On cubic surfaces violating the Hasse principle

Jörg Jahnel

University of Siegen

University of Sydney, February/March, 2014

joint work with Andreas-Stephan Elsenhans (University of Sydney)

Problem (Diophantine equation)

Given $f \in \mathbb{Z}[X_0, \ldots, X_n]$, describe the set

$$L(f) := \{ (x_0, \dots, x_n) \in \mathbb{Z}^{n+1} \mid f(x_0, \dots, x_n) = 0 \}$$

explicitly.

Geometric Interpretation

- Integral points on an *n*-dimensional hypersurface in \mathbf{A}^{n+1} .
- If *f* is homogeneous: Rational points on an (*n*−1)-dimensional hypersurface V_f in **P**ⁿ.

Seemingly easier problem: Decide whether L(f) is non-empty.

A statistical heuristics

Given a concrete (homogeneous) f, how many solutions do we expect?

Put
$$Q(B) := \{(x_0, \dots, x_n) \in \mathbb{Z}^{n+1} \mid |x_i| \le B\}$$
. Then
 $\#Q(B) = (2B+1)^{n+1} \sim C_1 \cdot B^{n+1}$.

On the other hand,

$$\max_{(x_0,\ldots,x_n)\in Q(B)} |f(x_0,\ldots,x_n)| \sim C_2 \cdot B^{\deg f}.$$

Heuristics

Assuming equidistribution of the values of f on Q(B), we are therefore led to expect the asymptotics

$$\#\{(x_0,\ldots,x_n)\in V_f(\mathbb{Q})\mid |x_0|,\ldots,|x_n|\leq B\}\sim C\cdot B^{n+1-\deg f}$$

for the number of solutions.

Statistical heuristics-Examples

The statistical heuristics explains the following well-known examples.

Examples

•
$$n + 1 - \deg f < 0$$
: Very few solutions
Example: $x^k + y^k = z^k$ for $k \ge 4$.

•
$$n + 1 - \deg f = 0$$
: A few solutions.
Example: $y^2 z = x^3 + 8xz^2$.
Elliptic curves.

Another example: $x^4 + 2y^4 = z^4 + 4w^4$. K3 surfaces.

•
$$n+1 - \deg f > 0$$
: Many solutions.
Example: $x^2 + y^2 = z^2$.
Conics.

Another example:
$$x^3 + y^3 + z^3 + w^3 = 0$$
.
Cubic surfaces.

If V_f is smooth then $\mathcal{O}(n+1-\deg f)|_{V_f}$ is exactly the anticanonical invertible sheaf on V_f . Thus, the three cases correspond to the three cases of the Kodaira classification.

Heuristics (Geometric interpretation)

- Kodaira-Dimension dim V_f, Varieties of general type: Very few solutions.
- Kodaira-Dimension 0, Varieties of intermediate type: A few solutions.
- Kodaira-Dimension $-\infty$, Fano varieties: Many solutions.

Two types of complications

- Unsolvability
 - Unsolvability in reals, $x^2 + y^2 + z^2 = 0.$
 - *p*-adic unsolvability, $u^3 + 2v^3 + 7w^3 + 14x^3 + 49y^3 + 98z^3 = 0.$
- "Accumulating" subvarieties:

 $x^3 + y^3 = z^3 + w^3$ defines a cubic surface V in \mathbf{P}^3 .

$$\#\{(x_0,\ldots,x_n)\in V(\mathbb{Q})\mid |x_0|,\ldots,|x_n|\leq B\}\sim C\cdot B$$

is predicted.

However, V contains the line given by x = z, y = w, on which there is quadratic growth, already.

The Hasse principle

The picture is incomplete. More complications are possible.

Hasse principle (named after Helmut Hasse)

If $V_f(\mathbb{Q}_p) \neq \emptyset$ and $V_f(\mathbb{R}) \neq \emptyset$, then $V_f(\mathbb{Q}) \neq \emptyset$.

It may happen that the Hasse principle is violated. I.e., that $V_f(\mathbb{Q}_p) \neq \emptyset$ and $V_f(\mathbb{R}) \neq \emptyset$, but nevertheless $V_f(\mathbb{Q}) = \emptyset$.

- For varieties of general type, V_f(Q) = Ø is what one expects. Thus, one does not expect the Hasse principle.
- Concerning varieties of intermediate type, genus-1-curves that are counterexamples to the Hasse principle have been constructed by C.-E. Lind (1940, $2w^2 = x_0^4 17x_1^4$) and E.S. Selmer (1951, $3x_0^3 + 4x_1^3 + 5x_2^3 = 0$).
- But given a Fano variety, one might tend to expect the Hasse principle to be true.

Theorem (Hasse-Minkowski)

Suppose f to be homogeneous of degree two. Then the Hasse principle holds for $V_{\rm f}.$

Theorem (Hardy-Littlewood)

Let $d \ge 3$ be any integer. Then there exists a constant N(d) such that $V_f(\mathbb{Q}) \ne \emptyset$ for every homogeneous form of degree d in at least N(d) variables. The Hasse principle holds trivially.

Let now f be a homogeneous cubic in four variables. Then $C := V_f \subset \mathbf{P}^3$ is a cubic surface.

Theorem (Skolem 1955)

Let $C \subset \mathbf{P}^3$ be a singular cubic surface. Then the Hasse principle holds for C.

The geometry of smooth cubic surfaces

Let $C \subset \mathbf{P}^3$ be a smooth cubic surface over an algebraically closed field. Classical algebraic geometry gives us a lot of information about such surfaces. For instance,

- C is isomorphic to \mathbf{P}^2 , blown up in six points. These are in general position.
- C contains precisely 27 lines.
- The configuration of the 27 lines is highly symmetric. The group of all permutations respecting the intersection pairing is isomorphic to the Weyl group $W(E_6)$ of order 51840.
- There is a pentahedron associated with general C (Sylvester).
- There are (at least) two kinds of moduli spaces, coming out of the classical invariant theory.
 - The coarse moduli space of smooth cubic surfaces (Salmon, Clebsch).
 - The fine moduli space of marked cubic surfaces (Cayley, Coble).

The 27 lines

Figure: The 27 lines in the blown-up model

Classical counterexamples

Theorem (Swinnerton-Dyer 1962)

Let K/\mathbb{Q} be the unique cubic field extension contained in the cyclotomic extension $\mathbb{Q}(\zeta_7)/\mathbb{Q}$. Put $\theta := \text{Tr}_{\mathbb{Q}(\zeta_7)/K}(\zeta_7 - 1)$ and let C be the cubic surface, given by

$$\begin{aligned} x_3(x_0+x_3)(x_0+2x_3) &= \mathsf{N}_{\mathcal{K}/\mathbb{Q}} \left(x_0 + \theta x_1 + \theta^2 x_2 \right) \\ &= x_0^3 - 7x_0^2 x_1 + 21x_0^2 x_2 + 14x_0 x_1^2 - 77x_0 x_1 x_2 \\ &+ 98x_0 x_2^2 - 7x_1^3 + 49x_1^2 x_2 - 98x_1 x_2^2 + 49x_2^3 \,. \end{aligned}$$

Then C violates the Hasse principle.

Remark

Swinnerton-Dyer's example was soon generalized by L. J. Mordell. He gave two families of counterexamples, one using norm forms from the cubic subfield of $\mathbb{Q}(\zeta_7)$, the other from the cubic subfield of $\mathbb{Q}(\zeta_{13})$.

The three linear forms on the left hand side were always linearly dependent.

Theorem (Cassels/Guy 1966)

Let C be the cubic surface given by

$$5x_0^3 + 12x_1^3 + 9x_2^3 + 10x_3^3 = 0.$$

Then C violates the Hasse principle.

Remark

This is the historically first example of a diagonal cubic surface violating the Hasse principle.

The arithmetic of diagonal cubic surfaces was systematically investigated by J.-L. Colliot-Thélène, D. Kanevsky, and J.-J. Sansuc in 1985. More counterexamples to the Hasse principle were found, but also evidence that a general diagonal cubic surface fulfills the Hasse principle (but not weak approximation).

Theorem (J. 2007)

Let $p \equiv 1 \pmod{3}$ be any prime, K the cubic subfield of $\mathbb{Q}(\zeta_p)$, and $\theta := \operatorname{Tr}_{\mathbb{Q}(\zeta_p)/K}(\zeta_p - 1)$. For a_1, a_2, d_1, d_2 integers, consider the cubic surface $X \subset \mathbf{P}_{\mathbb{Q}}^3$, given by

 $x_3(a_1x_0 + d_1x_3)(a_2x_0 + d_2x_3) = \mathsf{N}_{K/\mathbb{Q}}(x_0 + \theta x_1 + \theta^2 x_2).$

Assume p ∤ d₁d₂, that gcd(a₁, d₁) and gcd(a₂, d₂) contain only prime factors that decompose in K, and that among the zeroes z₁, z₂, z₃ of T(a₁ + d₁T)(a₂ + d₂T) - 1 = 0, at least one is simple and in 𝔽_p. Then, X(𝔼_Q) ≠ Ø.

Suppose p ∤ d₁d₂ and gcd(d₁, d₂) = 1. Then, for every point (t₀ : t₁ : t₂ : t₃) ∈ X(Q), s := (t₃/t₀ mod p) admits the property that a<sub>1+d₁s</sup>/s is a cube in F^{*}_p. In particular, if a<sub>1+d₁s_i/s_i ∈ F^{*}_p is a non-cube for every i such that s_i ∈ F_p then X(Q) = Ø.
</sub></sub>

The method of the proof

- Write the equation of C as $l_1 l_2 l_3 = N_{L/K}(I)$ for linear forms I, l_1, l_2, l_3 and L/K a cubic Galois extension. (K is an extension of \mathbb{Q} in the diagonal case).
- Ensure that no K-rational point is contained in the three planes $l_i = 0$. $(l_i = 0 \text{ implies } l^{\sigma_1} = l^{\sigma_2} = l^{\sigma_3} = 0$. I.e., check that the four linear forms are linearly independent.)
- Prove that, for every prime p of K, the norm residue symbol

$$s_{\mathfrak{p}} := (rac{h_1(x)}{h_2(x)}, L_{\mathfrak{p}}/K_{\mathfrak{p}}) \in rac{1}{3}\mathbb{Z}/\mathbb{Z}$$

is independent of the choice of $x \in C(K_p)$.

Observe that

$$\sum_{\mathfrak{p}} s_{\mathfrak{p}} \neq 0 \in \frac{1}{3}\mathbb{Z}/\mathbb{Z} \,,$$

in contradiction with global class field theory.

Let $\sigma \in Gal(L/K)$ be a generator. Then the cyclic K(C)-algebra

$$\mathscr{A} = (L(C), \sigma, \frac{h_1}{l_2}) := L1 \oplus Lu \oplus Lu^2,$$

for *u* a formal symbol and the relations $u^3 = \frac{h}{l_2}$ as well as $ux = \sigma(x)u$ for all $x \in L(C)$, is an Azumaya algebra over K(C).

Observation

The Azumaya algebra \mathscr{A} extends to an Azumaya algebra over the whole scheme C.

The reason is that $\div(\frac{h}{l_2})$ is the norm of a (non-principal) divisor. Observe that $(L(C), \sigma, \frac{h}{l_2})$ and $(L(C), \sigma, \frac{h}{l_2} \cdot N_{L(C)/K(C)}(\varphi))$ are isomorphic algebras.

The Brauer group

Definition

Let S be any scheme. Then the (cohomological) Brauer group of S is defined by $Br(S) := H^2_{\text{ét}}(S, \mathbb{G}_m)$.

Remarks

- This definition is not very explicit. In general, Brauer groups are not easily computable.
- ${f O}$ One has ${\sf Br}({\Bbb Q}_p)\cong {\Bbb Q}/{\Bbb Z}$, ${\sf Br}({\Bbb R})\cong {1\over 2}{\Bbb Z}/{\Bbb Z}$, and

$$\mathsf{Br}(\mathbb{Q}) = \mathsf{ker}(\mathsf{sum} : \bigoplus_{p \in \{2,3,5,\ldots\}} \mathsf{Br}(\mathbb{Q}_p) \oplus \bigoplus_{\nu : K \to \mathbb{R}} \mathsf{Br}(\mathbb{R}) \to \mathbb{Q}/\mathbb{Z}).$$

Let α ∈ Br(S) be any Brauer class. Then, for every K-rational point p ∈ S(K), there is α|_p ∈ Br(Spec K).

Hence, an adelic point *not* fulfilling the condition that the sum zero cannot be approximated by $\mathbb{Q}\text{-rational points.}$

This is called the Brauer-Manin obstruction to weak approximation.

The Brauer group II

The cohomological Brauer group of a variety S over a field k is equipped with a canonical filtration, defined by the Hochschild-Serre spectral sequence.

• $\operatorname{Br}_0(S) \subseteq \operatorname{Br}(S)$ is the image of $\operatorname{Br}(k)$ under the natural map. At least when S has a k-rational point, $\operatorname{Br}_0(S) \cong \operatorname{Br}(k)$. $\operatorname{Br}_0(S)$ does not contribute to the Brauer-Manin obstruction.

One has

$$\operatorname{Br}_1(S)/\operatorname{Br}_0(S) \cong H^1(\operatorname{Gal}(k^{\operatorname{sep}}/k),\operatorname{Pic}(S_{k^{\operatorname{sep}}})).$$

This subquotient is called the algebraic part of the Brauer group. For k a number field, it is responsible for the so-called *algebraic* Brauer-Manin obstruction.

• Finally, $Br(S)/Br_1(S)$ injects into $Br(S_{k^{sep}})$. This quotient is called the transcendental part of the Brauer group. For k a number field, the corresponding obstruction is called a *transcendental* Brauer-Manin obstruction.

The Brauer group of a smooth cubic surface

Lemma

Let C be a smooth cubic surface over an algebraically closed field. Then Br(C) = 0.

Idea of proof. One has $\mathsf{Br}(\mathbf{P}^2)=0$ and a blow-up does not change the Brauer group.

Corollary

Let C be a smooth cubic surface over a field k of characteristic zero.

- Then the transcendental part Br(C) / Br₁(C) of the Brauer group vanishes.
- The canonical map

$$\delta \colon H^1(\operatorname{Gal}(\overline{k}/k), \operatorname{Pic}(C_{\overline{k}})) \longrightarrow \operatorname{Br}(C)/\operatorname{Br}(k)$$

is an isomorphism.

The Brauer group of a smooth cubic surface II

Theorem (Manin 1969)

Let C be a smooth cubic surface over a field k. Then

 $H^{1}(\operatorname{Gal}(\overline{k}/k),\operatorname{Pic}(C_{\overline{k}})) \cong \operatorname{Hom}((NF \cap F_{0})/NF_{0}, \mathbb{Q}/\mathbb{Z})$

Here, $F \subset Div(C)$ is the subgroup generated by the 27 lines on C. $F_0 \subset F$ is the subgroup of all principal divisors in F.

Thus, the Gal(\overline{k}/k)-module structure on $F \cong \mathbb{Z}^{27}$, i.e. the Galois operation on the 27 lines, determines the Brauer group Br(C)/Br(k) completely.

Remark

 $\operatorname{Gal}(\overline{k}/k)$ permutes the 27 lines in such a way that the intersection matrix is respected. Thus, every smooth cubic surface over k defines a homomorphism ϱ : $\operatorname{Gal}(\overline{k}/k) \to W(E_6) \subseteq S_{27}$. The subgroup im ϱ determines the Brauer group.

There are 350 conjugacy classes of subgroups in $W(E_6)$.

```
It turns out that H^1(Gal(\overline{k}/k), Pic(C_{\overline{k}})) is isomorphic to

0 for 257 classes,

\mathbb{Z}/2\mathbb{Z} for 65 classes,

\mathbb{Z}/3\mathbb{Z} for 16 classes,

(\mathbb{Z}/2\mathbb{Z})^2 for 11 classes,

(\mathbb{Z}/3\mathbb{Z})^2 for one class.
```

Today, this is a very simple computation using gap or magma. The result that only these five groups occur was proven by Sir Peter Swinnerton-Dyer in 1993.

Conjecture (Colliot-Thélène 1985)

The Brauer-Manin obstruction is the only obstruction to the Hasse principle for smooth cubic surfaces over a number field k.

For $k = \mathbb{Q}$, this means that if $C(\mathbb{A}_{\mathbb{Q}})^{\mathsf{Br}(C)} \neq \emptyset$ then we expect $C(\mathbb{Q}) \neq \emptyset$.

Corollary (from Colliot-Thélène's conjecture)

Only the cases that

 $\operatorname{Br}(C)/\operatorname{Br}(k)\cong \mathbb{Z}/3\mathbb{Z}$ or $\operatorname{Br}(C)/\operatorname{Br}(k)\cong \mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}$

have the potential to violate the Hasse principle.

Proof. In the other cases, all Brauer classes split after a suitable quadratic or biquadratic extension *l* of *k*. As one may suppose $C(\mathbb{A}_k) \neq \emptyset$, the conjecture shows $C(l) \neq \emptyset$. But, for cubic surfaces, $C(k(\sqrt{d})) \neq \emptyset \Longrightarrow C(k) \neq \emptyset$. \Box

Steiner trihedra

Definition

- Let C be smooth cubic surface.
 - Three tritangent planes such that no two of them have one of the 27 lines in common are said to be a *trihedron*.

If there exists another trihedron defining the same nine lines then one speaks of a *Steiner trihedron*.

2 A *triplet* (T_1, T_2, T_3) is a decomposition of the 27 lines into three subsets T_1, T_2, T_3 of nine lines each such that every T_i is defined by a Steiner trihedron.

Remarks

- There are 72 Steiner trihedra on each smooth cubic surface, forming 36 pairs.
- Every pair of Steiner trihedra corresponds to a way of writing C in the Cayley-Salmon form

$$l_1 l_2 l_3 = l_4 l_5 l_6 \, .$$

Proposition (E.+J. 2009)

Let C be a smooth cubic surface over a field k such that Br(C)/Br(k) has an element of order three.

Then C has a triplet (T_1, T_2, T_3) consisting of Galois invariant sets.

Idea of proof. Among the subgroup classes of $W(E_6)$ such that $H^1(\text{Gal}(\overline{k}/k), \text{Pic}(C_{\overline{k}}))$ has an element of order three, there is unique maximal one. That stabilizes a triplet.

Consequence

After a suitable extension of the base field, every cubic surface such that Br(C)/Br(k) is of exponent three has the form

$$l_1 l_2 l_3 = \mathsf{N}(l) \,.$$

Eckardt points

The geometry of the 27 lines on a smooth cubic surface is very rigid.

There are 45 tritangent planes. The intersection matrix is the same for all smooth cubic surfaces.

But there are two ways a tritangent plane may look like.

Figure: An ordinary tritangent plane (left) and one with an Eckardt point (right)

Facts (well-known in the 19th century)

- A smooth cubic surface may have no, 1, 2, 3, 4, 6, 9, 10, or 18 Eckardt points.
 - A generic cubic surface has no Eckardt point.
 - To have an Eckardt point is a codimension one condition in moduli space.
 - To have at least two Eckardt points is a codimension two condition in moduli space.
- The existence of an Eckardt point is equivalent to the cubic surface having a non-trivial automorphism.

Eckardt points III

Fact

- The Swinnerton-Dyer-Mordell type surfaces are contained in a two-dimensional closed subscheme of the moduli space.
- 2 Diagonal cubic surfaces correspond to a single moduli point.

Idea of 1. They have three Eckardt points. The equations are of the form

$$x_3(a_1x_0 + d_1x_3)(a_2x_0 + d_2x_3) = \mathsf{N}_{K/\mathbb{Q}}(x_0 + \theta x_1 + \theta^2 x_2).$$

The three tritangent planes $V(x_3)$, $V(a_1x_0 + d_1x_3)$, and $V(a_2x_0 + d_2x_3)$ have a line in common. Thus, on each of the three tritangent planes $V(x_0 + \theta^{\sigma_i}x_1 + (\theta^{\sigma_i})^2x_2)$, the corresponding three lines meet at a single point.

Remark

Diagonal cubic surfaces have 18 Eckardt points.

The family

We consider the cubic surface C over \mathbb{Q} , given by the equation

$$x_0 x_1 x_2 = \mathsf{N}_{K/\mathbb{Q}} (a x_0 + b x_1 + c x_2 + d x_3), \qquad (1)$$

for K/\mathbb{Q} a cyclic cubic field extension and $a, b, c, d \in K$.

There is only one change in comparison with the Swinnerton-Dyer-Mordell type surfaces. The three linear forms on the left hand side are now linearly independent.

Proposition (Inert primes)

Let I be a prime that is inert in K/\mathbb{Q} . Denote by w the unique prime of K lying above I and assume that

•
$$a, b, c \in \mathscr{O}_{K_w}$$
, $d \in \mathscr{O}_{K_w}^*$,

• $(a/d \mod I), (b/d \mod I), (c/d \mod I) \in \mathbb{F}_{l^3}$ are not contained in \mathbb{F}_l .

Finally, let C denote the surface (1).

For any $(t_0 : t_1 : t_2 : t_3) \in C(\mathbb{Q}_l)$ such that $t_0t_1 \neq 0$, the quotient $t_1/t_0 \in \mathbb{Q}_l$ is in the image of the norm map $N : K_w \to \mathbb{Q}_l$.

Idea of proof. Normalize coordinates such that $t_0, \ldots, t_3 \in \mathbb{Z}_l$ and at least one of them is a unit. Have to show that $\nu_l(t_1/t_0)$ is divisible by three. Assume the contrary. Then, as the equation of the surface ensures that $3|\nu_l(t_0t_1t_2)$, the values $\nu_l(t_i)$, for i = 0, 1, 2, must be mutually non-congruent modulo 3. *First case:* There is no unit among t_0, t_1, t_2 .

Then t_3 is a unit. As d is a unit, we have that $at_0 + bt_1 + ct_2 + dt_3 \in \mathscr{O}_{K_w}^*$. Hence, $N_{K_w/\mathbb{Q}_l}(at_0 + bt_1 + ct_2 + dt_3) \in \mathbb{Z}_l^*$, which, in view of $t_0t_1t_2$ not being a unit, contradicts the equation of the surface.

Second case: There is exactly one unit among t_0, t_1, t_2 .

Without restriction, assume that t_0 is the unit. Again, $t_0t_1t_2$ is not a unit. The equation of the surface requires that $N_{K_w/\mathbb{Q}_I}(at_0 + bt_1 + ct_2 + dt_3)$ must be a non-unit.

To ensure this, we need $at_0 + bt_1 + ct_2 + dt_3 \notin \mathscr{O}^*_{K_w}$, which means nothing but

$$at_0 + dt_3 \equiv 0 \pmod{l}$$
.

But then $a/d \equiv -t_3/t_0 \pmod{l}$, a contradiction as the right hand side modulo l is in \mathbb{F}_l , but the left hand side is not.

Ramification

Lemma

Let $I \neq 3$ be a prime number and consider the nodal cubic curve E over \mathbb{F}_{I} , defined by

$$27x_0x_1x_2 = (x_0 + x_1 + x_2)^3.$$

Then, for every \mathbb{F}_l -rational point $(t_0 : t_1 : t_2)$ on E, at least one of the expressions t_1/t_0 , t_2/t_1 , and t_0/t_2 is properly defined and non-zero in \mathbb{F}_l . Further, these quotients evaluate solely to cubes in \mathbb{F}_l^* .

Idea of proof. The first assertion simply says that (1:0:0), (0:1:0), $(0:0:1) \notin E$. Further, in $\mathbb{Z}[T_0, T_1, T_2]$, the polynomial expression

$$(T_0^2 + 2T_0T_1 + T_1^2 + 5T_0T_2 - 4T_1T_2 - 5T_2^2)^3 + 729T_0(T_1 - T_2)^3T_2^2$$

splits into two factors, one of which is $27T_0T_1T_2 - (T_0 + T_1 + T_2)^3$. For $(t_0: t_1: t_2) \in E(\mathbb{F}_l)$ with $t_2 \neq 0$, we see that t_0/t_2 is a cube, except possibly for the case when $t_1 = t_2$. But then the equation of the curve shows that $t_0/t_2 = (\frac{t_0+2t_2}{3t_2})^3$.

Ramification II

Proposition

Let $I \neq 3$ be prime that is ramified in K/\mathbb{Q} . Denote by \mathfrak{p} the unique prime of K lying above I and assume that

- $a \in \mathscr{O}_{K_{\mathfrak{p}}}, (a \mod \mathfrak{p}) = \frac{\alpha}{3}$,
- $b \in \mathscr{O}_{K_{\mathfrak{p}}}, (b \mod \mathfrak{p}) = \frac{1}{3}$,
- $c \in \mathscr{O}_{K_{\mathfrak{p}}}, (c \mod \mathfrak{p}) = \frac{1}{3\alpha}$,
- $d \in \mathfrak{p} \setminus \mathfrak{p}^3$.

for some non-cube $\alpha \in \mathbb{F}_{l}^{*}$. Finally, let C denote the surface (1).

Let $(t_0: t_1: t_2: t_3) \in C(\mathbb{Q}_l)$ be any point. If, for $0 \le i < j \le 2$, one has $t_i t_j \ne 0$ then the quotient $t_j/t_i \in \mathbb{Q}_l$ is not in the image of the norm map $N: K_p \rightarrow \mathbb{Q}_l$.

Idea of proof. The reduction of *C* is non-trivial twist of the nodal cubic curve considered in the lemma. No *I*-adic point reduces to the cusp (0:0:0:1).

New counterexamples to the Hasse principle

Theorem (E.+J. 2013)

Let $K = \mathbb{Q}(\zeta_7 + \zeta_7^{-1})$ and $z = \zeta_7 + \zeta_7^{-1} - 2$. Write \mathfrak{p} for the unique prime lying above (7). Suppose that $a, b, c, d \in \mathcal{O}_K$ satisfy the following conditions.

- d splits as (d) = pp₁·...·p_n, where N(p_i) are prime numbers ≠ (7).
 I.e., (d) does not contain any inert prime and contains p exactly once.
- 3 $a/d = \frac{1}{7}(a_0 + a_1z + a_2z^2)$ for $a_i \in \mathbb{Z}$ and $gcd(a_1, a_2)$ is a product of only split primes.
- $b/d = \frac{1}{7}(b_0 + b_1z + b_2z^2)$ for $b_i \in \mathbb{Z}$ and $gcd(b_1, b_2)$ is a product of only split primes.
- $c/d = \frac{1}{7}(c_0 + c_1z + c_2z^2)$ for $c_i \in \mathbb{Z}$ and $gcd(c_1, c_2)$ is a product of only split primes.
- $a \equiv b \pmod{6}.$
- $a \equiv -1 \pmod{\mathfrak{p}}, \ b \equiv -2 \pmod{\mathfrak{p}}, \ and \ c \equiv -4 \pmod{\mathfrak{p}}.$

Finally, let C denote the surface (1). Then $C(\mathbb{A}_{\mathbb{Q}}) \neq \emptyset$ but $C(\mathbb{Q}) = \emptyset$.

Idea of proof. Step 1: Existence of *I*-adic points for every *I*.

This is clear for split primes and $I = \infty$, as we have the form $x_0x_1x_2 = l_1l_2l_3$.

For the other primes, use Hensel's lemma. It suffices to show that C_l has a non-singular \mathbb{F}_l -rational point. For this, we show that $(C_l)_{sing}$ is of dimension zero. Thus, $\#(C_l)_{reg}(\mathbb{F}_l) \ge l^2 - 3l - 3 > 0$ for $l \ge 5$.

The assumption $a \equiv b \pmod{6}$ ensures that $(1 : (-1) : 0 : 0) \in C_l(\mathbb{F}_l)$ is a non-singular point for l = 2, 3.

Step 2: Non-existence of Q-rational points.

Use the sum relation form from class field theory. Apply Propositions above. Assumptions: $\frac{1}{2} \equiv -2 \pmod{7}$, $\alpha := \frac{1}{2} \equiv 4 \pmod{7}$ is a non-cube.

 $I \text{ inert} \implies a/d = \frac{1}{7}(a_0 + a_1z + a_2z^2) \text{ for } a_0, a_1 \text{ not both divisible by } I.$ Hence, $(a/d \mod I) \in \mathbb{F}_{I^3} \setminus \mathbb{F}_I.$

An example

Example

Let $K = \mathbb{Q}(\zeta_7 + \zeta_7^{-1})$, $z := \zeta_7 + \zeta_7^{-1} - 2$, and let *C* be the cubic surface over \mathbb{Q} , given by the equation $x_0x_1x_2 = N_{K/\mathbb{Q}}(ax_0 + bx_1 + cx_2 + dx_3)$, for

$$a:=-1, \quad b:=5+6z^2, \quad c:=3+z^2, \quad d:=z.$$

Then C violates the Hasse principle.

Indeed,

d = z for
$$(z) = \mathfrak{p}$$
, (no further factors).
 $a/d = \frac{1}{7}(14 + 7z + z^2)$,
 $b/d = \frac{1}{7}(-70 + 7z - 5z^2)$,
 $c/d = \frac{1}{7}(-42 - 14z - 3z^2)$,
 $gcd(7, 1) = gcd(7, -5) = gcd(-14, -3) = 1$.
 $a \equiv b \pmod{6}$.
 $a \equiv -1 \pmod{2}$,
 $b \equiv -2 \pmod{2}$,
 $c \equiv -4 \pmod{2}$.

An example II

The equation of C is, in explicit form,

$$\begin{split} & x_0^3 - 141x_0^2x_1 - 30x_0^2x_2 + 7x_0^2x_3 + 4863x_0x_1^2 + 2233x_0x_1x_2 - 532x_0x_1x_3 \\ & + 251x_0x_2^2 - 119x_0x_2x_3 + 14x_0x_3^2 - 31499x_1^3 - 26286x_1^2x_2 + 6013x_1^2x_3 \\ & - 6799x_1x_2^2 + 3157x_1x_2x_3 - 364x_1x_3^2 - 559x_2^3 + 392x_2^2x_3 - 91x_2x_3^2 + 7x_3^3 = 0 \,. \end{split}$$

 ${\it C}$ has bad reduction at 2, 3, 7, 3739, and 7589.

 $S_{\mathbb{F}_2}$: binode; $S_{\mathbb{F}_7}$: cone over a nodal cubic; other three: conical

A minimization algorithm yields a reembedding of C as the surface, given by the equation

$$-x_0^3 + 2x_0^2x_1 - x_0^2x_2 - 5x_0^2x_3 + x_0x_1^2 - x_0x_1x_2 + 7x_0x_1x_3 + 2x_0x_2^2 - 15x_0x_2x_3 - 11x_0x_3^2 - x_1^3 - 2x_1^2x_2 + 9x_1^2x_3 + x_1x_2^2 + x_1x_3^2 + x_2^3 + x_2^2x_3 + 8x_2x_3^2 - x_3^3 = 0.$$

Corollary

Let $K = \mathbb{Q}(\zeta_7 + \zeta_7^{-1})$, $l \equiv \pm 1 \pmod{7}$ be a prime number, and $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d}$ be four residue classes in $[\mathscr{O}_K/(l)]^* \cong (\mathbb{F}_l^*)^3$.

Then there exists a cubic surface C that is a counterexample to the Hasse principle, of the form

$$x_0x_1x_2 = \mathsf{N}_{\mathcal{K}/\mathbb{Q}}(ax_0 + bx_1 + cx_2 + dx_3),$$

for $a, b, c, d \in \mathscr{O}_K$ such that $(a \mod (I)) = \widetilde{a}, \ldots, (d \mod (I)) = \widetilde{d}$.

Congruence conditions II

Idea of proof. This looks like infinitely many congruences ...

• d: Choose solution $d' \in \mathscr{O}_K$ of

$$(d' \mod (I)) = \widetilde{d}, \quad d' \equiv z \pmod{(7)}.$$

Partial factorization $(d') = \mathfrak{p}\mathfrak{p}_1 \cdot \ldots \cdot \mathfrak{p}_n \cdot (m')$, the \mathfrak{p}_i being factors in K of split primes and m' > 0 a product of inert primes.

Choose prime $m \equiv m' \pmod{l}$, $m \equiv \pm 1 \pmod{7}$, and put $d := m \cdot \frac{d'}{m'}$.

• $c: c \equiv -4 \pmod{\mathfrak{p}}$ is equivalent to $7c/d \equiv \gamma z^2 \pmod{(7)}$ for some $\gamma \in \{1, \ldots, 6\}$. Thus choose solution $c' = c'_0 + c'_1 z + c'_2 z^2 \in \mathscr{O}_K$ of

$$(c' \mod (I)) = 7\widetilde{c}\widetilde{d}^{-1}, \quad c' \equiv \gamma z^2 \pmod{(7)}$$

and put $c := \frac{c'}{7} \cdot d$. Assure $gcd(c'_1, c'_2) = 1$ by choosing c_2 as a prime number. • *b* and *a*: Analogous to *c*.

Zariski density

Theorem (E.+J. 2013)

The cubic surfaces over \mathbb{Q} that are counterexamples to the Hasse principle define a Zariski dense subset of the moduli scheme of smooth cubic surfaces.

Idea of proof. Over an algebraically closed field, every smooth cubic surface may be brought into Cayley-Salmon form $l_1 l_1 l_3 = l_4 l_5 l_6$. Hence, the morphism

$$p: \mathbf{A}^{12} \longrightarrow \mathscr{M}$$

(a₁₀,..., a₃₃) $\mapsto [C_a: x_0x_1x_2 = (a_{10}x_0 + \ldots + a_{13}x_3)(a_{20}x_0 + \ldots + a_{23}x_3)(a_{30}x_0 + \ldots + a_{33}x_3)]$
(a₃₀x₀ + ... + a₃₃x₃)]

to the moduli scheme is dominant.

Suppose the counterexamples to the Hasse principle were contained in a proper, Zariski closed subset $H \subset \mathcal{M}$. Then all the counterexamples, we constructed, must be contained in $p^{-1}(H) \subset \mathbf{A}^{12}$, which is a proper, Zariski closed subset. I.e., in a hypersurface $V \subset \mathbf{A}^{12}$ of a certain degree d. Then $V(\mathbb{F}_l) \leq dl^{11}$ for every prime l. But the counterexamples constructed

J. Jahnel (University of Siegen) Cubic surfaces violating the Hasse principle Sydney, February/March, 2014 38 / 39

Thank you!!