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Diophantine equations

Problem (Diophantine equation)

Given f ∈ Z[X0, . . . ,Xn], describe the set

L(f ) := {(x0, . . . , xn) ∈ Zn+1 | f (x0, . . . , xn) = 0}

explicitly.

Geometric Interpretation

Integral points on an n-dimensional hypersurface in An+1.

If f is homogeneous: Rational points on an (n− 1)-dimensional hyper-
surface Vf in Pn.

Seemingly easier problem: Decide whether L(f ) is non-empty.
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A statistical heuristics

Given a concrete (homogeneous) f , how many solutions do we expect?

Put Q(B) := {(x0, . . . , xn) ∈ Zn+1 | |xi | ≤ B}. Then

#Q(B) = (2B + 1)n+1 ∼ C1 ·Bn+1.

On the other hand,

max
(x0,...,xn)∈Q(B)

|f (x0, . . . , xn)| ∼ C2 ·Bdeg f .

Heuristics

Assuming equidistribution of the values of f on Q(B), we are therefore led
to expect the asymptotics

#{(x0, . . . , xn) ∈ Vf (Q) | |x0|, . . . , |xn| ≤ B} ∼ C ·Bn+1−deg f

for the number of solutions.
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Statistical heuristics–Examples

The statistical heuristics explains the following well-known examples.

Examples

n + 1− deg f < 0: Very few solutions.
Example: xk + yk = zk for k ≥ 4.

n + 1− deg f = 0: A few solutions.
Example: y 2z = x3 + 8xz2.
Elliptic curves.

Another example: x4 + 2y 4 = z4 + 4w 4.
K 3 surfaces.

n + 1− deg f > 0: Many solutions.
Example: x2 + y 2 = z2.
Conics.

Another example: x3 + y 3 + z3 + w 3 = 0.
Cubic surfaces.
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Statistical heuristics–Geometric interpretation

If Vf is smooth then O(n+1−deg f )|Vf
is exactly the anticanonical invertible

sheaf on Vf . Thus, the three cases correspond to the three cases of the
Kodaira classification.

Heuristics (Geometric interpretation)

Kodaira-Dimension dim Vf , Varieties of general type:
Very few solutions.

Kodaira-Dimension 0, Varieties of intermediate type:
A few solutions.

Kodaira-Dimension −∞, Fano varieties:
Many solutions.
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Two types of complications

Unsolvability

Unsolvability in reals,
x2 + y 2 + z2 = 0.

p-adic unsolvability,
u3 + 2v 3 + 7w 3 + 14x3 + 49y 3 + 98z3 = 0.

“Accumulating” subvarieties:

x3 + y 3 = z3 + w 3 defines a cubic surface V in P3.

#{(x0, . . . , xn) ∈ V (Q) | |x0|, . . . , |xn| ≤ B} ∼ C ·B

is predicted.

However, V contains the line given by x = z , y = w , on which there
is quadratic growth, already.
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The Hasse principle

The picture is incomplete. More complications are possible.

Hasse principle (named after Helmut Hasse)

If Vf (Qp) 6= ∅ and Vf (R) 6= ∅, then Vf (Q) 6= ∅.

It may happen that the Hasse principle is violated. I.e., that Vf (Qp) 6= ∅
and Vf (R) 6= ∅, but nevertheless Vf (Q) = ∅.

For varieties of general type, Vf (Q) = ∅ is what one expects. Thus, one
does not expect the Hasse principle.

Concerning varieties of intermediate type, genus-1-curves that are
counterexamples to the Hasse principle have been constructed by
C.-E. Lind (1940, 2w 2 = x4

0 − 17x4
1 ) and E. S. Selmer (1951,

3x3
0 + 4x3

1 + 5x3
2 = 0).

But given a Fano variety, one might tend to expect the Hasse principle
to be true.
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The Hasse principle II

Theorem (Hasse-Minkowski)

Suppose f to be homogeneous of degree two. Then the Hasse principle
holds for Vf .

Theorem (Hardy-Littlewood)

Let d ≥ 3 be any integer. Then there exists a constant N(d) such that
Vf (Q) 6= ∅ for every homogeneous form of degree d in at least N(d) vari-
ables. The Hasse principle holds trivially.

Let now f be a homogeneous cubic in four variables. Then C := Vf ⊂ P3

is a cubic surface.

Theorem (Skolem 1955)

Let C ⊂ P3 be a singular cubic surface. Then the Hasse principle holds
for C .
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The geometry of smooth cubic surfaces

Let C ⊂ P3 be a smooth cubic surface over an algebraically closed field.

Classical algebraic geometry gives us a lot of information about such sur-
faces. For instance,

C is isomorphic to P2, blown up in six points. These are in general
position.

C contains precisely 27 lines.

The configuration of the 27 lines is highly symmetric. The group of all
permutations respecting the intersection pairing is isomorphic to the
Weyl group W (E6) of order 51 840.

There is a pentahedron associated with general C (Sylvester).

There are (at least) two kinds of moduli spaces, coming out of the
classical invariant theory.

The coarse moduli space of smooth cubic surfaces (Salmon, Clebsch).
The fine moduli space of marked cubic surfaces (Cayley, Coble).
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The 27 lines

Figure: The 27 lines in the blown-up model

J. Jahnel (University of Siegen) Cubic surfaces violating the Hasse principle Sydney, February/March, 2014 10 / 39



Classical counterexamples

Theorem (Swinnerton-Dyer 1962)

Let K/Q be the unique cubic field extension contained in the cyclotomic
extension Q(ζ7)/Q. Put θ := TrQ(ζ7)/K (ζ7 − 1) and let C be the cubic
surface, given by

x3(x0 + x3)(x0 + 2x3) = NK/Q

(
x0 + θx1 + θ2x2

)
= x3

0 − 7x2
0 x1 + 21x2

0 x2 + 14x0x2
1 − 77x0x1x2

+ 98x0x2
2 − 7x3

1 + 49x2
1 x2 − 98x1x2

2 + 49x3
2 .

Then C violates the Hasse principle.

Remark

Swinnerton-Dyer’s example was soon generalized by L. J. Mordell. He gave
two families of counterexamples, one using norm forms from the cubic sub-
field of Q(ζ7), the other from the cubic subfield of Q(ζ13).

The three linear forms on the left hand side were always linearly dependent.
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Classical counterexamples II

Theorem (Cassels/Guy 1966)

Let C be the cubic surface given by

5x3
0 + 12x3

1 + 9x3
2 + 10x3

3 = 0 .

Then C violates the Hasse principle.

Remark

This is the historically first example of a diagonal cubic surface violating the
Hasse principle.

The arithmetic of diagonal cubic surfaces was systematically investigated
by J.-L. Colliot-Thélène, D. Kanevsky, and J.-J. Sansuc in 1985. More
counterexamples to the Hasse principle were found, but also evidence that
a general diagonal cubic surface fulfills the Hasse principle (but not weak
approximation).
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A further generalization of Mordell’s counterexamples

Theorem (J. 2007)

Let p ≡ 1 (mod 3) be any prime, K the cubic subfield of Q(ζp), and
θ := TrQ(ζp)/K (ζp − 1). For a1, a2, d1, d2 integers, consider the cubic sur-
face X ⊂ P3

Q, given by

x3(a1x0 + d1x3)(a2x0 + d2x3) = NK/Q

(
x0 + θx1 + θ2x2

)
.

1 Assume p - d1d2, that gcd(a1, d1) and gcd(a2, d2) contain only
prime factors that decompose in K , and that among the zeroes z1,
z2, z3 of T (a1 + d1T )(a2 + d2T )− 1 = 0, at least one is simple and
in Fp. Then, X (AQ) 6= ∅.

2 Suppose p - d1d2 and gcd(d1, d2) = 1. Then, for every point
(t0 : t1 : t2 : t3) ∈ X (Q), s := (t3/t0 mod p) admits the property
that a1+d1s

s is a cube in F∗p .

In particular, if a1+d1si
si
∈ F∗p is a non-cube for every i such that si ∈ Fp

then X (Q) = ∅.
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The method of the proof

Write the equation of C as l1l2l3 = NL/K (l) for linear forms l , l1, l2, l3
and L/K a cubic Galois extension. (K is an extension of Q in the
diagonal case).

Ensure that no K -rational point is contained in the three planes li = 0.
(li = 0 implies lσ1 = lσ2 = lσ3 = 0. I.e., check that the four linear
forms are linearly independent.)

Prove that, for every prime p of K , the norm residue symbol

sp := ( l1(x)
l2(x) , Lp/Kp) ∈ 1

3Z/Z

is independent of the choice of x ∈ C (Kp).

Observe that ∑
psp 6= 0 ∈ 1

3Z/Z ,

in contradiction with global class field theory.
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Manin’s interpretation

Let σ ∈ Gal(L/K ) be a generator. Then the cyclic K (C )-algebra

A = (L(C ), σ, l1
l2

) := L1⊕ Lu ⊕ Lu2,

for u a formal symbol and the relations u3 = l1
l2

as well as ux = σ(x)u for
all x ∈ L(C ), is an Azumaya algebra over K (C ).

Observation

The Azumaya algebra A extends to an Azumaya algebra over the whole
scheme C .

The reason is that ÷( l1
l2

) is the norm of a (non-principal) divisor. Observe
that (L(C ), σ, l1

l2
) and (L(C ), σ, l1

l2
·NL(C)/K(C)(ϕ)) are isomorphic algebras.
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The Brauer group

Definition

Let S be any scheme. Then the (cohomological) Brauer group of S is
defined by Br(S) := H2

ét(S ,Gm).

Remarks
1 This definition is not very explicit. In general, Brauer groups are not

easily computable.

2 One has Br(Qp) ∼= Q/Z, Br(R) ∼= 1
2Z/Z, and

Br(Q) = ker(sum:
⊕

p∈{2,3,5,...}
Br(Qp)⊕

⊕
ν : K→R

Br(R)→ Q/Z) .

3 Let α ∈ Br(S) be any Brauer class. Then, for every K -rational point
p ∈ S(K ), there is α|p ∈ Br(Spec K ).

Hence, an adelic point not fulfilling the condition that the sum zero
cannot be approximated by Q-rational points.

This is called the Brauer-Manin obstruction to weak approximation.
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The Brauer group II

The cohomological Brauer group of a variety S over a field k is equipped with
a canonical filtration, defined by the Hochschild-Serre spectral sequence.

1 Br0(S) ⊆ Br(S) is the image of Br(k) under the natural map. At least
when S has a k-rational point, Br0(S) ∼= Br(k). Br0(S) does not
contribute to the Brauer-Manin obstruction.

2 One has

Br1(S)/Br0(S) ∼= H1(Gal(ksep/k),Pic(Sksep)) .

This subquotient is called the algebraic part of the Brauer group. For k
a number field, it is responsible for the so-called algebraic Brauer-
Manin obstruction.

3 Finally, Br(S)/Br1(S) injects into Br(Sksep). This quotient is called
the transcendental part of the Brauer group. For k a number field, the
corresponding obstruction is called a transcendental Brauer-Manin ob-
struction.
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The Brauer group of a smooth cubic surface

Lemma

Let C be a smooth cubic surface over an algebraically closed field. Then
Br(C ) = 0.

Idea of proof. One has Br(P2) = 0 and a blow-up does not change the
Brauer group.

Corollary

Let C be a smooth cubic surface over a field k of characteristic zero.

Then the transcendental part Br(C )/Br1(C ) of the Brauer group van-
ishes.

The canonical map

δ : H1(Gal(k/k),Pic(Ck)) −→ Br(C )/Br(k)

is an isomorphism.
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The Brauer group of a smooth cubic surface II

Theorem (Manin 1969)

Let C be a smooth cubic surface over a field k. Then

H1(Gal(k/k),Pic(Ck)) ∼= Hom((NF ∩ F0)/NF0,Q/Z)

Here, F ⊂ Div(C ) is the subgroup generated by the 27 lines on C. F0 ⊂ F
is the subgroup of all principal divisors in F .

Thus, the Gal(k/k)-module structure on F ∼= Z27, i.e. the Galois operation
on the 27 lines, determines the Brauer group Br(C )/Br(k) completely.

Remark

Gal(k/k) permutes the 27 lines in such a way that the intersection matrix
is respected. Thus, every smooth cubic surface over k defines a homomor-
phism % : Gal(k/k) → W (E6) ⊆ S27. The subgroup im % determines the
Brauer group.
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Systematic computation

There are 350 conjugacy classes of subgroups in W (E6).

It turns out that H1(Gal(k/k),Pic(Ck)) is isomorphic to

0 for 257 classes,
Z/2Z for 65 classes,
Z/3Z for 16 classes,
(Z/2Z)2 for 11 classes,
(Z/3Z)2 for one class.

Today, this is a very simple computation using gap or magma.

The result that only these five groups occur was proven by Sir Peter
Swinnerton-Dyer in 1993.

J. Jahnel (University of Siegen) Cubic surfaces violating the Hasse principle Sydney, February/March, 2014 20 / 39



Colliot-Thélène’s conjecture

Conjecture (Colliot-Thélène 1985)

The Brauer-Manin obstruction is the only obstruction to the Hasse principle
for smooth cubic surfaces over a number field k.

For k = Q, this means that if C (AQ)Br(C) 6= ∅ then we expect C (Q) 6= ∅.

Corollary (from Colliot-Thélène’s conjecture)

Only the cases that

Br(C )/Br(k) ∼= Z/3Z or Br(C )/Br(k) ∼= Z/3Z×Z/3Z

have the potential to violate the Hasse principle.

Proof. In the other cases, all Brauer classes split after a suitable quadratic or
biquadratic extension l of k . As one may suppose C (Ak) 6= ∅, the conjecture
shows C (l) 6= ∅. But, for cubic surfaces, C (k(

√
d)) 6= ∅ =⇒ C (k) 6= ∅.
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Steiner trihedra

Definition

Let C be smooth cubic surface.

1 Three tritangent planes such that no two of them have one of the
27 lines in common are said to be a trihedron.

If there exists another trihedron defining the same nine lines then one
speaks of a Steiner trihedron.

2 A triplet (T1,T2,T3) is a decomposition of the 27 lines into three
subsets T1,T2,T3 of nine lines each such that every Ti is defined by a
Steiner trihedron.

Remarks
1 There are 72 Steiner trihedra on each smooth cubic surface, forming

36 pairs.

2 Every pair of Steiner trihedra corresponds to a way of writing C in the
Cayley-Salmon form

l1l2l3 = l4l5l6 .
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Steiner trihedra II

Proposition (E.+J. 2009)

Let C be a smooth cubic surface over a field k such that Br(C )/Br(k) has
an element of order three.

Then C has a triplet (T1,T2,T3) consisting of Galois invariant sets.

Idea of proof. Among the subgroup classes of W (E6) such that
H1(Gal(k/k),Pic(Ck)) has an element of order three, there is unique max-
imal one. That stabilizes a triplet.

Consequence

After a suitable extension of the base field, every cubic surface such that
Br(C )/Br(k) is of exponent three has the form

l1l2l3 = N(l) .
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Eckardt points

The geometry of the 27 lines on a smooth cubic surface is very rigid.

There are 45 tritangent planes. The intersection matrix is the same for all
smooth cubic surfaces.

But there are two ways a tritangent plane may look like.

Figure: An ordinary tritangent plane (left) and one with an Eckardt point (right)
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Eckardt points II

Facts (well-known in the 19th century)

A smooth cubic surface may have no, 1, 2, 3, 4, 6, 9, 10, or 18 Eckardt
points.

A generic cubic surface has no Eckardt point.
To have an Eckardt point is a codimension one condition in moduli space.
To have at least two Eckardt points is a codimension two condition in
moduli space.

The existence of an Eckardt point is equivalent to the cubic surface
having a non-trivial automorphism.
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Eckardt points III

Fact
1 The Swinnerton-Dyer-Mordell type surfaces are contained in a two-di-

mensional closed subscheme of the moduli space.

2 Diagonal cubic surfaces correspond to a single moduli point.

Idea of 1. They have three Eckardt points.

The equations are of the form

x3(a1x0 + d1x3)(a2x0 + d2x3) = NK/Q(x0 + θx1 + θ2x2) .

The three tritangent planes V (x3), V (a1x0 + d1x3), and V (a2x0 + d2x3)
have a line in common. Thus, on each of the three tritangent planes
V (x0 + θσi x1 + (θσi )2x2), the corresponding three lines meet at a single
point.

Remark

Diagonal cubic surfaces have 18 Eckardt points.
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Our family

The family

We consider the cubic surface C over Q, given by the equation

x0x1x2 = NK/Q(ax0 + bx1 + cx2 + dx3) , (1)

for K/Q a cyclic cubic field extension and a, b, c , d ∈ K .

There is only one change in comparison with the Swinnerton-Dyer-Mordell
type surfaces. The three linear forms on the left hand side are now linearly
independent.
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Inert primes

Proposition (Inert primes)

Let l be a prime that is inert in K/Q. Denote by w the unique prime of K
lying above l and assume that

a, b, c ∈ OKw , d ∈ O∗Kw
,

(a/d mod l), (b/d mod l), (c/d mod l) ∈ Fl3 are not contained in Fl .

Finally, let C denote the surface (1).

For any (t0 : t1 : t2 : t3) ∈ C (Ql) such that t0t1 6= 0, the quotient
t1/t0 ∈ Ql is in the image of the norm map N : Kw → Ql .

Idea of proof. Normalize coordinates such that t0, . . . , t3 ∈ Zl and at least
one of them is a unit. Have to show that νl(t1/t0) is divisible by three.

Assume the contrary. Then, as the equation of the surface ensures that
3|νl(t0t1t2), the values νl(ti ), for i = 0, 1, 2, must be mutually non-
congruent modulo 3.
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Inert primes II

First case: There is no unit among t0, t1, t2.
Then t3 is a unit. As d is a unit, we have that at0 + bt1 + ct2 + dt3 ∈ O∗Kw

.
Hence, NKw/Ql

(at0 + bt1 + ct2 + dt3) ∈ Z∗l , which, in view of t0t1t2 not
being a unit, contradicts the equation of the surface.

Second case: There is exactly one unit among t0, t1, t2.
Without restriction, assume that t0 is the unit. Again, t0t1t2 is not a unit.
The equation of the surface requires that NKw/Ql

(at0 + bt1 + ct2 + dt3)
must be a non-unit.

To ensure this, we need at0 + bt1 + ct2 + dt3 6∈ O∗Kw
, which means nothing

but
at0 + dt3 ≡ 0 (mod l) .

But then a/d ≡ −t3/t0 (mod l), a contradiction as the right hand side
modulo l is in Fl , but the left hand side is not.
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Ramification

Lemma

Let l 6= 3 be a prime number and consider the nodal cubic curve E over Fl ,
defined by

27x0x1x2 = (x0 + x1 + x2)3 .

Then, for every Fl -rational point (t0 : t1 : t2) on E , at least one of the
expressions t1/t0, t2/t1, and t0/t2 is properly defined and non-zero in Fl .
Further, these quotients evaluate solely to cubes in F∗l .

Idea of proof. The first assertion simply says that (1 : 0 : 0), (0 : 1 : 0),
(0 :0 :1) 6∈ E . Further, in Z[T0,T1,T2], the polynomial expression

(T 2
0 + 2T0T1 + T 2

1 + 5T0T2 − 4T1T2 − 5T 2
2 )3 + 729T0(T1 − T2)3T 2

2

splits into two factors, one of which is 27T0T1T2 − (T0 + T1 + T2)3.

For (t0 : t1 : t2) ∈ E (Fl) with t2 6= 0, we see that t0/t2 is a cube, except
possibly for the case when t1 = t2. But then the equation of the curve
shows that t0/t2 = ( t0+2t2

3t2
)3.
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Ramification II

Proposition

Let l 6= 3 be prime that is ramified in K/Q. Denote by p the unique prime
of K lying above l and assume that

• a ∈ OKp , (a mod p) = α
3 ,

• b ∈ OKp , (b mod p) = 1
3 ,

• c ∈ OKp , (c mod p) = 1
3α ,

• d ∈ p\p3.

for some non-cube α ∈ F∗l . Finally, let C denote the surface (1).

Let (t0 : t1 : t2 : t3) ∈ C (Ql) be any point. If, for 0 ≤ i < j ≤ 2, one has
ti tj 6= 0 then the quotient tj/ti ∈ Ql is not in the image of the norm map
N: Kp → Ql .

Idea of proof. The reduction of C is non-trivial twist of the nodal cu-
bic curve considered in the lemma. No l-adic point reduces to the cusp
(0 : 0 : 0 : 1).
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New counterexamples to the Hasse principle

Theorem (E.+J. 2013)

Let K = Q(ζ7 + ζ−1
7 ) and z = ζ7 + ζ−1

7 − 2. Write p for the unique prime
lying above (7). Suppose that a, b, c , d ∈ OK satisfy the following condi-
tions.

1 d splits as (d) = pp1 · . . . ·pn, where N(pi ) are prime numbers 6= (7).
I.e., (d) does not contain any inert prime and contains p exactly once.

2 a/d = 1
7 (a0 + a1z + a2z2) for ai ∈ Z and gcd(a1, a2) is a product of

only split primes.

• b/d = 1
7 (b0 + b1z + b2z2) for bi ∈ Z and gcd(b1, b2) is a product of

only split primes.

• c/d = 1
7 (c0 + c1z + c2z2) for ci ∈ Z and gcd(c1, c2) is a product of

only split primes.

3 a ≡ b (mod 6).

4 a ≡ −1 (mod p), b ≡ −2 (mod p), and c ≡ −4 (mod p).

Finally, let C denote the surface (1). Then C (AQ) 6= ∅ but C (Q) = ∅.
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New counterexamples to the Hasse principle II

Idea of proof. Step 1: Existence of l-adic points for every l .

This is clear for split primes and l =∞, as we have the form x0x1x2 = l1l2l3.

For the other primes, use Hensel’s lemma. It suffices to show that Cl has a
non-singular Fl -rational point. For this, we show that (Cl)sing is of dimension
zero. Thus, #(Cl)reg(Fl) ≥ l2 − 3l − 3 > 0 for l ≥ 5.

The assumption a ≡ b (mod 6) ensures that (1 : (−1) : 0 : 0) ∈ Cl(Fl) is
a non-singular point for l = 2, 3.

Step 2: Non-existence of Q-rational points.

Use the sum relation form from class field theory. Apply Propositions above.

Assumptions: 1
3 ≡ −2 (mod 7), α := 1

2 ≡ 4 (mod 7) is a non-cube.

l inert =⇒ a/d = 1
7 (a0 + a1z + a2z2) for a0, a1 not both divisible by l .

Hence, (a/d mod l) ∈ Fl3\Fl .
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An example

Example

Let K = Q(ζ7 + ζ−1
7 ), z := ζ7 + ζ−1

7 − 2, and let C be the cubic surface
over Q, given by the equation x0x1x2 = NK/Q(ax0 + bx1 + cx2 + dx3), for

a := −1, b := 5 + 6z2, c := 3 + z2, d := z .

Then C violates the Hasse principle.

Indeed,

1 d = z for (z) = p, (no further factors).

2 a/d = 1
7 (14 + 7z + z2),

b/d = 1
7 (−70 + 7z − 5z2),

c/d = 1
7 (−42− 14z − 3z2),

gcd(7, 1) = gcd(7,−5) = gcd(−14,−3) = 1.

3 a ≡ b (mod 6).

4 a ≡ −1 (mod z), b ≡ −2 (mod z), c ≡ −4 (mod z).
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An example II

The equation of C is, in explicit form,

x3
0 − 141x2

0 x1 − 30x2
0 x2 + 7x2

0 x3 + 4863x0x2
1 + 2233x0x1x2 − 532x0x1x3

+ 251x0x2
2 − 119x0x2x3 + 14x0x2

3 − 31499x3
1 − 26286x2

1 x2 + 6013x2
1 x3

− 6799x1x2
2 +3157x1x2x3−364x1x2

3−559x3
2 +392x2

2 x3−91x2x2
3 +7x3

3 = 0 .

C has bad reduction at 2, 3, 7, 3739, and 7589.

SF2 : binode;
SF7 : cone over a nodal cubic;
other three: conical

A minimization algorithm yields a reembedding of C as the surface, given
by the equation

−x3
0 + 2x2

0 x1 − x2
0 x2 − 5x2

0 x3 + x0x2
1 − x0x1x2 + 7x0x1x3+2x0x2

2−15x0x2x3

− 11x0x2
3−x3

1−2x2
1 x2+9x2

1 x3+x1x2
2 +x1x2

3 +x3
2 +x2

2 x3+8x2x2
3−x3

3 = 0 .
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Congruence conditions

Corollary

Let K = Q(ζ7 + ζ−1
7 ), l ≡ ±1 (mod 7) be a prime number, and ã, b̃, c̃ , d̃

be four residue classes in [OK/(l)]∗ ∼= (F∗l )3.

Then there exists a cubic surface C that is a counterexample to the Hasse
principle, of the form

x0x1x2 = NK/Q(ax0 + bx1 + cx2 + dx3) ,

for a, b, c , d ∈ OK such that (a mod (l)) = ã, . . . , (d mod (l)) = d̃ .
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Congruence conditions II

Idea of proof. This looks like infinitely many congruences . . .

d : Choose solution d ′ ∈ OK of

(d ′ mod (l)) = d̃ , d ′ ≡ z (mod (7)) .

Partial factorization (d ′) = pp1· . . . ·pn · (m′), the pi being factors in K
of split primes and m′ > 0 a product of inert primes.

Choose prime m ≡ m′ (mod l), m ≡ ±1 (mod 7), and put d := m· d ′

m′ .

c : c ≡ −4 (mod p) is equivalent to 7c/d ≡ γz2 (mod (7)) for some
γ ∈ {1, . . . , 6}. Thus choose solution c ′ = c ′0 + c ′1z + c ′2z2 ∈ OK of

(c ′ mod (l)) = 7c̃ d̃−1, c ′ ≡ γz2 (mod (7))

and put c := c ′

7 ·d .

Assure gcd(c ′1, c
′
2) = 1 by choosing c2 as a prime number.

b and a: Analogous to c .
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Zariski density

Theorem (E.+J. 2013)

The cubic surfaces over Q that are counterexamples to the Hasse principle
define a Zariski dense subset of the moduli scheme of smooth cubic surfaces.

Idea of proof. Over an algebraically closed field, every smooth cubic sur-
face may be brought into Cayley-Salmon form l1l1l3 = l4l5l6. Hence, the
morphism

p : A12 −→M

(a10, . . . , a33) 7→ [Ca : x0x1x2 = (a10x0 + . . .+ a13x3)(a20x0 + . . .+ a23x3)

(a30x0 + . . .+ a33x3)]

to the moduli scheme is dominant.

Suppose the counterexamples to the Hasse principle were contained in a
proper, Zariski closed subset H ⊂ M . Then all the counterexamples, we
constructed, must be contained in p−1(H) ⊂ A12, which is a proper, Zariski
closed subset. I.e., in a hypersurface V ⊂ A12 of a certain degree d .

Then V (Fl) ≤ dl11 for every prime l . But the counterexamples constructed
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Thanks

Thank you!!

J. Jahnel (University of Siegen) Cubic surfaces violating the Hasse principle Sydney, February/March, 2014 39 / 39


	Titlepage
	Diophantine equations
	The Hasse principle
	Cubic surfaces
	The Brauer-Manin obstruction
	New counterexamples
	Thanks

