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K3 surfaces

Definition (abstract definition – classification of algebraic surfaces)

A K 3 surface is a simply connected, projective algebraic surface having a
global (algebraic, holomorphic) 2-form without zeroes or poles.

Facts

For X a K 3 surface, π1(X , .) = 0 and H2(X ,Z) ∼= H2(X ,Z) ∼= Z22.

Examples

1 A smooth quartic in P3.

2 A double cover of P2, ramified at a smooth sextic curve.

Sextics with ordinary double points may be taken, too. Then the res-
olution of singularities is a K 3 surface.

In this talk, we work with K 3 surfaces that are double covers of P2, ramified
over six lines in P2.
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Point counting – An experiment

Consider a “random” example and a very particular one
X1 : w2 = x6 + 2y6 + 3z6 + 5x2y4 + 7xy2z3 + 3y5z + x3z3

X2 : w2 = (−y2 + 8yz − 8z2)(7x2 + 40xz + 56z2)(2x2 + 3xy + y2) .

p (#X1(Fp) mod p) (#X2(Fp) mod p)

23 19 18
29 7 1
31 7 7
37 0 1
41 7 1
43 5 1
47 11 19
53 47 1
59 28 1
61 44 1
67 54 1
71 23 34
73 11 0
79 41 27
83 57 1
89 46 3
97 28 52
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Point counting – An experiment II

Observations
1 In the “random” example X1, there is no regularity to be seen.

2 In example X2, however, we observe that

#X2(Fp) ≡ 1 (mod p)

for all primes p ≡ 3, 5 (mod 8).

Remarks

One also has #X2(F41) ≡ 1 (mod 41), which is purely accidental.

The bound of 100 is just for the presentation, one may easily extend
it, at least up to 1000.

The primes p ≡ 3, 5 (mod 8) are exactly those that are inert inQ(
√

2).
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Recall from the theory of elliptic curves

Fact (An arithmetic consequence of CM)

Let X be an elliptic curve with complex multiplication (CM) by E = Q(
√

d).
Then #X (Fp) ≡ 1 (mod p) for every prime p that is inert in E .

−2 2

1
2

0
−2 2

1
2

0

Figure: Distribution of
#X (Fp)−p−1√

p for p →∞
for an ordinary elliptic curve (left) and a CM elliptic curve (right)

The spike has area 1
2 (!!).
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Our original motivation – Picard ranks

Fact

Let X be a K 3 surface over Q and p a prime of good reduction. Then

rk Pic XQ ≤ rk Pic XFp
.

Theorem (F. Charles, 2012)

Let X be a K 3 surface over Q.

1 If X has real multiplication and (22− rk Pic XQ)/[E : Q] is odd then,
for every prime p of good reduction,

rk Pic XQ + [E : Q] ≤ rk Pic XFp

2 Otherwise, there exists a prime p of good reduction such that

rk Pic XFp
= rk Pic XQ or rk Pic XFp

= rk Pic XQ + 1 .
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Hodge structures

Definition (P. Deligne, 1971)

1 A (pureQ-)Hodge structure of weight i is a finite dimensionalQ-vector
space V , together with a decomposition

VC := V⊗QC = H0,i ⊕ H1,i−1 ⊕ . . .⊕ H i−1,1 ⊕ H i ,0

such that Hm,n = Hn,m for every m, n ∈ Z≥0, m + n = i .
2 A polarisation on a pure Q-Hodge structure V of even weight is a

nondegenerate symmetric bilinear form 〈., .〉 : V × V → Q such that
its C-bilinear extension 〈., .〉 : VC × VC → C satisfies the two condi-
tions below.

One has 〈x , y〉 = 0 for all x ∈ Hm,n and y ∈ Hm′,n′
such that m 6= n′.

The inequality im−n〈x , x〉 > 0 is true for every 0 6= x ∈ Hm,n.

Facts
1 Hodge structures of weight i form an abelian category.

2 Every polarisable Hodge structure is a direct sum of primitive ones.
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Hodge structures II

Definition (Yu. Zarhin, 1983)

A Hodge structure of K 3 type is a primitive polarisable Hodge structure of
weight 2 such that dimC H2,0 = 1.

Examples

Let X be a compact complex manifold that is Kähler.

1 Then H j(X ,Q) is naturally a polarisable pure Q-Hodge structure of
weight j . [The polarisation is induced by the cup product.]

2 For X a K 3 surface, the transcendental part

T := (Pic X⊗ZQ)⊥ ⊂ H2(X ,Q)

is a Hodge structure of K 3 type.
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Real and complex multiplication

Theorem (Yu. Zarhin, 1983)

Let T be a Hodge structure of K 3 type.

1 Then E := End(T ) is either a totally real field or a CM field.

2 Thereby, every ϕ ∈ E operates as a self-adjoint mapping. I.e.,

〈ϕ(x), y〉 = 〈x , ϕ(y)〉 ,

for the identity map in the case that E is totally real and the complex
conjugation in the case that it is a CM field.

Definition

If E % Q then one speaks of real multiplication when E is totally real and
of complex multiplication when E is CM.
[The same terminology, applied to a K 3 surface, means that the associated
Hodge structure T has real or complex multiplication.]
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RM on K3 surfaces

The difference (Recall)

For X an elliptic curve, one considers End(H), for H := H1(X (C),Q).

For X a K 3 surface, consider End(T ), for T := P⊥ the transcendental
part of H2(X (C),Q).

Questions

Can one construct K 3 surfaces having real multiplication?

How many K 3 surfaces have real multiplication? I.e., what is the di-
mension of the corresponding locus in moduli space?

Are there K 3 surfaces defined over Q that have real multiplication?
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K3 surfaces having CM due to an automorphism

Examples

X : w2 = f6(x , y , z)

with f6(x , y ,−z) = −f6(x , y , z) or f6(y , x , z) = −f6(x , y , z).
Automorphism

I : (w , x :y :z) 7→ (ζ4w , x :y :−z) or
I : (w , x :y :z) 7→ (ζ4w , y :x :z) .

CM with Q(
√
−1).

with f6(x , y , z) = ζ3f6(y , z , x). Automorphism

I : (w , x :y :z) 7→ (ζ6w , y :z :x) .

CM with Q(
√
−3).

[There are similar examples of degrees 4 and 6.]

The Lefschetz trace formula shows that I ◦I [resp. I ◦I ◦I ] acts on the tran-
scendental part T ⊂ H2(X (C),Q) non-trivially, with the only eigenvalue
(−1). It does so on the [dim 21] orthogonal complement of the inverse
image of a general line on P2.
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The period space

Definition

By a marked K 3 surface, we mean a complex K 3 surface together with an
isomorphism i : Z22 −→ H2(X ,Z).

Notation

The marking i : Z22 → H2(X ,Z) determines ck := i(ek) ∈ H2(X ,Z),
for k = 1, . . . , 22, which form a basis of H2(X ,Z).

The dual basis (c1, . . . , c22) of H2(X ,Z), is given by (ck , c
j) = δkj , for

(. , .) : H2(X ,Z)× H2(X ,Z)→ Z the cup product pairing.

Moreover, as the pull-back of the cup product pairing via i , the marking
distinguishes a perfect, symmetric pairing on Z22.

Given any c ∈ H2(X ,C), there is the canonical decomposition

c = (c1, c)c1 + · · ·+ (c22, c)c22 ,

of c with respect to i .
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The period space II

Definition

A marked K 3 surface (X , i) gives rise to a point

τ(X , i) := ((c1, [ω]) : · · · : (c22, [ω])) ∈ P21(C) ,

called the period point of (X , i).

Here, [ω] ∈ H2(X ,C) is the nowhere vanishing holomorphic (2, 0)-form,
uniquely determined up to scaling.

Theorem (I.R. Shafarevich, ≈1965)

Let κ be a perfect pairing on Z22.

1 Let (X1, i1) and (X2, i2) be marked K 3 surfaces inducing the pairing κ
on Z22 and having the same period point. Then (X1, i1) and (X2, i2)
are isomorphic.

2 The set of the period points of all marked K 3 surfaces inducing the pair-
ing κ is Ωκ :=

{
(x1 : · · · : x22) ∈ P21(C) | κ(x , x) = 0, κ(x , x) > 0

}
.

This is an open subset of a quadric in P21(C).
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The period space III

Fact (The relative situation)

Let q : (X, i) → Y be a family of marked K3 surfaces. Then the period
mapping τ : Y → P21(C), t 7→ τ(Xt , it), is holomorphic.

Fact (Restricted period space)

Let r ∈ {1, . . . , 20} be an integer and κ a perfect pairing on Z22. Then the
set of the period points of all marked K 3 surfaces (X , i) such that

the classes c22−r+1, . . . , c22 ∈ H2(X ,Z) from the dual basis are alge-
braic, i.e. in Pic X ⊂ H2(X ,Z), and

via i , the pairing κ gets induced,

is

Ωκ,r :=
{

(x1 : · · · : x22−r : 0 : · · · : 0) ∈ P21−r (C) |
κ(x , x) = 0, κ(x , x) > 0} .

This is an open subset of a quadric Qκ,r ⊂ P21−r (C).
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Periods and RM

Theorem

Let r ∈ {1, . . . , 20}, κ be a perfect pairing on Z22, and K be a totally real
number field of degree d.

Then there is an at most countable union M ⊆ Qκ,r of quadrics of dimen-
sions 22−r

d − 2 such that the following is true.

Let x ∈ Ωκ,r ⊂ Qκ,r be the period point of a marked K 3 surface (X , i),
for which c22−r+1, . . . , c22 ∈ Pic X and the Picard rank is exactly r .

Then X has real multiplication by K if and only if x ∈ M.

Idea of Proof. T = (Pic X⊗ZQ)⊥ = span(c1, . . . , c22−r ). RM by K means
that K operates Q-linearly on T , keeping x = x1c1 + · · ·+ x22−r c22−r as a
simultaneous eigenvector.

There are countably many such operations. Each time, the eigenspaces
are of [projective] dimension 22−r

d − 1. It can be shown that they are not
contained in Qκ,r .
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A particular family

Consider double covers of P2
C, ramified over a union of six lines,

X ′ : w2 = l1 · · · l6 ,

for l1, . . . , l6 linear forms in three variables.

Assume that no point is contained in three lines. Then there are 15 singular
points of type A1. The minimal desingularisation X is a K 3 surface.

Proposition (The global holomorphic (2, 0)-form)

Let X be a K 3 surface, obtained as the minimal desingularisation of
X ′ : w2 = l1 · · · l6, for l1, . . . , l6 linear forms in the variables x, y , and z.
Assume that no three of the six linear forms have a zero in common.

Then, for any linear form l 6= x, y that defines an irreducible curve on X ′,

ω′ :=
d( x

l ) ∧ d( y
l )

w
l3

is a differential form on X ′, the pull-back ω of which to X is a global
holomorphic (2, 0)-form without zeroes or poles.
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Spheroids representing transcendental classes

The surfaces considered generically have Picard rank 16.

There are 16 obvious algebraic classes L,E1, . . . ,E15, generating a rank-16
submodule P ⊂ H2(X ,Z). We explicitly need six further generators.

V (l1) V (l2)

V (l3) V (l4)

V (l5) V (l6) V (l1) V (l2)

V (l3)

Figure: A deformed line and a curve encircling a triangle
Assume that the branch locus is the union of six real lines [no three of which
have a point in common].

We start with 1-manifolds in P2(R) as in the pictures above. I.e. such
meeting the branch locus V (l1 · · · l6) only in its double points. We also allow
1-manifolds that encircle a quadrangle or pentagon instead of a triangle.
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Spheroids representing transcendental classes II

Parametrised by a differentiable map γ : R/∼→ P2(R), for ∼ the equiva-
lence relation, given by t ∼ t ′ ⇔ t − t ′ ∈ Z.

On a suitable affine chart of P2(R), one has a map γ : R/∼→ R2.

Extend γ to a differentiable map in two variables by putting

γ′ : R/∼ ×R −→ C2 ⊂ P2(C), (t, u) 7→ γ0(t) + iub , (1)

for a suitable vector b ∈ R2.

Then lim
u→±∞

γ′(t, u) exists in P2(C) and is independent of t.

Therefore, γ′ actually provides a continuous map α′ from

R/∼×[−∞,∞]/(R/∼×{∞} ,R/∼×{−∞}) ∼= S(R/∼) = S(S1) = S2

(2)
to P2(C). [α′ is differentiable outside the two poles n, s ∈ S2.]
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Spheroids representing transcendental classes III

Proposition (Lifting to the double cover)

Let V (l1), . . . ,V (l6) be six real lines in P2 such that no three of them have
a point in common. Take an affine chart that meets each of the six lines.

1 Then there is a union E ⊂ R2 of finitely many 1-dimensional subvector
spaces such that, for b ∈ R2 \ E , each of the spheroids α′, as con-
structed above, meets V (l1 · · · l6) only in the three to five real points.

2 Assume that b ∈ R2\E . Then the continuous map α′ : S2 → P2(C),
as constructed in (1) and (2), lifts to a continuous map α̃ : S2 → X ′,
for X ′ : w2 = l1 · · · l6 the double cover.

Idea of Proof. 1. Direct calculation.

2. Let x1, . . . , xm ∈ S2, m = 3, 4, 5, be the points mapped to the ramifica-
tion locus. Then essentially α0 := α′|S2\{x1,...,xm} needs to be lifted.

For this, one only has to verify

(α0)#π1(S2\{x1, . . . , xn} , .) ⊆ π#π1(X0, .)

for X0 := π−1(P2(C) \ V (l1 · · · l6)), which is completely local.
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Spheroids representing transcendental classes IV

The spheroid α̃ : S2 → X ′ represents a class in π2(X ′, .).

X ′ and the K 3 surface X are simply connected. By Hurewicz’s Theo-
rem,

π2(X ′, .) ∼= H2(X ′,Z) and π2(X , .) ∼= H2(X ,Z) .

As H2(X ′,Z) = H2(X ,Z)/[E1, . . . ,E15], α̃ can [non-uniquely] be lifted
to X .

Notation (Explicit cohomology classes)

A spheroid α defines a cohomology class

cα := α!(1) ∈ H2(X ,Z) ,

for 1 ∈ H0(S ,Z) the canonical generator.

The construction described provides by far more than six representatives of
classes in H2(X ,Z)/P.

J. Jahnel (University of Siegen) Real multiplication via period integration Shepperton, May 3, 2018 20 / 30



Spheroids representing transcendental classes IV

The spheroid α̃ : S2 → X ′ represents a class in π2(X ′, .).

X ′ and the K 3 surface X are simply connected. By Hurewicz’s Theo-
rem,

π2(X ′, .) ∼= H2(X ′,Z) and π2(X , .) ∼= H2(X ,Z) .

As H2(X ′,Z) = H2(X ,Z)/[E1, . . . ,E15], α̃ can [non-uniquely] be lifted
to X .

Notation (Explicit cohomology classes)

A spheroid α defines a cohomology class

cα := α!(1) ∈ H2(X ,Z) ,

for 1 ∈ H0(S ,Z) the canonical generator.

The construction described provides by far more than six representatives of
classes in H2(X ,Z)/P.

J. Jahnel (University of Siegen) Real multiplication via period integration Shepperton, May 3, 2018 20 / 30



The cup product

Fact

Let cα ∈ H2(X ,Z) be given by a spheroid and w ∈ H2(X ,C) be repre-
sented by the smooth 2-form ω. Then, for the cup product pairing, one has

(cα,w) =

∫
S2

α∗ω .

Idea of Proof. (cα,w) = 〈w ∪ cα, [X ]〉 = 〈w ∪ α!(1), [X ]〉 = 〈α∗w , [S2]〉.
Here, the final equality is

(w ∪ α!(1)) ∩ [X ] = w ∩ (α!(1) ∩ [X ]) = w ∩ α∗([S2]) = α∗(α
∗w ∩ [S2]) .

Remark

In order to numerically calculate these 2-dimensional integrals, we use Fu-
bini’s Theorem in a naive manner. The resulting 1-dimensional integrals are
evaluated using the Gauß-Legendre method of a degree between 30 and 300.
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bini’s Theorem in a naive manner. The resulting 1-dimensional integrals are
evaluated using the Gauß-Legendre method of a degree between 30 and 300.
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The cup product II

Algorithm (Determining the cup product on P⊥, up to scaling)

Let X be a K 3 surface that is given as the minimal desingularisation of a
double cover of the form w2 = xyz(x +y +z)(x +a0y +b0z)(x +c0y +d0z)
and α1, . . . , αn : S2 → X be spheroids.

1 Choose open neighbourhoods D ∼= U(a0) 3 a0, . . . , D ∼= U(d0) 3 d0

in such a way that, for every (a, b, c , d) ∈ D4, no three of the resulting
six lines in P2

C have a point in common. Then the cα1 , . . . , cαn uniquely
extend to the whole family of surfaces X(a,b,c,d) analogous to X .

Moreover, choose N surfaces X1, . . . ,XN at random from the family
and write down the corresponding holomorphic 2-forms ω1, . . . , ωN .
[We work with N = 50.]

2 Set up the matrix M := (〈cαj , ωi 〉)1≤i≤N,1≤j≤n using numerical integra-
tion and calculate the singular value decomposition of M. Six singular
values should be numerically nonzero. The others give rise to linear
relations among the cohomology classes cα1 , . . . , cαn .
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The cup product III

3 Choose a basis c1, . . . , c6 of the free Z-module spanned by cα1 , . . . , cαn

modulo the relations found.

4 Build from M the matrix F := (〈cj1 , ωi 〉〈cj2 , ωi 〉)1≤i≤N,1≤j1≤j2≤6 and
determine an approximate solution of the corresponding homogeneous
linear system of equations, using the QR-factorisation of F . The solu-
tion vector describes the symmetric, bilinear form desired.

Remarks

As it relies on the restricted period space, our method detects only the
restriction of the cup product pairing to P⊥ ⊂ H2(X ,Q). Every class
in H2(X ,Z)/P has a unique representative in P⊥, the orthogonal pro-
jection pr : H2(X ,Z)/P → P⊥ being injective.

Let α : S2 → X be constructed from a deformed line, as above.
Then (pr(cα), pr(cα)) = −1

2 . [We use this observation for scaling.]
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The cup product IV

Theorem (Proof depending on numerical integration)

Let X be the minimal desingularisation of a double cover of P2
C ramified

over a union of six real lines, such that no three of them have a point
in common. Then the classes of the spheroids, as described above, always
generate the whole of H2(X ,Z)/P.
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Tracing the preimage of a curve in the period space

In a family of K 3 surfaces of Picard rank 16, there are 1-dimensional
subfamilies having real multiplication by Q(

√
d)

Strategy

Let X be an isolated example of a K 3 surface of type

X(a0,b0,c0,d0) : w2 = xyz(x + y + z)(x + a0y + b0z)(x + c0y + d0z)

that has real multiplication by a quadratic field Q(
√

d). The strategy below
describes how to find the 1-dimensional family of RM surfaces, X belongs to.

1 Run the Algorithm above to fix a marking i on X and to calculate the
cup product pairing in terms of i .

Then D ∼= U(a0) 3 a0, . . . , D ∼= U(d0) 3 d0 are chosen in such a
way that, for every (a, b, c , d) ∈ D4, no three of the resulting six lines
in P2

C have a point in common. Thus, the marking extends to the
whole family and there is the associated period map

τ : D4 −→ Q, (a, b, c , d) 7→ τ(X(a,b,c,d), i(a,b,c,d)) .
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Tracing the preimage of a curve in the period space II

2 Calculate the period point of X = X(a0,b0,c0,d0) and identify the three
linear relations between the six periods that encode real multiplication.
These define, together with the cup product pairing, a conic C in the
restricted period space.

3 Trace the curve Q−1(C ) ⊂ D4 using a numerical continuation method.

4 Use the singular-value decomposition in order to find algebraic relations
between the coordinates of the points found. Control, using Gröbner
bases, that they indeed define an algebraic curve.
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A result

Theorem (E.+J., 2017)

Consider the family of double covers X ′(a,b,c,d) of P2, given by

w2 = (x + ay + bz)(x + cy + dz)f4(x , y , z) ,

for f4 := x4−2x3y−5x2y2−26x2z2+6xy3+104xyz2+9y4−130y2z2+52z4.

1 Then the branch locus is the union of six lines, which are in general
position for a generic choice of (a, b, c , d) ∈ C4. In this case, the min-
imal desingularisation X(a,b,c,d) of X ′(a,b,c,d) is a K3 surface of Picard
rank 16.

2 Consider the closed subscheme C ⊂ A4, given by the equations
0 = 630 272a − 11 421bd5 + 411 400bd3 − 871 552bd − 272 976c2d2 + 315 136c2

+ 98 982cd4 − 3 508 064cd2 + 2 205 952c + 233 496d4 −6 409 856d2+ 4 411 904 ,

0 = 78 784bc − 243bd4 + 37 040bd2 + 110 528b − 5808c2d + 2106cd3 − 319 792cd + 4968d3 − 714 688d ,

0 = 243bd6 − 8960bd4 + 29 952bd2 − 26 624b + 5808c2d3 − 11 648c2d − 2106cd5

+ 76 432cd3 − 144 768cd − 4968d5 + 140 608d3 − 259 584d ,

0 = 2c3 + 28c2 − 3cd2 + 98c − 8d2 + 104 .

Then C is a geometrically irreducible, nonsingular curve of genus 1.
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A result II

3 There is strong evidence that, for generic (a, b, c , d) ∈ C (C), the
K 3 surface X(a,b,c,d) is of Picard rank 16 and has real multiplication
by Q(

√
13).

Proof. 1) For (a, b, c , d) := (0,−4,−9,−8), an isolated example appears,
which we had found before by a different approach.

2) This is easily obtained by a calculation in any computer algebra system.
We used magma for this purpose.

3) The curve C is the result of the Strategy above, taking the isolated
example above as the starting point. Evidence for assertion c) includes that
one has #Xξ(Fp) ≡ 1 (mod p) for every prime number p < 500 such that
p ≡ 2, 5, 6, 7, 8, 11 (mod 13) and every point ξ ∈ C (Fp).

Remark

The genus 1 curve C has Q-rational points. Taking any of them as the
origin, the Mordell–Weil group of C is isomorphic to Z.
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A result III

Remarks (Some details)

[Transcendental classes.] We worked with 14 classes, which were rep-
resented by spheroids, as explained above.

In step 2 of the Algorithm, we found six singular values within a factor
of 100, while the next one was smaller by nine orders of magnitude.
In the basis chosen, the cup product form found on P⊥ has only coef-
ficients from

{
±1,±1

2 , 0
}

, up to errors that are smaller than 10−10.

[Tracing the curve.] In an expert’s language, we applied a predictor–
corrector method. More precisely, we used the Euler predictor, followed
by Newton corrector steps.

For numerical integration, the Gauß-Legendre method of degree 100
[i.e. order 200] was used. Based on this, we determined 101 points
on Q−1(C ) ⊂ D4, each with a numerical precision of 80 digits.
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A result IV

Polynomials of degree ≤ 3 in four variables form a vector space of
dimension 35. When looking for cubic relations between the 101 points
found, we ended up with 25 singular values in the range from 1714
to 6.08·10−41, the other ten being less than 10−80.

Thus, the curve sought is contained in an intersection of ten cubics
in A4. The equations given form a Gröbner basis for the ideal generated
by them.

Thank you!!!
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