right), \nu_{p}\left(a^{\prime}-b^{\prime}\right)\right)$.
(2) Initialize three lists $S_{0}, S_{1}$, and $S_{2}$, the first two being empty, the third containing all triples $\left(x_{0}, u_{0}, p\right)$ for $x_{0}, u_{0} \in\{0, \ldots, p-1\}$. A triple $\left(x_{0}, u_{0}, p^{e}\right)$ shall represent the subset

$$
\left\{(x, u ; z) \in S\left(\mathbb{Q}_{p}\right) \mid \nu_{p}\left(x-x_{0}\right) \geq e, \nu_{p}\left(u-u_{0}\right) \geq e\right\}
$$

(3) Run through $S_{2}$. For each element $\left(x_{0}, u_{0}, p^{e}\right)$, execute, in this order, the following operations.

- Test whether the corresponding set is non-empty. Otherwise, delete it.
- If $e \geq I+1, \nu_{p}(x-\mu) \geq I+1$ and $\nu_{p}(u-\nu) \geq I+1$ for some $\mu \in\{0, a, b\}$ and $\nu \in\left\{0, a^{\prime}, b^{\prime}\right\}$ then move $\left(x_{0}, u_{0}, p^{e}\right)$ to $S_{0}$.


## An algorithm determining the local evaluation map II

- Test naively, using the elementary properties of the Hilbert symbol, whether the elements in the corresponding set all have the same evaluation. If this test succeeds then move $\left(x_{0}, u_{0}, p^{e}\right)$ to $S_{0}$ or $S_{1}$, accordingly.
- Otherwise, replace $\left(x_{0}, u_{0}, p^{e}\right)$ by the $p^{2}$ triples $\left(x_{0}+i p^{e}, u_{0}+j p^{e}, p^{e+1}\right)$ for $i, j \in\{0, \ldots, p-1\}$.
(9) If $S_{2}$ is empty then output $S_{0}$ and $S_{1}$ and terminate. Otherwise, go back to step 3 .


## Remark

This algorithm terminates after finitely many steps only because constancy near the singular points is known.

## Back to the introductory example

The introductory example $S: z^{2}=x(x-1)(x-25) u(u+25)(u+36)$ has the Skorobogatov-Zarhin matrix

$$
M=\left(\begin{array}{rrrr}
1 & 25 & 900 & 25 \\
25 & 1 & -25 & -275 \\
900 & -25 & 1 & -24 \\
25 & -275 & -24 & 1
\end{array}\right) \widehat{=}\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -11 \\
1 & -1 & 1 & -6 \\
1 & -11 & -6 & 1
\end{array}\right),
$$

with $\operatorname{ker} M=\left\langle e_{1}\right\rangle$. Thus, there is a non-trivial Brauer class.
Furthermore, $S$ has bad reduction at $2,3,5$, and 11 . Running the algorithm for these four primes, one sees that the local evaluation maps at 2,3 , and 11 are constant, while that at 5 is not.

## Some kind of normal form

## Observation

Let $k$ be a field, $a, b, a^{\prime}, b^{\prime} \in k^{*}, a \neq b, a^{\prime} \neq b^{\prime}$, and $S$ be the Kummer surface $z^{2}=x(x-a)(x-b) u\left(u-a^{\prime}\right)\left(u-b^{\prime}\right)$. There are two types of non-trivial Brauer classes $\alpha \in \operatorname{Br}(S)_{2} / \operatorname{Br}(k)_{2}$.
Type 1. $\alpha$ may be expressed by a single Hilbert symbol.
There are nine cases for the kernel vector of $M_{a b a^{\prime} b^{\prime}}$. A suitable translation of $\mathbf{A}^{1} \times \mathbf{A}^{1}$ transforms the surface into one with kernel vector $e_{1}$. Then $a b, a^{\prime} b^{\prime},\left(-a a^{\prime}\right) \in k^{* 2}$.
This implies $\left(-b a^{\prime}\right),\left(-a b^{\prime}\right),\left(-b b^{\prime}\right) \in k^{* 2}$, too.
Type 2. To express $\alpha$, two Hilbert symbols are necessary.
There are six cases for the kernel vector of $M_{a b a^{\prime} b^{\prime}}$. A suitable translation of $\mathbf{A}^{1} \times \mathbf{A}^{1}$ transforms the surface into one with kernel vector $e_{2}+e_{3}$. Then $a a^{\prime}, b b^{\prime},(a-b)\left(a^{\prime}-b^{\prime}\right) \in k^{* 2}$.

## A criterion for trivial evaluation

## Theorem (Elsenhans+J. 2012)

Let $p>2$ be a prime number and $0 \neq a, b, a^{\prime}, b^{\prime} \in \mathbb{Z}_{p}$ such that $a \neq b$ and $a^{\prime} \neq b^{\prime}$. Let $S$ be the Kummer surface, given by $z^{2}=x(x-a)(x-b) u\left(u-a^{\prime}\right)\left(u-b^{\prime}\right)$.
Assume that $e_{1}$ is a kernel vector of the matrix $M_{a^{\prime} a^{\prime} b^{\prime}}$ and let $\alpha \in \operatorname{Br}(S)_{2}$ be the corresponding Brauer class.
(1) Suppose $a \equiv b \not \equiv 0(\bmod p)$ or $a^{\prime} \equiv b^{\prime} \not \equiv 0(\bmod p)$. Then the evaluation map $\operatorname{ev}_{\alpha}: S\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q} / \mathbb{Z}$ is constant.
(2) If $a \not \equiv b(\bmod p), a^{\prime} \not \equiv b^{\prime}(\bmod p)$, and not all four numbers are $p$-adic units then the evaluation map $\mathrm{ev}_{\alpha}: S\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q} / \mathbb{Z}$ is nonconstant.

## Remark

Consider $a=1, b=25, a^{\prime}=-25, b^{\prime}=-36$.
By 1, we have constancy at $2,3,11$. By 2, there is non-constancy at 5 .

## A sample

Determined all Kummer surfaces of the form

$$
z^{2}=x(x-a)(x-b) u\left(u-a^{\prime}\right)\left(u-b^{\prime}\right)
$$

allowing coefficients of absolute value $\leq 200$ and having a transcendental 2-torsion Brauer class.

More precisely,

- we determined all $\left(a, b, a^{\prime}, b^{\prime}\right) \in \mathbb{Z}^{4}$ such that $\operatorname{gcd}(a, b)=1$, $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1, a>b>0, a-b, b \leq 200$, as well as $a^{\prime}<b^{\prime}<0$, $a^{\prime}-b^{\prime}, b^{\prime} \geq-200$ and the matrix $M_{a b a^{\prime} b^{\prime}}$ has a non-zero kernel.
- We made sure that ( $a, b, a^{\prime}, b^{\prime}$ ) was not listed when $\left(-a^{\prime},-b^{\prime},-a,-b\right)$, $\left(a, a-b, a^{\prime}, a^{\prime}-b^{\prime}\right)$, or $\left(-a^{\prime}, b^{\prime}-a^{\prime},-a, b-a\right)$ was already in the list. We ignored the quadruples where $(a, b)$ and $\left(a^{\prime}, b^{\prime}\right)$ define geometrically isomorphic elliptic curves.


## A sample II

This led to

- 3075 surfaces with a kernel vector of type 1 , among them 26 have $\operatorname{Br}(S)_{2} / \operatorname{Br}(\mathbb{Q})_{2}=0$, due to a $\mathbb{Q}$-isogeny.
- 367 surfaces with a kernel vector of type 2
- two surfaces with $\operatorname{dim} \operatorname{Br}(S)_{2} / \operatorname{Br}(\mathbb{Q})_{2}=2$,
$(25,9,-169,-25)$ and $(25,16,-169,-25)$.
The generic case is that $\operatorname{dim} \operatorname{Br}(S)_{2} / \operatorname{Br}(\mathbb{Q})_{2}=0$.


## Definition

(1) We say that a Brauer class $\alpha \in \operatorname{Br}(S)$ works at a prime $p$ if the local evaluation map $\mathrm{ev}_{\alpha, p}$ is non-constant.
(2) A prime number $p$ is $B M$-relevant for $S$ if there is a Brauer class working at $p$.

## BM-relevant primes

$(25,9,-169,-25)$ :
One Brauer class works at 2 and 13, another at 5 and 13, and the third at all three.
$(25,16,-169,-25)$ :
One Brauer class works at 3 and 13, another at 5 and 13, and the last at all three.
Remaining surfaces:

| \# relevant primes | \# surfaces |
| :---: | ---: |
| - | 6 |
| 1 | 428 |
| 2 | 1577 |
| 3 | 1119 |
| 4 | 276 |
| 5 | 9 |
| 6 | 1 |

For $(196,75,-361,-169)$, the Brauer class works at $2,5,7,11,13$, and 19.

## Q-rational points

Assume $\alpha \in \operatorname{Br}(S)$ works at $/$ primes $p_{1}, \ldots, p_{I}$. There are $2^{\prime}$ vectors consisting only of zeroes and $\frac{1}{2}$ 's. By the Brauer-Manin obstruction, half of them are forbidden as values of

$$
\left(\mathrm{ev}_{\alpha, p_{1}}(x), \ldots, \mathrm{ev}_{\alpha, p_{l}}(x)\right)
$$

for $\mathbb{Q}$-rational points $x \in S(\mathbb{Q})$.

Table: Search bounds to get all vectors by rational points

|  |  | bound $N$ insufficient for |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \#primes | \#surfaces | $N=50$ | 100 | 200 | 400 | 800 | 1600 | 3200 | 6400 | 12800 |  |
| 2 | 1577 | 190 | 56 | 22 | - |  |  |  |  |  |  |
| 3 | 1119 | 555 | 187 | 48 | 1 | - |  |  |  |  |  |
| 4 | 262 | 262 | 200 | 127 | 67 | 36 | 24 | 13 | 4 |  |  |
| 5 | 9 | 9 | 9 | 8 | 8 | 8 | 5 | 3 | - |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

Table: Numbers of vectors in the case $(196,75,-361,-169)$

| bound | 50 | 100 | 200 | 400 | 800 | 1600 | 3200 | 6400 | 12800 | 25600 | 50000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| vectors | 5 | 10 | 14 | 20 | 24 | 26 | 28 | 30 | 31 | 31 | 32 |

## Summary

## Summary

- We investigated the transcendental Brauer-Manin obstruction for a sample of particular Kummer surfaces.
Actually, most of the surfaces had $\operatorname{Br}(S) / \operatorname{Br}(\mathbb{Q})=0$, but there was a 2-torsion Brauer class on more than 3000 of the surfaces.
- In our situation, the local evaluation map could be expressed in terms of the Hilbert symbol. This is in close analogy with computations of the algebraic Brauer-Manin obstruction.
- In our sample, the Brauer classes never works at the infinite place. As is known, they do not work at good places, either.
- We tested at which (bad) primes the Brauer classes actually work. There were form zero (in six cases) to six BM-relevant primes.
- We carried out a relatively extensive point search, but no other exceptional phenomena showed up. Our results are perfectly compatible with the idea that there are no further obstructions.


## Thank you

## Thank you!!

