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K3 surfaces

Definition (abstract definition–classification of algebraic surfaces)

A K 3 surface is a simply connected, projective algebraic surface having a
global (algebraic, holomorphic) 2-form without zeroes or poles.

Examples

1 A smooth quartic in P3.

2 A double cover of P2, ramified at a smooth sextic curve.

Sextics with ordinary double points may be taken, too. Then the res-
olution of singularities is a K 3 surface.

In this talk, we consider K 3 surfaces that are double covers of P2, ramified
over six lines in P2.
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Point counting–An experiment

Consider a “random” example and a very particular one
S1 : w 2 = x6 + 2y 6 + 3z6 + 5x2y 4 + 7xy 2z3 + 3y 5z + x3z3

S2 : w 2 = (−y 2 + 8yz − 8z2)(7x2 + 40xz + 56z2)(2x2 + 3xy + y 2) .

p (#S1(Fp) mod p) (#S2(Fp) mod p)

2 0 1
3 1 1
5 1 1
7 1 1

11 1 1
13 8 1
17 1 7
19 0 1
23 19 18
29 7 1
31 7 7
37 0 1
41 7 1
43 5 1
47 11 19
53 47 1
59 28 1

p (#S1(Fp) mod p) (#S2(Fp) mod p)

61 44 1
67 54 1
71 23 34
73 11 0
79 41 27
83 57 1
89 46 3
97 28 52

101 42 1
103 55 28
107 20 1
109 60 1
113 7 51
127 89 121
131 78 1
137 20 105
139 22 1
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Point counting–An experiment II

Observations
1 In the “random” example S1, there is no regularity to be seen.

2 In example S2, however, we observe that

#S2(Fp) ≡ 1 (mod p)

for all primes p ≡ 3, 5 (mod 8).

Remarks

One also has #S2(F41) ≡ 1 (mod 41), which is purely accidental.

The bound at 140 is just for presentation, one may easily extend it, at
least up to 10000 (D. Harvey).

The primes p ≡ 3, 5 (mod 8) are exactly those that are inert inQ(
√

2).
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Recall from the theory of elliptic curves

Fact (An arithmetic consequence of CM)

Let X be an elliptic curve with complex multiplication (CM) by E = Q(
√

d).
Then #X (Fp) ≡ 1 (mod p) for every prime p that is inert in E .
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Figure: Distribution of
#X (Fp)−p−1√

p for p →∞
for an ordinary elliptic curve (left) and a CM elliptic curve (right)

The spike has area 1
2 (!!).
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Our original motivation–Picard ranks

Fact

Let X be a K 3 surface over Q and p a prime of good reduction. Then

rk Pic XQ ≤ rk Pic XFp
.

Theorem (F. Charles 2012)

Let X be a K 3 surface over Q.

1 If X has real multiplication and (22− rk Pic XQ)/[E : Q] is odd then,
for every prime p of good reduction,

rk Pic XQ + [E : Q] ≤ rk Pic XFp
.

2 Otherwise, there exists a prime p of good reduction such that

rk Pic XFp
= rk Pic XQ or rk Pic XFp

= rk Pic XQ + 1 .

[Statistics: Remember E. Costa’s talk!]
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Hodge structures

Definition (P. Deligne 1971)

A (pure Q-) Hodge structure of weight i is a finite dimensional Q-vector
space V , together with a decomposition

VC := V⊗QC = H0,i ⊕ H1,i−1 ⊕ . . .⊕ H i ,0

such that Hm,n = Hn,m for every m, n ∈ N0, m + n = i .

Examples

1 Let X be a smooth, projective variety over C. Then H i (X (C),Q) is
in a natural way a pure Q-Hodge structure of weight i .

2 In H2(X (C),Q), the image of c1 : Pic(X )⊗ZQ → H2(X (C),Q) de-
fines a sub-Hodge structure P such that H0,2

P = H2,0
P = 0.

3 If X is a surface then H := H2(X (C),Q) is actually a polarized pure
Hodge structure, the polarization 〈. , .〉 : H × H → Q being given by
the cup product, together with Poincaré duality.
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Real and complex multiplication

Definition

A Hodge structure of weight 2 is said to be of K 3 type if dimC H2,0 = 1.

Theorem (Yu. Zarhin 1983)

Let T be a polarized weight-2 Hodge structure of K 3 type.

1 Then E := End(T ) is either a totally real field or a CM field.

2 Thereby, every ϕ ∈ E operates as a self-adjoint mapping. I.e.,

〈ϕ(x), y〉 = 〈x , ϕ(y)〉 ,

for the identity map in the case that E is totally real and the complex
conjugation in the case that it is a CM field.

3 If E is totally real then dimE T ≥ 2.

Definition

If E % Q then one speaks of real multiplication when E is totally real and
of complex multiplication when E is CM.
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Real and complex multiplication II

Let X be a K 3 surface over C. Associated with X , there are

the polarized weight-2 Hodge structure H := H2(X (C),Q),

its sub-Hodge structure P, given as the image of

c1 : Pic(X )⊗ZQ→ H2(X (C),Q) ,

the orthogonal complement T := P⊥ in H. T is a polarized weight-2
Hodge structure of K 3 type.

Definition

One says that a K 3 surface X has real or complex multiplication (RM or
CM), when the Hodge structure T has.
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RM/CM on K3 surfaces

The difference (Recall)

For X an elliptic curve, one considers End(H), for H := H1(X (C),Q).

For X a K 3 surface, End(T ) is considered, for T := P⊥ the transcen-
dental part of H2(X (C),Q).

Questions

Can one construct K 3 surfaces having real/complex multiplication?

How many K 3 surfaces have real/complex multiplication? I.e., what is
the dimension of the corresponding locus in moduli space?

Are there K 3 surfaces defined over Q that have real/complex multipli-
cation?

One answer (CM is simpler)

If E1,E2 are elliptic curves and E1 has CM then Kum(E1 × E2) has CM.
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An analytic construction

The family we work with

Consider the family of the K 3 surfaces that are given as desingularizations
of the double covers of P2, branched over the union of six lines.

Observations

four-dimensional: dim((P2)∨)6 = 12, dim Aut(P2) = dim PGL3 = 8

rk Pic(X ) ≥ 16: Pull-back of a general line and the 15 exceptional
curves generate a sub-Hodge structure P ′ of dimension 16.

The symmetric, bilinear form on P ′ is given by diag(2,−2, . . . ,−2).
A direct calculation shows P ′ ∼= (Q16, diag(1,−1, . . . ,−1)).

Hence, T ′ := (P ′)⊥ ∼= (Q6, diag(1, 1,−1,−1,−1,−1)).
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An analytic construction II

Theorem (van Geemen 2008, E.+J. 2014)

Let d ∈ Q be a non-square being the sum of two squares. Then there exists
a one-dimensional family of K 3 surfaces over C, the generic member of
which has Picard rank 16 and real multiplication by Q(

√
d).

The condition that d be a sum of two squares is necessary for surfaces in
the four-dimensional family.

Theorem (E.+J. 2014)

Let T ∼= Q6, equipped with a non-degenerate symmetric, bilinear pairing
〈. , .〉 : T × T → Q of discriminant (1 mod (Q∗)2) and ϕ : T → T be a
self-adjoint endomorphism such that ϕ ◦ ϕ = [d ].

Then d ∈ Q is a sum of two rational squares.
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An analytic construction III

Remark (CM is simpler)

Let d < 0. Then 〈
√

dv , v〉 = 〈v ,
√

dv〉 = −〈
√

dv , v〉 implies
√

dv ⊥ v .
Hence disc T = d ·Q∗2, when dim T ≡ 2 (mod 4).

Thus, only Q(
√
−1) may occur for the family above. The corresponding

surfaces form a 2-dimensional family.
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Arithmetic consequences of RM/CM

Choose a prime number l and turn to l-adic cohomology. There is the
comparison isomorphism

H2(X (C),Q)⊗QQl
∼=←− H2

ét(XQ,Ql) .

The l-adic cohomology is acted upon by the absolute Galois group of the
base field. I.e., there is a continuous representation

%l : Gal(Q/Q) −→ GL(H2
ét(XQ,Ql)) .

There is a Chern class homomorphism c1 : Pic(XQ)⊗ZQl ↪→ H2
ét(XQ,Ql).

Its image Pl maps exactly onto P⊗QQl under the comparison isomorphism.
Tl := (Pl)

⊥ maps exactly onto T⊗QQl .

The operation of Gal(Q/Q) maps Pl to itself.

Consequently, Gal(Q/Q) maps Tl to itself. Indeed, orthogonality is re-
spected by the operation of Gal(Q/Q).
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Arithmetic consequences of RM/CM II

Notation
1 For every prime p, choose l 6= p and denote by χT

pn the characteristic
polynomial of (Frobp)n on Tl . This has coefficients in Q and is inde-
pendent of l , whether X has good reduction at p (Deligne 1974) or
not (Ochiai 1999). One has degχT

pn = 22− rk Pic XQ.

2 We factorize χT
pn ∈ Q[Z ] in the form

χT
pn(Z ) = χtr

pn(Z ) ·
∏
k,i

(Z − ζ i
k)ek,i ,

for ζk := exp(2πi/k), ek,i ≥ 0, and such that χtr
pn ∈ Q[Z ] does not

have any roots of the form pn times a root of unity.

If p is a good prime then, according to the Tate conjecture, χtr
pn is the char-

acteristic polynomial of Frobn on the transcendental part of H2
ét(XFp

,Ql).
In particular, degχtr

pn = 22− rk Pic XFp
.

Further, χtr
pn = χT

pn if and only if rk Pic XFp
= rk Pic XQ.
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Arithmetic consequences of RM/CM III

Theorem (E.+J. 2014)

Let p be a prime of good reduction of the K 3 surface X over Q, having
real or complex multiplication by the quadratic number field E = Q(

√
d).

Then at least one of the following two statements is true.

1 The polynomial χtr
p ∈ Q[Z ] splits in the form

χtr
p = ggσ,

for g ∈ Q(
√

d)[Z ] and σ : Q(
√

d)→ Q(
√

d) the conjugation.

2 For a certain positive integer f , the polynomial χtr
pf is a square in Q[Z ].

Corollary

Suppose that p is inert in E . Then #Xp(Fp) ≡ 1 (mod p).

Idea of Proof. This uses the Lefschetz trace formula, information on
the p-adic nature of the eigenvalues of Frobenius (Mazur 1973, Berthe-
lot/Ogus 1978), and the splitting χtr

p = ggσ over Qp(
√

d).
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Arithmetic consequences of real multiplication

Corollary

Suppose that d > 0, i.e. that X has real multiplication by E = Q(
√

d).
Let p be a prime of good reduction.

1 Then degχtr
p is divisible by 4.

2 If p ≥ 3 then rk Pic XFp
≡ 2 (mod 4).

Idea of Proof. 1. χtr
pf = h2 or χtr

p = ggσ are real factorizations.
g (resp. h) real polynomial without real roots. Thus, deg g (or deg h) even.

2. The Tate conjecture is proven for K 3 surfaces in characteristic ≥ 3
(Lieblich/Maulik/Snowden 2011, Charles 2012, Pera 2012).
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Algorithms

Summary

Let X be a K 3 surface over Q.

1 If X has RM/CM then #Xp(Fp) ≡ 1 (mod p) for half the primes.

2 Otherwise, we (naively) expect #Xp(Fp) ≡ 1 (mod p) for only
O(log log N) primes below N.

This lets arise the idea to search for explicit examples of K 3 surfaces having
RM/CM through the arithmetic consequences. I.e., to generate a huge
sample of K 3 surfaces of Picard rank ≥16 and to run the following statistical
algorithm on them.

[But, recall, we expect only one-dimensional families with RM in a six-di-
mensional space of surfaces. And there are also two-dimensional families
with CM.]
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Algorithms II

Algorithm (Testing a K3 surface for RM–statistical version)

1 Let p run over all primes p ≡ 1 (mod 4) between 40 and 300.
For each p, count the number #Xp(Fp) of Fp-rational points on the
reduction of X modulo p. If #Xp(Fp) ≡ 1 (mod p) for not more than
five primes then terminate immediately.

2 Put p0 to be the smallest good and ordinary prime for X .
[I.e. #Xp(Fp0) 6≡ 1 (mod p0).]

3 Determine the characteristic polynomial of Frob on H2
ét((Xp0)Fp0

,Ql).

Factorize the polynomial obtained to calculate the polynomial χtr
p0

.
If degχtr

p0
6= 4 then terminate.

Test whether χtr
p0

is the square of a quadratic polynomial. In this case,
raise p0 to the next good and ordinary prime and iterate this step.

Otherwise, determine Gal(χtr
p0

). If Gal(χtr
p0

) ∼= (Z/2Z)2 then raise p0

to the next good and ordinary prime and iterate this step. [We wait
for D4, which should be the generic answer.]
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Algorithms III

4 Now, χtr
p0

is irreducible of degree four. Determine the quadratic sub-
fields of the splitting field of χtr

p0
. Only one real quadratic field may oc-

cur. Put d to be the corresponding radicand.

5 Let p run over all good primes < 300, starting from the lowest.
If #Xp(Fp) 6≡ 1 (mod p) for a prime inert in Q(

√
d) then terminate.

6 Output a message saying that X is highly likely to have real multipli-
cation by a field containing Q(

√
d).
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Algorithms IV

Remarks
1 The algorithm is extremely efficient. Step 1 is the only time-critical one.

An efficient algorithm for point counting over relatively small prime
fields is asked for.

2 The likelihood that a random surface survives step 5 to give a false
positive is ∏

p inert inQ(
√

d),
p<300

1/p < 10−60

for small values of d .

3 If one wants to find surfaces that are likely to have CM by Q(
√
−1)

then one has to verify in step 4 that χtr
p0

splits over Q(
√
−1) and, in

step 5, that #Xp(Fp) ≡ 1 (mod p) for all primes p ≡ 3 (mod 4).
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Our samples

Double covers of the projective plane, branched over the union of six lines

We do not ask all lines to be defined over Q, however, as this seems to be
too restrictive. [We did not find any RM examples in such samples.]

Compromise

The lines are allowed to form three Galois orbits, each of size two.

w 2 = q1(y , z)q2(x , z)q3(x , y)
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Our samples II

Algorithm (Counting points on one surface)

We count the points over the q affine lines of the form (1 : u : ?) and the
affine line (0 :1 :?) and sum up. Finally, we add 1.

Remark (Counting points above one line)

The number of points above the affine line Lx ,y : A1 → P2, t 7→ (x : y : t),
is q + χ(q3(x , y))λx ,y , for

λx ,y :=
∑
t∈Fq

χ(q1(y , t)q2(x , t)) . (1)
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Our samples III

Strategy (Treating a sample of surfaces)

Given three lists of quadratic forms, one for q1, another for q2, and third
for q3. To count the points on all surfaces, given by the Cartesian product
of the three lists, we perform as follows.

1 For each quadratic form q3, compute the values of χ(q3(1, ?)) and
χ(q3(0, 1)) and store them in a table.

2 Run in an iterated loop over all pairs (q1, q2). For each pair, do the fol-
lowing.

Using formula (1), compute λ1,? and λ0,1.
Run in a loop over all forms q3. Each time, calculate

Sq1,q2,q3 :=
∑

?

χ(q3(1, ?))λ1,? ,

using the precomputed values. The number of points on the surface,
corresponding to (q1, q2, q3), is then q2+q+1+χ(q3(0, 1))λ0,1+Sq1,q2,q3 .
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Our samples IV

Remark (Complexity and performance)

In the case that the number of quadratic forms is bigger than q, the costs
of building up the tables are small compared to the final step. Thus, the
complexity per surface is essentially reduced to (q + 1) table look-ups for
the quadratic character and (q + 1) look-ups in the small table, containing
the values λ1,? and λ0,1.

Remark (Detecting real multiplication)

We used this point counting algorithm within the deterministic algorithm,
in order to detect K 3 surfaces having real multiplication by a prescribed
quadratic number field.

This allowed us to test more than 2.2 · 107 surfaces per second on one core
of a 3.40 GHz Intel(R)Core(TM)i7-3770 processor. The code was written in
plain C.
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Results

A run over all triples (q1, q2, q3) of coefficient height ≤ 12, found the first
five surfaces suspicious to have real multiplication by Q(

√
5). A sample of

more than 1011 surfaces was necessary to bring these examples to light!

Observations: One of the three discriminants was that of the quadratic field.
The product of the three discriminants was a square.

Incorporated these restrictions to raise the bound to 200.

Theorem (E.+J. 2014)

Let t ∈ Q be arbitrary and X (2,t) be the K 3 surface given by

w 2 = [( 1
8 t2− 1

2 t + 1
4 )y 2 + (t2−2t +2)yz + (t2−4t +2)z2]

[( 1
8 t2+ 1

2 t + 1
4 )x2 + (t2+2t +2)xz + (t2+4t +2)z2]

[2x2+(t2+2)xy +t2y 2] .

Then #X
(2,t)
p (Fp) ≡ 1 (mod p) for every prime p ≡ 3, 5 (mod 8).

Although the family was found experimentally, we have a proof.
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4 )x2 + (t2+2t +2)xz + (t2+4t +2)z2]

[2x2+(t2+2)xy +t2y 2] .

Then #X
(2,t)
p (Fp) ≡ 1 (mod p) for every prime p ≡ 3, 5 (mod 8).

Although the family was found experimentally, we have a proof.
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Results II

Idea: Work in the elliptic fibration, given by y : x = l .

It has exactly four singular fibers, at l = −1,− 2
t2 , 0,∞.

The other (p − 3) fibers together have exactly (p − 3)(p + 1) points, due
to some deep symmetry.

j(Fl) = j(F1/l), quadratic twists of each other, twist factor 2l+t2

l4(t2l+2)
.

Thus #Fl(Fp) + #F1/l(Fp) = 2(p + 1), when 2l+t2

t2l+2
is a non-square.

To pair the other fibers, reparametrize according to s := 2l+t2

t2l+2
.

Then l 7→ 1
l goes over into s 7→ 1

s .
Singular fibers at s = −1,∞, t2

2 ,
2
t2 .

Still need to consider the fibers for s a square.

j(F ′a2 ) = j(F ′(a−1)2

(a+1)2

)

The fibers are quadratic twists of each other. The twist factor is

F := 8
(a+1)2(a2− 2

t2 )4

(a2− 2t2+4
t2−2

a+1)4
,

which is always a non-square.
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Results III

Theorem (E.+J. 2014)

Let t ∈ Q be such that ν17(t − 1) > 0 and ν23(t − 1) > 0. Then X (2,t)

has geometric Picard rank 16 and real multiplication by Q(
√

2).

Idea of Proof. The point count implies that %l(Gal(Q/Q)) cannot be
Zariski dense in GO(Tl , 〈, ., .〉). By the Theorem of Tankeev/Zarhin, there
must be real or complex multiplication by a number field E % Q.
[Infinitely many congruences for the point count imply RM/CM.]

To prove that the Picard rank is exactly 16, we use reduction modulo 17
and 23 and a modification of van Luijk’s method.

Finally, as there are reductions to Picard rank 18, [E : Q] must divide 4 and
6, hence E is a quadratic number field.

To prove E = Q(
√

2), we observe that χtr
17 splits over Q(

√
2), but not over

any other quadratic number field.

J. Jahnel (University of Siegen) K3 surfaces with real multiplication Providence RI, October 21, 2015 28 / 32



Results III

Theorem (E.+J. 2014)

Let t ∈ Q be such that ν17(t − 1) > 0 and ν23(t − 1) > 0. Then X (2,t)

has geometric Picard rank 16 and real multiplication by Q(
√

2).

Idea of Proof. The point count implies that %l(Gal(Q/Q)) cannot be
Zariski dense in GO(Tl , 〈, ., .〉). By the Theorem of Tankeev/Zarhin, there
must be real or complex multiplication by a number field E % Q.
[Infinitely many congruences for the point count imply RM/CM.]

To prove that the Picard rank is exactly 16, we use reduction modulo 17
and 23 and a modification of van Luijk’s method.

Finally, as there are reductions to Picard rank 18, [E : Q] must divide 4 and
6, hence E is a quadratic number field.

To prove E = Q(
√

2), we observe that χtr
17 splits over Q(

√
2), but not over

any other quadratic number field.

J. Jahnel (University of Siegen) K3 surfaces with real multiplication Providence RI, October 21, 2015 28 / 32



Results IV

Conjecture

Let t ∈ Q be arbitrary and X (5,t) be the K 3 surface given by

w 2 = [y 2+tyz+( 5
16 t2+5

4 t+5
4 )z2][x2+xz+( 1

320 t2+ 1
16 t+ 5

16 )z2][x2+xy+ 1
20 y 2] .

Then #X
(5,t)
p (Fp) ≡ 1 (mod p) for every prime p ≡ 2, 3 (mod 5).

Conjecture

Let X (13) be the K 3 surface given by

w 2 = (25y 2 + 26yz + 13z2)(x2 + 2xz + 13z2)(9x2 + 26xy + 13y 2) .

Then #X
(13)
p (Fp) ≡ 1 (mod p) for every prime p ≡ 2, 5, 6, 7, 8, 11

(mod 13).
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Results V

Remarks
1 We verified the congruences above for all primes p < 1000. This con-

cerns X (13) as well as the X (5,t), for any residue class of t modulo p.

2 There is further evidence, as we computed the characteristic polynomi-
als of Frobp for X (13) as well as for X (5,t) and several exemplary values
of t ∈ Q, for the primes p below 100. It turns out that indeed they
show the very particular behaviour, described in the theory above.

To be concrete, in each case, either χtr
p is of degree zero, or χtr

pf is the
square of a quadratic polynomial for a suitable positive integer f , or
χtr

p is irreducible of degree four, but splits into two factors conjugate
over Q(

√
5), respectively Q(

√
13).
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Results VI

Theorem (E.+J. 2015)

Let a1, a2, a3, b1, b2, b3 ∈ Q be such that

a1b3 + a2b1 − 2a3b1 = 0 and

a1b2 + a2b3 − 2a3b2 = 0

and let X (−1;a1,a2,a3,b1,b2,b3) be the K 3 surface given by

w 2 = xyz(x + y + z)(a1x + a2y + a3z)(b1x + b2y + b3z)

Then #X
(−1;a1,a2,a3,b1,b2,b3)
p (Fp) ≡ 1 (mod p), whenever p ≡ 3 (mod 4).

Also this family was found experimentally [working with a sample with six
rational lines]. It is a second one, for which we have a proof. The style of
the proof is similar to that for the family X (2,t).

The base of the family is a degree-6 del Pezzo surface. The generic member
should have Picard rank exactly 16 and CM exactly by Q(

√
−1).
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Results VII

Conjecture

The K 3 surface given by

w 2 = xyz(x3 − 3x2z − 3xy 2 − 3xyz + y 3 + 9y 2z + 6yz2 + z3)

has CM by Q(ζ9 + ζ−1
9 , i).

Conjecture

The K 3 surface given by

w 2 = xyz(7x3 − 7x2y + 49x2z − 21xyz + 98xz2 + y 3 − 7y 2z + 49z3)

has CM by Q(ζ7 + ζ−1
7 , i).

Thank you!!!
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