On cubic surfaces violating the Hasse principle

Jörg Jahnel
University of Siegen
University of Sydney, February/March, 2014

joint work with
Andreas-Stephan Elsenhans (University of Sydney)

Diophantine equations

Problem (Diophantine equation)

Given $f \in \mathbb{Z}\left[X_{0}, \ldots, X_{n}\right]$, describe the set

$$
L(f):=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{Z}^{n+1} \mid f\left(x_{0}, \ldots, x_{n}\right)=0\right\}
$$

explicitly.

Geometric Interpretation

- Integral points on an n-dimensional hypersurface in \mathbf{A}^{n+1}.
- If f is homogeneous: Rational points on an $(n-1)$-dimensional hypersurface V_{f} in \mathbf{P}^{n}.

Seemingly easier problem: Decide whether $L(f)$ is non-empty.

A statistical heuristics

Given a concrete (homogeneous) f, how many solutions do we expect?

$$
\begin{aligned}
& \text { Put } Q(B):=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{Z}^{n+1}| | x_{i} \mid \leq B\right\} . \text { Then } \\
& \qquad Q(B)=(2 B+1)^{n+1} \sim C_{1} \cdot B^{n+1} .
\end{aligned}
$$

On the other hand,

$$
\max _{\left(x_{0}, \ldots, x_{n}\right) \in Q(B)}\left|f\left(x_{0}, \ldots, x_{n}\right)\right| \sim C_{2} \cdot B^{\operatorname{deg} f} .
$$

Heuristics

Assuming equidistribution of the values of f on $Q(B)$, we are therefore led to expect the asymptotics

$$
\#\left\{\left(x_{0}, \ldots, x_{n}\right) \in V_{f}(\mathbb{Q})| | x_{0}\left|, \ldots,\left|x_{n}\right| \leq B\right\} \sim C \cdot B^{n+1-\operatorname{deg} f}\right.
$$

for the number of solutions.

Statistical heuristics-Examples

The statistical heuristics explains the following well-known examples.

Examples

- $n+1-\operatorname{deg} f<0$: Very few solutions.

Example: $x^{k}+y^{k}=z^{k}$ for $k \geq 4$.

- $n+1-\operatorname{deg} f=0$: A few solutions.

Example: $y^{2} z=x^{3}+8 x z^{2}$.
Elliptic curves.
Another example: $x^{4}+2 y^{4}=z^{4}+4 w^{4}$.
K3 surfaces.

- $n+1-\operatorname{deg} f>0$: Many solutions.

Example: $x^{2}+y^{2}=z^{2}$.
Conics.
Another example: $x^{3}+y^{3}+z^{3}+w^{3}=0$.
Cubic surfaces.

Statistical heuristics-Geometric interpretation

If V_{f} is smooth then $\mathscr{O}(n+1-\operatorname{deg} f) \mid V_{f}$ is exactly the anticanonical invertible sheaf on V_{f}. Thus, the three cases correspond to the three cases of the Kodaira classification.

Heuristics (Geometric interpretation)

- Kodaira-Dimension $\operatorname{dim} V_{f}$, Varieties of general type:

Very few solutions.

- Kodaira-Dimension 0, Varieties of intermediate type:

A few solutions.

- Kodaira-Dimension $-\infty$, Fano varieties:

Many solutions.

Two types of complications

- Unsolvability
- Unsolvability in reals,

$$
x^{2}+y^{2}+z^{2}=0 .
$$

- p-adic unsolvability,

$$
u^{3}+2 v^{3}+7 w^{3}+14 x^{3}+49 y^{3}+98 z^{3}=0 .
$$

- "Accumulating" subvarieties: $x^{3}+y^{3}=z^{3}+w^{3}$ defines a cubic surface V in \mathbf{P}^{3}.

$$
\#\left\{\left(x_{0}, \ldots, x_{n}\right) \in V(\mathbb{Q})\left|\left|x_{0}\right|, \ldots,\left|x_{n}\right| \leq B\right\} \sim C \cdot B\right.
$$

is predicted.
However, V contains the line given by $x=z, y=w$, on which there is quadratic growth, already.

The Hasse principle

The picture is incomplete. More complications are possible.

Hasse principle (named after Helmut Hasse)

If $V_{f}\left(\mathbb{Q}_{p}\right) \neq \emptyset$ and $V_{f}(\mathbb{R}) \neq \emptyset$, then $V_{f}(\mathbb{Q}) \neq \emptyset$.

It may happen that the Hasse principle is violated. I.e., that $V_{f}\left(\mathbb{Q}_{p}\right) \neq \emptyset$ and $V_{f}(\mathbb{R}) \neq \emptyset$, but nevertheless $V_{f}(\mathbb{Q})=\emptyset$.

- For varieties of general type, $V_{f}(\mathbb{Q})=\emptyset$ is what one expects. Thus, one does not expect the Hasse principle.
- Concerning varieties of intermediate type, genus-1-curves that are counterexamples to the Hasse principle have been constructed by C.-E. Lind (1940, $2 w^{2}=x_{0}^{4}-17 x_{1}^{4}$) and E.S. Selmer (1951, $\left.3 x_{0}^{3}+4 x_{1}^{3}+5 x_{2}^{3}=0\right)$.
- But given a Fano variety, one might tend to expect the Hasse principle to be true.

The Hasse principle II

Theorem (Hasse-Minkowski)

Suppose f to be homogeneous of degree two. Then the Hasse principle holds for V_{f}.

Theorem (Hardy-Littlewood)

Let $d \geq 3$ be any integer. Then there exists a constant $N(d)$ such that $V_{f}(\mathbb{Q}) \neq \emptyset$ for every homogeneous form of degree d in at least $N(d)$ variables. The Hasse principle holds trivially.

Let now f be a homogeneous cubic in four variables. Then $C:=V_{f} \subset \mathbf{P}^{3}$ is a cubic surface.

Theorem (Skolem 1955)

Let $C \subset \mathbf{P}^{3}$ be a singular cubic surface. Then the Hasse principle holds for C.
J. Jahnel (University of Siegen)

The geometry of smooth cubic surfaces

Let $C \subset \mathbf{P}^{3}$ be a smooth cubic surface over an algebraically closed field.
Classical algebraic geometry gives us a lot of information about such surfaces. For instance,

- C is isomorphic to \mathbf{P}^{2}, blown up in six points. These are in general position.
- C contains precisely 27 lines.
- The configuration of the 27 lines is highly symmetric. The group of all permutations respecting the intersection pairing is isomorphic to the Weyl group $W\left(E_{6}\right)$ of order 51840.
- There is a pentahedron associated with general C (Sylvester).
- There are (at least) two kinds of moduli spaces, coming out of the classical invariant theory.
- The coarse moduli space of smooth cubic surfaces (Salmon, Clebsch).
- The fine moduli space of marked cubic surfaces (Cayley, Coble).

The 27 lines

Figure: The 27 lines in the blown-up model

Classical counterexamples

Theorem (Swinnerton-Dyer 1962)

Let K / \mathbb{Q} be the unique cubic field extension contained in the cyclotomic extension $\mathbb{Q}\left(\zeta_{7}\right) / \mathbb{Q}$. Put $\theta:=\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{7}\right) / K}\left(\zeta_{7}-1\right)$ and let C be the cubic surface, given by

$$
\begin{aligned}
x_{3}\left(x_{0}+x_{3}\right)\left(x_{0}+2 x_{3}\right)= & N_{K / \mathbb{Q}}\left(x_{0}+\theta x_{1}+\theta^{2} x_{2}\right) \\
= & x_{0}^{3}-7 x_{0}^{2} x_{1}+21 x_{0}^{2} x_{2}+14 x_{0} x_{1}^{2}-77 x_{0} x_{1} x_{2} \\
& +98 x_{0} x_{2}^{2}-7 x_{1}^{3}+49 x_{1}^{2} x_{2}-98 x_{1} x_{2}^{2}+49 x_{2}^{3} .
\end{aligned}
$$

Then C violates the Hasse principle.

Remark

Swinnerton-Dyer's example was soon generalized by L. J. Mordell. He gave two families of counterexamples, one using norm forms from the cubic subfield of $\mathbb{Q}\left(\zeta_{7}\right)$, the other from the cubic subfield of $\mathbb{Q}\left(\zeta_{13}\right)$.
The three linear forms on the left hand side were always linearly dependent.

Classical counterexamples II

Theorem (Cassels/Guy 1966)

Let C be the cubic surface given by

$$
5 x_{0}^{3}+12 x_{1}^{3}+9 x_{2}^{3}+10 x_{3}^{3}=0
$$

Then C violates the Hasse principle.

Remark

This is the historically first example of a diagonal cubic surface violating the Hasse principle.
The arithmetic of diagonal cubic surfaces was systematically investigated by J.-L. Colliot-Thélène, D. Kanevsky, and J.-J. Sansuc in 1985. More counterexamples to the Hasse principle were found, but also evidence that a general diagonal cubic surface fulfills the Hasse principle (but not weak approximation).

A further generalization of Mordell's counterexamples

Theorem (J. 2007)

Let $p \equiv 1(\bmod 3)$ be any prime, K the cubic subfield of $\mathbb{Q}\left(\zeta_{p}\right)$, and $\theta:=\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{p}\right) / K}\left(\zeta_{p}-1\right)$. For $a_{1}, a_{2}, d_{1}, d_{2}$ integers, consider the cubic surface $X \subset \mathbf{P}_{\mathbb{Q}}^{3}$, given by

$$
x_{3}\left(a_{1} x_{0}+d_{1} x_{3}\right)\left(a_{2} x_{0}+d_{2} x_{3}\right)=N_{K / \mathbb{Q}}\left(x_{0}+\theta x_{1}+\theta^{2} x_{2}\right) .
$$

(1) Assume $p \nmid d_{1} d_{2}$, that $\operatorname{gcd}\left(a_{1}, d_{1}\right)$ and $\operatorname{gcd}\left(a_{2}, d_{2}\right)$ contain only prime factors that decompose in K, and that among the zeroes z_{1}, z_{2}, z_{3} of $T\left(a_{1}+d_{1} T\right)\left(a_{2}+d_{2} T\right)-1=0$, at least one is simple and in \mathbb{F}_{p}. Then, $X\left(\mathbb{A}_{\mathbb{Q}}\right) \neq \emptyset$.
(2) Suppose $p \nmid d_{1} d_{2}$ and $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$. Then, for every point $\left(t_{0}: t_{1}: t_{2}: t_{3}\right) \in X(\mathbb{Q}), s:=\left(t_{3} / t_{0} \bmod p\right)$ admits the property that $\frac{a_{1}+d_{1} s}{s}$ is a cube in \mathbb{F}_{p}^{*}.
In particular, if $\frac{a_{1}+d_{1} s_{i}}{s_{i}} \in \mathbb{F}_{p}^{*}$ is a non-cube for every i such that $s_{i} \in \mathbb{F}_{p}$ then $X(\mathbb{Q})=\emptyset$.

The method of the proof

- Write the equation of C as $I_{1} l_{2} l_{3}=\mathrm{N}_{L / K}(I)$ for linear forms I, l_{1}, l_{2}, l_{3} and L / K a cubic Galois extension. (K is an extension of \mathbb{Q} in the diagonal case).
- Ensure that no K-rational point is contained in the three planes $I_{i}=0$. ($I_{i}=0$ implies $I^{\sigma_{1}}=I^{\sigma_{2}}=I^{\sigma_{3}}=0$. I.e., check that the four linear forms are linearly independent.)
- Prove that, for every prime \mathfrak{p} of K, the norm residue symbol

$$
s_{\mathfrak{p}}:=\left(\frac{l_{1}(x)}{l_{2}(x)}, L_{\mathfrak{p}} / K_{\mathfrak{p}}\right) \in \frac{1}{3} \mathbb{Z} / \mathbb{Z}
$$

is independent of the choice of $x \in C\left(K_{\mathfrak{p}}\right)$.

- Observe that

$$
\sum_{\mathfrak{p}} s_{\mathfrak{p}} \neq 0 \in \frac{1}{3} \mathbb{Z} / \mathbb{Z}
$$

in contradiction with global class field theory.

Manin's interpretation

Let $\sigma \in \operatorname{Gal}(L / K)$ be a generator. Then the cyclic $K(C)$-algebra

$$
\mathscr{A}=\left(L(C), \sigma, \frac{l_{1}}{l_{2}}\right):=L 1 \oplus L u \oplus L u^{2},
$$

for u a formal symbol and the relations $u^{3}=\frac{l_{1}}{l_{2}}$ as well as $u x=\sigma(x) u$ for all $x \in L(C)$, is an Azumaya algebra over $K(C)$.

Observation

The Azumaya algebra \mathscr{A} extends to an Azumaya algebra over the whole scheme C.

The reason is that $\div\left(\frac{l_{1}}{l_{2}}\right)$ is the norm of a (non-principal) divisor. Observe that $\left(L(C), \sigma, \frac{l_{1}}{l_{2}}\right)$ and $\left(L(C), \sigma, \frac{l_{1}}{l_{2}} \cdot \mathrm{~N}_{L(C) / K(C)}(\varphi)\right)$ are isomorphic algebras.

The Brauer group

Definition

Let S be any scheme. Then the (cohomological) Brauer group of S is defined by $\operatorname{Br}(S):=H_{e t t}^{2}\left(S, \mathbb{G}_{m}\right)$.

Remarks

(1) This definition is not very explicit. In general, Brauer groups are not easily computable.
(2) One has $\operatorname{Br}\left(\mathbb{Q}_{p}\right) \cong \mathbb{Q} / \mathbb{Z}, \operatorname{Br}(\mathbb{R}) \cong \frac{1}{2} \mathbb{Z} / \mathbb{Z}$, and

$$
\operatorname{Br}(\mathbb{Q})=\operatorname{ker}\left(\underset{p \in\{2,3,5, \ldots\}}{ } \operatorname{Br}\left(\mathbb{Q}_{p}\right) \underset{\nu: \ldots \rightarrow \mathbb{K}}{\oplus} \underset{K}{\bigoplus} \operatorname{Br}(\mathbb{R}) \rightarrow \mathbb{Q} / \mathbb{Z}\right) .
$$

(3) Let $\alpha \in \operatorname{Br}(S)$ be any Brauer class. Then, for every K-rational point $p \in S(K)$, there is $\left.\alpha\right|_{p} \in \operatorname{Br}(\operatorname{Spec} K)$.
Hence, an adelic point not fulfilling the condition that the sum zero cannot be approximated by \mathbb{Q}-rational points.
This is called the Brauer-Manin obstruction to weak approximation.

The Brauer group II

The cohomological Brauer group of a variety S over a field k is equipped with a canonical filtration, defined by the Hochschild-Serre spectral sequence.
(1) $\operatorname{Br}_{0}(S) \subseteq \operatorname{Br}(S)$ is the image of $\operatorname{Br}(k)$ under the natural map. At least when S has a k-rational point, $\operatorname{Br}_{0}(S) \cong \operatorname{Br}(k) . \operatorname{Br}_{0}(S)$ does not contribute to the Brauer-Manin obstruction.
© One has

$$
\operatorname{Br}_{1}(S) / \operatorname{Br}_{0}(S) \cong H^{1}\left(\operatorname{Gal}\left(k^{\text {sep }} / k\right), \operatorname{Pic}\left(S_{k s e p}\right)\right) .
$$

This subquotient is called the algebraic part of the Brauer group. For k a number field, it is responsible for the so-called algebraic BrauerManin obstruction.

- Finally, $\operatorname{Br}(S) / \operatorname{Br}_{1}(S)$ injects into $\operatorname{Br}\left(S_{k}\right.$ sep $)$. This quotient is called the transcendental part of the Brauer group. For k a number field, the corresponding obstruction is called a transcendental Brauer-Manin obstruction.

The Brauer group of a smooth cubic surface

Lemma

Let C be a smooth cubic surface over an algebraically closed field. Then $\operatorname{Br}(C)=0$.

Idea of proof. One has $\operatorname{Br}\left(\mathbf{P}^{2}\right)=0$ and a blow-up does not change the Brauer group.

Corollary

Let C be a smooth cubic surface over a field k of characteristic zero.

- Then the transcendental part $\operatorname{Br}(C) / \operatorname{Br}_{1}(C)$ of the Brauer group vanishes.
- The canonical map

$$
\delta: H^{1}\left(\operatorname{Gal}(\bar{k} / k), \operatorname{Pic}\left(C_{\bar{k}}\right)\right) \longrightarrow \operatorname{Br}(C) / \operatorname{Br}(k)
$$

is an isomorphism.

The Brauer group of a smooth cubic surface II

Theorem (Manin 1969)

Let C be a smooth cubic surface over a field k. Then

$$
H^{1}\left(\operatorname{Gal}(\bar{k} / k), \operatorname{Pic}\left(C_{\bar{k}}\right)\right) \cong \operatorname{Hom}\left(\left(N F \cap F_{0}\right) / N F_{0}, \mathbb{Q} / \mathbb{Z}\right)
$$

Here, $F \subset \operatorname{Div}(C)$ is the subgroup generated by the 27 lines on $C . F_{0} \subset F$ is the subgroup of all principal divisors in F.

Thus, the $\operatorname{Gal}(\bar{k} / k)$-module structure on $F \cong \mathbb{Z}^{27}$, i.e. the Galois operation on the 27 lines, determines the Brauer group $\operatorname{Br}(C) / \operatorname{Br}(k)$ completely.

Remark

$\operatorname{Gal}(\bar{k} / k)$ permutes the 27 lines in such a way that the intersection matrix is respected. Thus, every smooth cubic surface over k defines a homomorphism $\varrho: \operatorname{Gal}(\bar{k} / k) \rightarrow W\left(E_{6}\right) \subseteq S_{27}$. The subgroup im ϱ determines the Brauer group.

Systematic computation

There are 350 conjugacy classes of subgroups in $W\left(E_{6}\right)$.
It turns out that $H^{1}\left(\operatorname{Gal}(\bar{k} / k), \operatorname{Pic}\left(C_{\bar{k}}\right)\right)$ is isomorphic to
0 for 257 classes,
$\mathbb{Z} / 2 \mathbb{Z}$ for 65 classes,
$\mathbb{Z} / 3 \mathbb{Z}$ for 16 classes,
$(\mathbb{Z} / 2 \mathbb{Z})^{2}$ for 11 classes,
$(\mathbb{Z} / 3 \mathbb{Z})^{2} \quad$ for one class.

Today, this is a very simple computation using gap or magma.
The result that only these five groups occur was proven by Sir Peter Swinnerton-Dyer in 1993.

Colliot-Thélène's conjecture

Conjecture (Colliot-Thélène 1985)

The Brauer-Manin obstruction is the only obstruction to the Hasse principle for smooth cubic surfaces over a number field k.

For $k=\mathbb{Q}$, this means that if $C\left(\mathbb{A}_{\mathbb{Q}}\right)^{\operatorname{Br}(C)} \neq \emptyset$ then we expect $C(\mathbb{Q}) \neq \emptyset$.

Corollary (from Colliot-Thélène's conjecture)

Only the cases that

$$
\operatorname{Br}(C) / \operatorname{Br}(k) \cong \mathbb{Z} / 3 \mathbb{Z} \quad \text { or } \quad \operatorname{Br}(C) / \operatorname{Br}(k) \cong \mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}
$$

have the potential to violate the Hasse principle.
Proof. In the other cases, all Brauer classes split after a suitable quadratic or biquadratic extension I of k. As one may suppose $C\left(\mathbb{A}_{k}\right) \neq \emptyset$, the conjecture shows $C(I) \neq \emptyset$. But, for cubic surfaces, $C(k(\sqrt{d})) \neq \emptyset \Longrightarrow C(k) \neq \emptyset$.

Steiner trihedra

Definition

Let C be smooth cubic surface.
(1) Three tritangent planes such that no two of them have one of the 27 lines in common are said to be a trihedron.
If there exists another trihedron defining the same nine lines then one speaks of a Steiner trihedron.
(2) A triplet $\left(T_{1}, T_{2}, T_{3}\right)$ is a decomposition of the 27 lines into three subsets T_{1}, T_{2}, T_{3} of nine lines each such that every T_{i} is defined by a Steiner trihedron.

Remarks

(1) There are 72 Steiner trihedra on each smooth cubic surface, forming 36 pairs.
(2) Every pair of Steiner trihedra corresponds to a way of writing C in the Cayley-Salmon form

$$
I_{1} I_{2} I_{3}=I_{4} I_{5} I_{6} .
$$

Steiner trihedra II

Proposition (E.+J. 2009)

Let C be a smooth cubic surface over a field k such that $\operatorname{Br}(C) / \operatorname{Br}(k)$ has an element of order three.
Then C has a triplet $\left(T_{1}, T_{2}, T_{3}\right)$ consisting of Galois invariant sets.
Idea of proof. Among the subgroup classes of $W\left(E_{6}\right)$ such that $H^{1}\left(\operatorname{Gal}(\bar{k} / k), \operatorname{Pic}\left(C_{\bar{k}}\right)\right)$ has an element of order three, there is unique maximal one. That stabilizes a triplet.

Consequence

After a suitable extension of the base field, every cubic surface such that $\operatorname{Br}(C) / \operatorname{Br}(k)$ is of exponent three has the form

$$
I_{1} I_{2} I_{3}=\mathrm{N}(I) .
$$

Eckardt points

The geometry of the 27 lines on a smooth cubic surface is very rigid.
There are 45 tritangent planes. The intersection matrix is the same for all smooth cubic surfaces.
But there are two ways a tritangent plane may look like.

Figure: An ordinary tritangent plane (left) and one with an Eckardt point (right)

Eckardt points II

Facts (well-known in the 19th century)

- A smooth cubic surface may have no, 1, 2, 3, 4, 6, 9, 10, or 18 Eckardt points.
- A generic cubic surface has no Eckardt point.
- To have an Eckardt point is a codimension one condition in moduli space.
- To have at least two Eckardt points is a codimension two condition in moduli space.
- The existence of an Eckardt point is equivalent to the cubic surface having a non-trivial automorphism.

Eckardt points III

Fact

(1) The Swinnerton-Dyer-Mordell type surfaces are contained in a two-dimensional closed subscheme of the moduli space.
(2) Diagonal cubic surfaces correspond to a single moduli point.

Idea of 1. They have three Eckardt points.
The equations are of the form

$$
x_{3}\left(a_{1} x_{0}+d_{1} x_{3}\right)\left(a_{2} x_{0}+d_{2} x_{3}\right)=N_{K / \mathbb{Q}}\left(x_{0}+\theta x_{1}+\theta^{2} x_{2}\right) .
$$

The three tritangent planes $V\left(x_{3}\right), V\left(a_{1} x_{0}+d_{1} x_{3}\right)$, and $V\left(a_{2} x_{0}+d_{2} x_{3}\right)$ have a line in common. Thus, on each of the three tritangent planes $V\left(x_{0}+\theta^{\sigma_{i}} x_{1}+\left(\theta^{\sigma_{i}}\right)^{2} x_{2}\right)$, the corresponding three lines meet at a single point.

Remark

Diagonal cubic surfaces have 18 Eckardt points.

Our family

The family

We consider the cubic surface C over \mathbb{Q}, given by the equation

$$
\begin{equation*}
x_{0} x_{1} x_{2}=N_{K / \mathbb{Q}}\left(a x_{0}+b x_{1}+c x_{2}+d x_{3}\right) \tag{1}
\end{equation*}
$$

for K / \mathbb{Q} a cyclic cubic field extension and $a, b, c, d \in K$.

There is only one change in comparison with the Swinnerton-Dyer-Mordell type surfaces. The three linear forms on the left hand side are now linearly independent.

Inert primes

Proposition (Inert primes)

Let I be a prime that is inert in K / \mathbb{Q}. Denote by w the unique prime of K lying above I and assume that

- $a, b, c \in \mathscr{O}_{K_{w}}, d \in \mathscr{O}_{K_{w}}^{*}$,
- $(a / d \bmod I),(b / d \bmod I),(c / d \bmod I) \in \mathbb{F}_{\beta 3}$ are not contained in \mathbb{F}_{l}.

Finally, let C denote the surface (1).
For any $\left(t_{0}: t_{1}: t_{2}: t_{3}\right) \in C\left(\mathbb{Q}_{1}\right)$ such that $t_{0} t_{1} \neq 0$, the quotient $t_{1} / t_{0} \in \mathbb{Q}_{\text {I }}$ is in the image of the norm map $N: K_{w} \rightarrow \mathbb{Q}_{1}$.

Idea of proof. Normalize coordinates such that $t_{0}, \ldots, t_{3} \in \mathbb{Z}$, and at least one of them is a unit. Have to show that $\nu_{l}\left(t_{1} / t_{0}\right)$ is divisible by three.
Assume the contrary. Then, as the equation of the surface ensures that $3 \mid \nu_{l}\left(t_{0} t_{1} t_{2}\right)$, the values $\nu_{l}\left(t_{i}\right)$, for $i=0,1,2$, must be mutually noncongruent modulo 3.

Inert primes II

First case: There is no unit among t_{0}, t_{1}, t_{2}.
Then t_{3} is a unit. As d is a unit, we have that $a t_{0}+b t_{1}+c t_{2}+d t_{3} \in \mathscr{O}_{K_{w}}^{*}$. Hence, $N_{K_{w} / \mathbb{Q},}\left(a t_{0}+b t_{1}+c t_{2}+d t_{3}\right) \in \mathbb{Z}_{1}^{*}$, which, in view of $t_{0} t_{1} t_{2}$ not being a unit, contradicts the equation of the surface.

Second case: There is exactly one unit among t_{0}, t_{1}, t_{2}.
Without restriction, assume that t_{0} is the unit. Again, $t_{0} t_{1} t_{2}$ is not a unit. The equation of the surface requires that $\mathrm{N}_{K_{w} / \mathbb{Q}_{l}}\left(a t_{0}+b t_{1}+c t_{2}+d t_{3}\right)$ must be a non-unit.

To ensure this, we need $a t_{0}+b t_{1}+c t_{2}+d t_{3} \notin \mathscr{O}_{K_{w}}^{*}$, which means nothing but

$$
a t_{0}+d t_{3} \equiv 0 \quad(\bmod /)
$$

But then $a / d \equiv-t_{3} / t_{0}(\bmod I)$, a contradiction as the right hand side modulo I is in \mathbb{F}_{l}, but the left hand side is not.

Ramification

Lemma

Let $I \neq 3$ be a prime number and consider the nodal cubic curve E over \mathbb{F}_{l}, defined by

$$
27 x_{0} x_{1} x_{2}=\left(x_{0}+x_{1}+x_{2}\right)^{3} .
$$

Then, for every $\mathbb{F}_{\boldsymbol{\prime}}$-rational point $\left(t_{0}: t_{1}: t_{2}\right)$ on E, at least one of the expressions $t_{1} / t_{0}, t_{2} / t_{1}$, and t_{0} / t_{2} is properly defined and non-zero in \mathbb{F}_{l}. Further, these quotients evaluate solely to cubes in \mathbb{F}_{l}^{*}.

Idea of proof. The first assertion simply says that ($1: 0: 0$), $(0: 1: 0)$, $(0: 0: 1) \notin E$. Further, in $\mathbb{Z}\left[T_{0}, T_{1}, T_{2}\right]$, the polynomial expression

$$
\left(T_{0}^{2}+2 T_{0} T_{1}+T_{1}^{2}+5 T_{0} T_{2}-4 T_{1} T_{2}-5 T_{2}^{2}\right)^{3}+729 T_{0}\left(T_{1}-T_{2}\right)^{3} T_{2}^{2}
$$

splits into two factors, one of which is $27 T_{0} T_{1} T_{2}-\left(T_{0}+T_{1}+T_{2}\right)^{3}$.
For $\left(t_{0}: t_{1}: t_{2}\right) \in E\left(\mathbb{F}_{l}\right)$ with $t_{2} \neq 0$, we see that t_{0} / t_{2} is a cube, except possibly for the case when $t_{1}=t_{2}$. But then the equation of the curve shows that $t_{0} / t_{2}=\left(\frac{t_{0}+2 t_{2}}{3 t_{2}}\right)^{3}$.

Ramification II

Proposition

Let $I \neq 3$ be prime that is ramified in K / \mathbb{Q}. Denote by \mathfrak{p} the unique prime of K lying above I and assume that

- $a \in \mathscr{O}_{K_{\mathfrak{p}}},(a \bmod \mathfrak{p})=\frac{\alpha}{3}$,
- $b \in \mathscr{O}_{K_{p}},(b \bmod \mathfrak{p})=\frac{1}{3}$,
- $c \in \mathscr{O}_{K_{\mathfrak{p}}},(c \bmod \mathfrak{p})=\frac{1}{3 \alpha}$,
- $d \in \mathfrak{p} \backslash \mathfrak{p}^{3}$.
for some non-cube $\alpha \in \mathbb{F}_{l}^{*}$. Finally, let C denote the surface (1).
Let $\left(t_{0}: t_{1}: t_{2}: t_{3}\right) \in C\left(\mathbb{Q}_{\prime}\right)$ be any point. If, for $0 \leq i<j \leq 2$, one has $t_{i} t_{j} \neq 0$ then the quotient $t_{j} / t_{i} \in \mathbb{Q}_{\text {। }}$ is not in the image of the norm map $\mathrm{N}: K_{\mathfrak{p}} \rightarrow \mathbb{Q}_{\text {/ }}$.

Idea of proof. The reduction of C is non-trivial twist of the nodal cubic curve considered in the lemma. No l-adic point reduces to the cusp (0:0:0:1).

New counterexamples to the Hasse principle

Theorem (E.+J. 2013)

Let $K=\mathbb{Q}\left(\zeta_{7}+\zeta_{7}^{-1}\right)$ and $z=\zeta_{7}+\zeta_{7}^{-1}-2$. Write \mathfrak{p} for the unique prime lying above (7). Suppose that $a, b, c, d \in \mathscr{O}_{K}$ satisfy the following conditions.
(1) d splits as $(d)=\mathfrak{p p}_{1} \cdot \ldots \cdot \mathfrak{p}_{n}$, where $\mathrm{N}\left(\mathfrak{p}_{i}\right)$ are prime numbers $\neq(7)$. l.e., (d) does not contain any inert prime and contains \mathfrak{p} exactly once.
(2) $a / d=\frac{1}{7}\left(a_{0}+a_{1} z+a_{2} z^{2}\right)$ for $a_{i} \in \mathbb{Z}$ and $\operatorname{gcd}\left(a_{1}, a_{2}\right)$ is a product of only split primes.

- $b / d=\frac{1}{7}\left(b_{0}+b_{1} z+b_{2} z^{2}\right)$ for $b_{i} \in \mathbb{Z}$ and $\operatorname{gcd}\left(b_{1}, b_{2}\right)$ is a product of only split primes.
- $c / d=\frac{1}{7}\left(c_{0}+c_{1} z+c_{2} z^{2}\right)$ for $c_{i} \in \mathbb{Z}$ and $\operatorname{gcd}\left(c_{1}, c_{2}\right)$ is a product of only split primes.
(3) $a \equiv b(\bmod 6)$.
(9) $a \equiv-1(\bmod \mathfrak{p}), b \equiv-2(\bmod \mathfrak{p})$, and $c \equiv-4(\bmod \mathfrak{p})$.

Finally, let C denote the surface (1). Then $C\left(\mathbb{A}_{\mathbb{Q}}\right) \neq \emptyset$ but $C(\mathbb{Q})=\emptyset$.

New counterexamples to the Hasse principle II

Idea of proof. Step 1: Existence of l-adic points for every l.
This is clear for split primes and $I=\infty$, as we have the form $x_{0} x_{1} x_{2}=I_{1} I_{2} I_{3}$.
For the other primes, use Hensel's lemma. It suffices to show that $C_{/}$has a non-singular \mathbb{F}_{l}-rational point. For this, we show that $\left(C_{l}\right)_{\text {sing }}$ is of dimension zero. Thus, $\#\left(C_{l}\right)_{\text {reg }}\left(\mathbb{F}_{l}\right) \geq I^{2}-3 l-3>0$ for $l \geq 5$.
The assumption $a \equiv b(\bmod 6)$ ensures that $(1:(-1): 0: 0) \in C_{l}\left(\mathbb{F}_{l}\right)$ is a non-singular point for $I=2,3$.
Step 2: Non-existence of \mathbb{Q}-rational points.
Use the sum relation form from class field theory. Apply Propositions above. Assumptions: $\frac{1}{3} \equiv-2(\bmod 7), \alpha:=\frac{1}{2} \equiv 4(\bmod 7)$ is a non-cube. l inert $\Longrightarrow a / d=\frac{1}{7}\left(a_{0}+a_{1} z+a_{2} z^{2}\right)$ for a_{0}, a_{1} not both divisible by I. Hence, $(a / d \bmod I) \in \mathbb{F}_{\beta} \backslash \mathbb{F}_{l}$.

An example

Example

Let $K=\mathbb{Q}\left(\zeta_{7}+\zeta_{7}^{-1}\right)$, $z:=\zeta_{7}+\zeta_{7}^{-1}-2$, and let C be the cubic surface over \mathbb{Q}, given by the equation $x_{0} x_{1} x_{2}=N_{K / \mathbb{Q}}\left(a x_{0}+b x_{1}+c x_{2}+d x_{3}\right)$, for

$$
a:=-1, \quad b:=5+6 z^{2}, \quad c:=3+z^{2}, \quad d:=z
$$

Then C violates the Hasse principle.

Indeed,

(1) $d=z$ for $(z)=\mathfrak{p}$, (no further factors).
(2) $a / d=\frac{1}{7}\left(14+7 z+z^{2}\right)$,
$b / d=\frac{1}{7}\left(-70+7 z-5 z^{2}\right)$,
$c / d=\frac{1}{7}\left(-42-14 z-3 z^{2}\right)$,
$\operatorname{gcd}(7,1)=\operatorname{gcd}(7,-5)=\operatorname{gcd}(-14,-3)=1$.
(3) $a \equiv b(\bmod 6)$.
(1) $a \equiv-1(\bmod z), b \equiv-2(\bmod z), c \equiv-4(\bmod z)$.

An example II

The equation of C is, in explicit form,

$$
\begin{aligned}
& x_{0}^{3}-141 x_{0}^{2} x_{1}-30 x_{0}^{2} x_{2}+7 x_{0}^{2} x_{3}+4863 x_{0} x_{1}^{2}+2233 x_{0} x_{1} x_{2}-532 x_{0} x_{1} x_{3} \\
& +251 x_{0} x_{2}^{2}-119 x_{0} x_{2} x_{3}+14 x_{0} x_{3}^{2}-31499 x_{1}^{3}-26286 x_{1}^{2} x_{2}+6013 x_{1}^{2} x_{3} \\
& -6799 x_{1} x_{2}^{2}+3157 x_{1} x_{2} x_{3}-364 x_{1} x_{3}^{2}-559 x_{2}^{3}+392 x_{2}^{2} x_{3}-91 x_{2} x_{3}^{2}+7 x_{3}^{3}=0
\end{aligned}
$$

C has bad reduction at $2,3,7,3739$, and 7589 .
$S_{\mathbb{F}_{2}}$: binode;
$S_{\mathbb{F}_{7}}$: cone over a nodal cubic;
other three: conical
A minimization algorithm yields a reembedding of C as the surface, given by the equation
$-x_{0}^{3}+2 x_{0}^{2} x_{1}-x_{0}^{2} x_{2}-5 x_{0}^{2} x_{3}+x_{0} x_{1}^{2}-x_{0} x_{1} x_{2}+7 x_{0} x_{1} x_{3}+2 x_{0} x_{2}^{2}-15 x_{0} x_{2} x_{3}$
$-11 x_{0} x_{3}^{2}-x_{1}^{3}-2 x_{1}^{2} x_{2}+9 x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2}^{3}+x_{2}^{2} x_{3}+8 x_{2} x_{3}^{2}-x_{3}^{3}=0$.

Congruence conditions

Corollary

Let $K=\mathbb{Q}\left(\zeta_{7}+\zeta_{7}^{-1}\right), I \equiv \pm 1(\bmod 7)$ be a prime number, and $\widetilde{a}, \widetilde{b}, \widetilde{c}, \widetilde{d}$ be four residue classes in $\left[\mathscr{O}_{K} /(I)\right]^{*} \cong\left(\mathbb{F}_{I}^{*}\right)^{3}$.
Then there exists a cubic surface C that is a counterexample to the Hasse principle, of the form

$$
x_{0} x_{1} x_{2}=N_{K / \mathbb{Q}}\left(a x_{0}+b x_{1}+c x_{2}+d x_{3}\right),
$$

for $a, b, c, d \in \mathscr{O}_{K}$ such that $(a \bmod (I))=\widetilde{a}, \ldots,(d \bmod (I))=\widetilde{d}$.

Congruence conditions II

Idea of proof. This looks like infinitely many congruences...

- d : Choose solution $d^{\prime} \in \mathscr{O}_{K}$ of

$$
\left(d^{\prime} \bmod (I)\right)=\widetilde{d}, \quad d^{\prime} \equiv z \quad(\bmod (7))
$$

Partial factorization $\left(d^{\prime}\right)=\mathfrak{p p}_{1} \cdot \ldots \cdot \mathfrak{p}_{n} \cdot\left(m^{\prime}\right)$, the \mathfrak{p}_{i} being factors in K of split primes and $m^{\prime}>0$ a product of inert primes.
Choose prime $m \equiv m^{\prime}(\bmod I), m \equiv \pm 1(\bmod 7)$, and put $d:=m \cdot \frac{d^{\prime}}{m^{\prime}}$.

- $c: c \equiv-4(\bmod \mathfrak{p})$ is equivalent to $7 c / d \equiv \gamma z^{2}(\bmod (7))$ for some $\gamma \in\{1, \ldots, 6\}$. Thus choose solution $c^{\prime}=c_{0}^{\prime}+c_{1}^{\prime} z+c_{2}^{\prime} z^{2} \in \mathscr{O}_{K}$ of

$$
\left(c^{\prime} \bmod (I)\right)=7 \tilde{c}^{\tilde{d}^{-1}}, \quad c^{\prime} \equiv \gamma z^{2} \quad(\bmod (7))
$$

and put $c:=\frac{c^{\prime}}{7} \cdot d$.
Assure $\operatorname{gcd}\left(c_{1}^{\prime}, c_{2}^{\prime}\right)=1$ by choosing c_{2} as a prime number.

- b and a : Analogous to c.

Zariski density

Theorem (E.+J. 2013)

The cubic surfaces over \mathbb{Q} that are counterexamples to the Hasse principle define a Zariski dense subset of the moduli scheme of smooth cubic surfaces.
Idea of proof. Over an algebraically closed field, every smooth cubic surface may be brought into Cayley-Salmon form $I_{1} I_{1} I_{3}=I_{4} I_{5} / I_{6}$. Hence, the morphism

$$
\begin{aligned}
& p: \mathbf{A}^{12} \longrightarrow \mathscr{M} \\
&\left(a_{10}, \ldots, a_{33}\right) \mapsto\left[C_{a}: x_{0} x_{1} x_{2}=\left(a_{10} x_{0}+\ldots+a_{13} x_{3}\right)\left(a_{20} x_{0}+\ldots+a_{23} x_{3}\right)\right. \\
&\left.\left(a_{30} x_{0}+\ldots+a_{33} x_{3}\right)\right]
\end{aligned}
$$

to the moduli scheme is dominant.
Suppose the counterexamples to the Hasse principle were contained in a proper, Zariski closed subset $H \subset \mathscr{M}$. Then all the counterexamples, we constructed, must be contained in $p^{-1}(H) \subset \mathbf{A}^{12}$, which is a proper, Zariski closed subset. I.e., in a hypersurface $V \subset \mathbf{A}^{12}$ of a certain degree d.
Then $V\left(\mathbb{F}_{l}\right) \leq d l^{11}$ for every prime l. But the counterexamples constructed

Thanks

Thank you!!

