On integral points on open degree four del Pezzo surfaces

Jörg Jahnel

Universität Siegen
Klosterneuburg, January 28, 2021
joint work with
Damaris Schindler (Göttingen)

Diophantine equations

Problem (Diophantine equation)

Given $f \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$, describe the set

$$
L(f):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid f\left(x_{1}, \ldots, x_{n}\right)=0\right\}
$$

explicitly.

Diophantine equations

Problem (Diophantine equation)

Given $f \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$, describe the set

$$
L(f):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid f\left(x_{1}, \ldots, x_{n}\right)=0\right\}
$$

explicitly.

Geometric Interpretation

Integral points on a hypersurface in A^{n}.
Seemingly easier problem: Decide whether $L(f)$ is non-empty.

Statistical heuristics

Given a concrete f, how many solutions do we naively expect?
Put $Q(B):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}| | x_{i} \mid \leqslant B\right\}$. Then

$$
\# Q(B)=(2 B+1)^{n} \sim C_{1} \cdot B^{n}
$$

On the other hand,

$$
\max _{\left(x_{1}, \ldots, x_{n}\right) \in Q(B)}\left|f\left(x_{1}, \ldots, x_{n}\right)\right| \sim C_{2} \cdot B^{\operatorname{deg} f} .
$$

Statistical heuristics

Given a concrete f, how many solutions do we naively expect?

$$
\begin{aligned}
& \text { Put } Q(B):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}| | x_{i} \mid \leqslant B\right\} . \text { Then } \\
& \\
& \# Q(B)=(2 B+1)^{n} \sim C_{1} \cdot B^{n} .
\end{aligned}
$$

On the other hand,

$$
\max _{\left(x_{1}, \ldots, x_{n}\right) \in Q(B)}\left|f\left(x_{1}, \ldots, x_{n}\right)\right| \sim C_{2} \cdot B^{\operatorname{deg} f} .
$$

Heuristics

Assuming equidistribution of the values of f on $Q(B)$, we are therefore led to expect the asymptotics

$$
\#\left\{\left(x_{1}, \ldots, x_{n}\right) \in V_{f}(\mathbb{Z})| | x_{1}\left|, \ldots,\left|x_{n}\right| \leqslant B\right\} \sim C \cdot B^{n-\operatorname{deg} f}\right.
$$

for the number of solutions.

Statistical heuristics-Examples

The statistical heuristics explains the following well-known examples.

Examples

- $n-\operatorname{deg} f<0$: Log general type,

Very few solutions.
Example: $X_{2}^{2}-2 X_{1}^{3}=1$.
Integral points on an elliptic curve (Siegel).

- $n-\operatorname{deg} f=0:$ Log intermediate type,

A few solutions.
Examples: $X_{2}^{2}-2 X_{1}^{2}=1, X_{1}^{3}+X_{2}^{3}+X_{3}^{3}=3$.
Pell equations. Integral points on conics (Gauß). Three cubes problem.

- $n-\operatorname{deg} f>0$: Log Fano varieties,

Many solutions.
Example: $X_{1}^{2}+X_{2}^{2}=X_{3}^{2}$ or $X_{1}^{2}+X_{2}^{2}-10 X_{3}^{2}=3$.
Representation of an integer by a ternary quadratic form.

Statistical heuristics-Refinement

We are mainly interested in varieties of log intermediate type.

Heuristics (Refinement for varieties of log intermediate type)

Assume that the projective closure $\widetilde{V}_{f} \supset V_{f}, \widetilde{V}_{f} \subset \mathrm{P}_{\mathbb{Q}}^{n}$ is non-singular and that rkPic $\widetilde{V}_{f}=r$. Then one is led to expect the asymptotics

$$
\#\left\{\left(x_{1}, \ldots, x_{n}\right) \in V_{f}(\mathbb{Z})| | x_{1}\left|, \ldots,\left|x_{n}\right| \leqslant B\right\} \sim C \cdot(\log B)^{r-1}\right.
$$

for the number of solutions.

Statistical heuristics-Refinement

We are mainly interested in varieties of log intermediate type.

Heuristics (Refinement for varieties of log intermediate type)

Assume that the projective closure $\widetilde{V}_{f} \supset V_{f}, \widetilde{V}_{f} \subset \mathrm{P}_{\mathbb{Q}}^{n}$ is non-singular and that $r k \operatorname{Pic} \widetilde{V}_{f}=r$. Then one is led to expect the asymptotics

$$
\#\left\{\left(x_{1}, \ldots, x_{n}\right) \in V_{f}(\mathbb{Z})| | x_{1}\left|, \ldots,\left|x_{n}\right| \leqslant B\right\} \sim C \cdot(\log B)^{r-1}\right.
$$

for the number of solutions.
Indeed, Manin's conjecture predicts $C \cdot B(\log B)^{r-1}$ rational points

$$
\left(x_{0}: x_{1}: \ldots: x_{n}\right) \in \widetilde{V}_{f}(\mathbb{Z})
$$

of height $\leqslant B$ and, among them, exactly those with $x_{0}= \pm 1$ are integral.

Complications

Despite these heuristics, it might happen that there are no integral points, for several reasons.

Three kinds of reasons are known from the situation of rational points.

- p-adic insolubility,

$$
2 X_{1}^{3}+7 X_{2}^{3}+14 X_{3}^{3}+49 X_{4}^{3}+98 X_{5}^{3}=1
$$

- Insolubility in reals, $X_{1}^{2}+X_{2}^{2}=-1$.
- Brauer-Manin obstruction

Complications

Despite these heuristics, it might happen that there are no integral points, for several reasons.

Three kinds of reasons are known from the situation of rational points.

- p-adic insolubility,

$$
2 X_{1}^{3}+7 X_{2}^{3}+14 X_{3}^{3}+49 X_{4}^{3}+98 X_{5}^{3}=1
$$

- Insolubility in reals,

$$
X_{1}^{2}+X_{2}^{2}=-1
$$

- Brauer-Manin obstruction

Concerning integral points, (in)solubility in reals is a greater issue than for rational points.

Strong obstruction at infinity

Examples

(1) $U_{1} \subset \mathrm{~A}_{\mathbb{Z}}^{2}: X_{1}^{2}+X_{2}^{2}=65$,
(2) $U_{2} \subset \mathrm{~A}_{\mathbb{Z}}^{3}: 2 X_{1}^{2}+X_{2}^{2}+X_{3}^{2}=26$, $3 X_{2}^{2}+X_{3}^{2}+X_{4}^{2}=13$.

Strong obstruction at infinity

Examples

(1) $U_{1} \subset \mathrm{~A}_{\mathbb{Z}}^{2}: X_{1}^{2}+X_{2}^{2}=65$,
(2) $U_{2} \subset \mathrm{~A}_{\mathbb{Z}}^{3}: 2 X_{1}^{2}+X_{2}^{2}+X_{3}^{2}=26$,

$$
3 X_{2}^{2}+X_{3}^{2}+X_{4}^{2}=13
$$

Both varieties are strongly obstructed at infinity. I.e., the real manifolds $U_{1}(\mathbb{R}) \subset \mathbb{R}^{2}$ and $U_{2}(\mathbb{R}) \subset \mathbb{R}^{3}$ are both bounded.
For integral points, this leaves us with only finitely many cases, $U_{1}(\mathbb{Z})=\{(\pm 1, \pm 8),(\pm 4, \pm 7),(\pm 7, \pm 4),(\pm 8, \pm 1)\}, U_{2}(\mathbb{Z})=\varnothing$.
U_{2} has \mathbb{Q}-rational points and \mathbb{Z}_{p}-valued points for every prime number p. E.g., $\left(\frac{18}{7}, \frac{1}{7}, \frac{25}{7}, \frac{3}{7}\right)$ and $\left(\frac{54}{19}, \frac{23}{19}, \frac{55}{19}, \frac{9}{19}\right)$.
U_{2} is an open del Pezzo surface of degree 4.

Weak obstruction at infinity

Examples

$$
\begin{aligned}
& \text { (1) } U_{1}: X_{1}^{2}-X_{2}^{2}=3, \\
& \text { (2) } U_{2}:\left(\left(11 X_{1}+5\right) X_{2}+3\right) X_{3}=3 X_{1}+1 . \quad \text { (Y. Harpaz, 2015) }
\end{aligned}
$$

Weak obstruction at infinity

Examples

(1) $U_{1}: X_{1}^{2}-X_{2}^{2}=3$,
(2) $U_{2}:\left(\left(11 X_{1}+5\right) X_{2}+3\right) X_{3}=3 X_{1}+1$.
(Y. Harpaz, 2015)
$U_{1}(\mathbb{Z})=\{(\pm 2, \pm 1)\}$.
$U_{2}(\mathbb{Z})=\varnothing$: Every real point $x=\left(x_{1}, x_{2}, x_{3}\right) \in U(\mathbb{R})$ must fulfil

$$
x_{1}\left(11-\frac{3}{x_{2} x_{3}}\right)=\frac{1}{x_{2} x_{3}}-\frac{3}{x_{2}}-5 .
$$

This immediately shows that $\left|x_{2}\right|,\left|x_{3}\right| \geqslant 1$ implies $\left|x_{1}\right| \leqslant \frac{9}{8}$. $x_{1}=0, \pm 1$ does not yield any solutions.
Both examples are weakly obstructed at infinity. I.e., contained in a union of finitely many tubular neighbourhoods of algebraic hypersurfaces, the hypersurfaces themselves not enclosing U,

$$
U_{j}(\mathbb{R}) \subseteq \bigcup_{i=1}^{N}\left\{x \in \mathrm{~A}^{n}(\mathbb{R})| | P_{i}(x) \mid \leqslant c_{i}\right\}
$$

Weak obstruction at infinity II

Theorem (J. + D. Schindler, 2015)

U being weakly obstructed at infinity implies (for $U(\mathbb{R})$ connected) that $U(\mathbb{Z})$ is not Zariski-dense in U.

Weak obstruction at infinity II

Theorem (J. + D. Schindler, 2015)

U being weakly obstructed at infinity implies (for $U(\mathbb{R})$ connected) that $U(\mathbb{Z})$ is not Zariski-dense in U.

Theorem (J. + D. Schindler, 2015)

Let $X \subset \mathrm{P}_{\mathbb{Q}}^{n}$ be a normal, projective variety, $I \in \Gamma\left(\mathrm{P}^{n}, \mathscr{O}(1)\right)$ a linear form, $H:=V(I) \subset P^{n}$ the corresponding hyperplane, and put $U:=X \backslash H$.
Suppose that

- the scheme $(H \cap X)_{\mathbb{R}}$ is reduced and irreducible and that
- every connected component of $U(\mathbb{R})$ has a limit point $x \in(H \cap X)(\mathbb{R})$ that is non-singular as a point on $H \cap X$.
Then U is not (weakly) obstructed at ν.

Remark

Y. Harpaz' example is a normal cubic surface, but $H \cap X$ is a union of three lines. Thus, the theorem does not apply.

Brauer-Manin obstruction

Let U be a scheme of finite type over a number field k and

$$
\alpha \in \operatorname{Br}(U)=H_{\mathrm{et}}^{2}\left(U, \mathbb{G}_{m}\right)
$$

a Brauer class.
At each place ν of k, one has a local evaluation map

$$
\begin{aligned}
& \mathrm{ev}_{\alpha, \nu}: U\left(k_{\nu}\right) \longrightarrow \mathbb{Q} / \mathbb{Z}, \\
& \left.\quad x \mapsto \alpha\right|_{x} .
\end{aligned}
$$

Brauer-Manin obstruction

Let U be a scheme of finite type over a number field k and

$$
\alpha \in \operatorname{Br}(U)=H_{\mathrm{et}}^{2}\left(U, \mathbb{G}_{m}\right)
$$

a Brauer class.
At each place ν of k, one has a local evaluation map

$$
\begin{aligned}
& \mathrm{ev}_{\alpha, \nu}: U\left(k_{\nu}\right) \longrightarrow \mathbb{Q} / \mathbb{Z}, \\
& \left.\quad x \mapsto \alpha\right|_{x} .
\end{aligned}
$$

Facts (Yu. I. Manin, ≈ 1970)

- The local evaluation map is locally constant with respect to the ν-adic topology.
- If U is proper then $\mathrm{ev}_{\alpha, \nu}$ is constantly zero for almost all places ν.

Thus, an adelic point $\left(x_{\nu}\right)_{\nu} \in U\left(\mathbb{A}_{k}\right)$ such that $\sum_{\nu} \mathrm{ev}_{\alpha, \nu}\left(x_{\nu}\right) \neq 0$ cannot be approximated by rational points. This is called the Brauer-Manin obstruction.

Brauer-Manin obstruction to integral points

Fact (J.-L. Colliot-Thélène and F. Xu, 2009)

Choose a model of U, an \mathscr{O}_{K}-scheme \mathscr{U} of finite type the generic fibre of which is U.

Then the local evaluation map

$$
\mathrm{ev}_{\alpha, \nu}: \mathscr{U}\left(\mathscr{O}_{k}\right) \longrightarrow \mathbb{Q} / \mathbb{Z}
$$

is constantly zero for almost all places ν.

Brauer-Manin obstruction to integral points

Fact (J.-L. Colliot-Thélène and F. Xu, 2009)

Choose a model of U, an \mathscr{O}_{K}-scheme \mathscr{U} of finite type the generic fibre of which is U.

Then the local evaluation map

$$
\mathrm{ev}_{\alpha, \nu}: \mathscr{U}\left(\mathscr{O}_{k}\right) \longrightarrow \mathbb{Q} / \mathbb{Z}
$$

is constantly zero for almost all places ν.

Thus, there is a Brauer-Manin obstruction to integral points,

- to strong approximation,
- to the integral Hasse principle.

The Brauer group

The Hochschild-Serre spectral sequence

$$
H^{p}\left(\operatorname{Gal}(\bar{k} / k), H_{\mathrm{ett}}^{q}\left(U_{\bar{k}}, \mathbb{G}_{m}\right)\right) \Longrightarrow H_{\mathrm{et}}^{p+q}\left(U, \mathbb{G}_{m}\right)
$$

yields a three-step filtration

$$
0 \subseteq \operatorname{Br}_{0}(U) \subseteq \operatorname{Br}_{1}(U) \subseteq \operatorname{Br}(U)
$$

The Brauer group

The Hochschild-Serre spectral sequence

$$
H^{p}\left(\operatorname{Gal}(\bar{k} / k), H_{\hat{e} t}^{q}\left(U_{\bar{k}}, \mathbb{G}_{m}\right)\right) \Longrightarrow H_{\hat{e} t}^{p+q}\left(U, \mathbb{G}_{m}\right)
$$

yields a three-step filtration

$$
0 \subseteq \operatorname{Br}_{0}(U) \subseteq \operatorname{Br}_{1}(U) \subseteq \operatorname{Br}(U)
$$

Assumption

$$
\begin{equation*}
\Gamma_{\text {ét }}\left(U_{\bar{k}}, \mathbb{G}_{m}\right)=\bar{k}^{*} . \tag{1}
\end{equation*}
$$

- $\operatorname{Br}_{0}(U)$ is the image of a natural homomorphism

$$
H^{2}\left(\operatorname{Gal}(\bar{k} / k), \Gamma_{\text {ét }}\left(U_{\bar{k}}, \mathbb{G}_{m}\right)\right)=\operatorname{Br}(k) \longrightarrow \operatorname{Br}(U) .
$$

This is an injection as soon as U has an adelic point.
$\operatorname{Br}_{0}(U)$ does not contribute to the Brauer-Manin obstruction.

The Brauer group II

- One has $H^{3}\left(\operatorname{Gal}(\bar{k} / k), \Gamma_{\text {ét }}\left(U_{\bar{k}}, \mathbb{G}_{m}\right)\right)=H^{3}\left(\operatorname{Gal}(\bar{k} / k), \bar{k}^{*}\right)=0$ when k is a number field. Thus

$$
\operatorname{Br}_{1}(U) / \operatorname{Br}_{0}(U) \cong H^{1}\left(\operatorname{Gal}(\bar{k} / k), \operatorname{Pic}\left(U_{\bar{k}}\right)\right) .
$$

This subquotient is called the algebraic (part of the) Brauer group.

The Brauer group II

- One has $H^{3}\left(\operatorname{Gal}(\bar{k} / k), \Gamma_{\text {ét }}\left(U_{\bar{k}}, \mathbb{G}_{m}\right)\right)=H^{3}\left(\operatorname{Gal}(\bar{k} / k), \bar{k}^{*}\right)=0$ when k is a number field. Thus

$$
\operatorname{Br}_{1}(U) / \operatorname{Br}_{0}(U) \cong H^{1}\left(\operatorname{Gal}(\bar{k} / k), \operatorname{Pic}\left(U_{\bar{k}}\right)\right)
$$

This subquotient is called the algebraic (part of the) Brauer group.

- $\operatorname{Br}_{1}(U)$ is the kernel of the natural homomorphism $\operatorname{Br}(U) \rightarrow \operatorname{Br}\left(U_{\bar{k}}\right)$. Thus, there is a natural injection

$$
\operatorname{Br}(U) / \operatorname{Br}_{1}(U) \hookrightarrow \operatorname{Br}\left(U_{\bar{k}}\right)^{\operatorname{Gal}(\bar{k} / k)} .
$$

This quotient is called the transcendental (part of the) Brauer group. It seems hard to decide which Galois invariant Brauer classes on $U_{\bar{k}}$ descend to U. Partial results:

- Colliot-Thélène, J.-L. and Skorobogatov, A. N.: Descente galoisienne sur le groupe de Brauer, J. Reine Angew. Math. 682 (2013), 141-165.

Degree four del Pezzo surfaces

Degree four del Pezzo surfaces

- These are non-singular intersections of two quadrics in P^{4}.
- Geometrically: P^{2} blown up in five points in general position.

Degree four del Pezzo surfaces

Degree four del Pezzo surfaces

- These are non-singular intersections of two quadrics in P^{4}.
- Geometrically: P^{2} blown up in five points in general position.

Contains exactly 16 lines, which generate the Picard group.
The group of permutations respecting the intersection matrix is $W\left(D_{5}\right)$ of order 1920.
The pencil of quadrics in P^{4} contains exactly five degenerate ones (rank 4). $W\left(D_{5}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{4} \rtimes S_{5}$ permutes them via the surjection to S_{5}.

Our examples

Our examples

$U:=X \backslash H$ for X a degree four del Pezzo surface and H a hyperplane section. We assume $D:=H \cap X$ to be a geometrically irreducible curve.

Then

- $D_{\bar{k}}$ is an irreducible divisor such that $D_{\bar{k}}^{2}=4 \neq 0$, hence non-principal. In particular, Assumption (1) is fulfilled.
- Pic $U_{\bar{k}}=\operatorname{Pic} X_{\bar{k}} /\langle H\rangle \cong D_{5}^{*}$.

Algebraic Brauer classes

Observations

- $W\left(D_{5}\right)$ has exactly 197 conjugacy classes of subgroups.
- $H^{1}\left(H, D_{5}^{*}\right)$ is
- 0 in 59 cases [including $H=W\left(D_{5}\right)$, index two, or the trivial group],
- $\mathbb{Z} / 2 \mathbb{Z}$ in 62 cases,
- $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ in 44 cases,
- $(\mathbb{Z} / 2 \mathbb{Z})^{3}$ in 16 cases,
- $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ in three cases,
- $\mathbb{Z} / 4 \mathbb{Z}$ in nine cases,
- $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ in three cases, and
- $(\mathbb{Z} / 2 \mathbb{Z})^{2} \times \mathbb{Z} / 4 \mathbb{Z}$ in one case.

Algebraic Brauer classes

Observations

- $W\left(D_{5}\right)$ has exactly 197 conjugacy classes of subgroups.
- $H^{1}\left(H, D_{5}^{*}\right)$ is
- 0 in 59 cases [including $H=W\left(D_{5}\right)$, index two, or the trivial group],
- $\mathbb{Z} / 2 \mathbb{Z}$ in 62 cases,
- $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ in 44 cases,
- $(\mathbb{Z} / 2 \mathbb{Z})^{3}$ in 16 cases,
- $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ in three cases,
- $\mathbb{Z} / 4 \mathbb{Z}$ in nine cases,
- $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ in three cases, and
- $(\mathbb{Z} / 2 \mathbb{Z})^{2} \times \mathbb{Z} / 4 \mathbb{Z}$ in one case.

Remark

The Brauer group of a proper degree four del Pezzo surface may be only 0 , $\mathbb{Z} / 2 \mathbb{Z}$, or $(\mathbb{Z} / 2 \mathbb{Z})^{2}$.

Algebraic Brauer classes II

Theorem

Let $X \subset \mathrm{P}_{k}^{4}$ be a degree four del Pezzo surface over a number field k, $H:=V(I) \subset \mathrm{P}_{k}^{4}$ a k-rational hyperplane such that $H \cap X$ is geometrically irreducible, and put $U:=X \backslash H$. Suppose that
(1) the Galois group operating on the 16 lines on X is the index five subgroup in $W\left(D_{5}\right)$. Then $\operatorname{Br}_{1}(U) / \operatorname{Br}_{0}(U)=\mathbb{Z} / 2 \mathbb{Z}$.
(2) two of the five degenerate quadrics in the pencil associated with X are defined over k and the Galois group operating on the 16 lines on X is of index 20 in $W\left(D_{5}\right)$. Then $\operatorname{Br}_{1}(U) / \operatorname{Br}_{0}(U)=(\mathbb{Z} / 2 \mathbb{Z})^{2}$.

Algebraic Brauer classes II

Theorem

Let $X \subset \mathrm{P}_{k}^{4}$ be a degree four del Pezzo surface over a number field k, $H:=V(I) \subset \mathrm{P}_{k}^{4}$ a k-rational hyperplane such that $H \cap X$ is geometrically irreducible, and put $U:=X \backslash H$. Suppose that
(1) the Galois group operating on the 16 lines on X is the index five subgroup in $W\left(D_{5}\right)$. Then $\operatorname{Br}_{1}(U) / \operatorname{Br}_{0}(U)=\mathbb{Z} / 2 \mathbb{Z}$.
(2) two of the five degenerate quadrics in the pencil associated with X are defined over k and the Galois group operating on the 16 lines on X is of index 20 in $W\left(D_{5}\right)$. Then $\operatorname{Br}_{1}(U) / \operatorname{Br}_{0}(U)=(\mathbb{Z} / 2 \mathbb{Z})^{2}$.

Remark (Generators, Colliot-Thélène-Xu, 2009)

(1) If the pencil contains the k-rational rank 4 quadric $I_{1} l_{2}-l_{3}^{2}+d l_{4}^{2}$ then the quaternion algebra ($\frac{l_{1}}{l}, d$) defines an algebraic 2-torsion Brauer class $\alpha \in \operatorname{Br}(U)$.
(2) $\mathrm{ev}_{\alpha, p}$ is constantly zero if I_{1}, \ldots, I_{4} are linearly independent modulo p and the cusp defined by $I_{1}=\ldots=I_{4}=0$ does not lie on U_{p}.
J. Jahnel (Universität Siegen) On integral points on del Pezzo surfaces Klosterneuburg, January 28, 202117 / 33

Transcendental Brauer classes

Lemma

Let k be a number field and $U:=X \backslash H$, for $X \subset P_{k}^{4}$ a degree four del Pezzo surface and $H \subset P_{k}^{4}$ a k-rational hyperplane such that $D:=H \cap X$ is non-singular. Then there is a canonical monomorphism

$$
\operatorname{Br}(U) / \operatorname{Br}_{1}(U) \hookrightarrow J(D)(k)_{\text {tors }},
$$

for $J(D)$ the Jacobian variety of D.

Transcendental Brauer classes II

Theorem (J. + D. Schindler, 2015)

Let k be any field and $X \subset P_{k}^{4}$ a del Pezzo surface of degree four over k that is given by a system of equations of the type

$$
\begin{aligned}
& I_{1} I_{2}+a u^{2}=X_{0} I_{3}, \\
& I_{3} I_{4}+b v^{2}=X_{0} I_{1},
\end{aligned}
$$

for linear forms $I_{1}, \ldots, I_{4}, u, v$, and $a, b \in k^{*}$. Assume that the forms I_{1}, l_{3}, u, and v are linearly independent. Put $U:=X \backslash H$ for $H:=V\left(X_{0}\right) \subset P_{k}^{4}$.
(1) Then the quaternion algebra

$$
\left(\frac{b l_{1}}{X_{0}}, \frac{a l_{3}}{X_{0}}\right)
$$

defines a Brauer class $\tau \in \operatorname{Br}(U)_{2}$.
(2) If $D:=V\left(X_{0}\right) \cap X$ is geometrically integral and $\frac{1_{1}}{1_{3}}$ is not the square of a rational function on $D_{\bar{k}}$ then τ is transcendental.
Observe that on the genus one curve $D_{\bar{k}}$, the rational function $\frac{l_{1}}{l_{3}}$ has two double zeroes and two double poles, but nevertheless is not a square.

An example

Example

Let the degree four del Pezzo surface $X \subset P_{\mathbb{Q}}^{4}$ be given by the system of equations

$$
\begin{aligned}
X_{1} X_{4}+X_{2}^{2} & =X_{0} X_{3} \\
X_{3}\left(2 X_{1}+X_{2}+X_{3}\right)+X_{4}^{2} & =X_{0} X_{1}
\end{aligned}
$$

and put $U:=X \backslash H$ for $H:=V\left(X_{0}\right)$.
(1) Then the manifold $X(\mathbb{R})$ is connected, its submanifold $U(\mathbb{R})$ is connected, too, and U is not (weakly) obstructed at ∞.
(2) However, strong approximation on U off $\{17, \infty\}$ is violated.

A $\mathbb{Z}\left[\frac{1}{17}\right]$-valued point such that $x_{1} \neq 0$ and $x_{3} \neq 0$ must necessarily fulfil $\left(\frac{x_{1}}{x_{0}}, \frac{x_{3}}{x_{0}}\right)_{2}=1$, although not all \mathbb{Z}_{2}-valued points satisfy this relation.

An example II

Idea of proof.

- A Gröbner base calculation shows that the Galois group operating on the 16 lines is the full $W\left(D_{5}\right)$.
- $D:=H \cap X$ is a non-singular genus one curve such that $\# D(\mathbb{Q})=2$, $D(\mathbb{Q})=\{(0: 1: 0: 0: 0),(0:-1: 0: 2: 0)\}$.
- $\left(\frac{x_{1}}{x_{0}}, \frac{x_{3}}{x_{0}}\right)$ defines a transcendental Brauer class $\tau \in \operatorname{Br}(U)$.

Therefore, $\operatorname{Br}(U) / \operatorname{Br}(\mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z}, \tau$ being a generator.
The Brauer class τ works only at the prime 2. In particular, the equations do not allow real points such that $\frac{x_{1}}{x_{0}}$ and $\frac{x_{3}}{x_{0}}$ are both negative. $\mathrm{ev}_{\tau, 17}$ is constant even on rational points. Note that D has bad reduction at 17 .

An example III

Remark

- There are infinitely many integral points on \mathscr{U}. The curve $V\left(X_{3}\right)$ yields the family

$$
\left(1: n^{4}: \pm n^{3}: 0:-n^{2}\right) .
$$

- The curve $V\left(2 X_{1}+X_{2}+X_{3}\right)$ is elliptic. It carries the six integral points $(1: 0: 0: 0: 0),(1: 0:-1: 1: 0),(1: 4:-1:-7:-2),(1: 4: 0:-8:-2)$, (1:196:-49:-343:-14), (1:196:48:-440:-14), and no others.
- A search for integral points on \mathscr{U} delivered 28 of height <50000 that are not of the forms mentioned above. These are

```
(1:-2:1:1:0), (1: -1: -1:2:-1), (1: -3:1:4:-1), (1:-8:6:4:4), (1:4:4:-8: -6),
(1:18:-11:-23:-8), (1:-28:20:8:14), (1:-56:30:4:16), (1:-696:-230:4:76), (1:521:-223:-808:-97),
(1:1413:381:-3204:-105), (1:-829:467:62:263), (1:912:712:-128:-556),(1:1278:-951:-423:-708),
(1 : -1595 : 1157: 444: 839), (1 : -1648 : -1288: 4352: 1004), (1: 3573: -2721 : -2988: -2073),
(1:-6876:3924: 9288: 2238), (1:3840: -2948: -3056: -2264), (1:5832:4122: -15228: -2916),
(1:-15678: -7219: 289:3324), (1:-6183:-4899: 16344:3879), (1: 14688: 8947: -791: -5450),
(1:11231:-8077:-2950:-5809), (1:-16476:12115:5017:8908), (1:6948:8415: -15687:-10194),
(1:-38044:29087:31097:22238), and (1:44152: - 34138: - 33148: -26396).
```


A modification of the example

Example

Let $\mathscr{X}^{\prime} \subset \mathrm{P}_{\mathbb{Z}}^{4}$ be given by the system of equations

$$
\begin{aligned}
\left(8 X_{1}+3 X_{0}\right) X_{4}+X_{2}^{2} & =X_{0}\left(8 X_{3}+2 X_{0}\right) \\
\left(8 X_{3}+2 X_{0}\right)\left(16 X_{1}+X_{2}+8 X_{3}+8 X_{0}\right)+X_{4}^{2} & =X_{0}\left(8 X_{1}+3 X_{0}\right)
\end{aligned}
$$

Put $\mathscr{U}^{\prime}:=\mathscr{X}^{\prime} \backslash \mathscr{H}$ for the hyperplane $\mathscr{H}:=V\left(X_{0}\right) \subset \mathrm{P}_{\mathbb{Z}}^{4}$ and denote the generic fibre of \mathscr{U}^{\prime} by U^{\prime}.
Then $\mathscr{U}^{\prime}\left(\mathbb{Z}_{p}\right) \neq \varnothing$ for every prime p and $U^{\prime}(\mathbb{Q}) \neq \varnothing$, but $\mathscr{U}^{\prime}\left(\mathbb{Z}\left[\frac{1}{17}\right]\right)=\varnothing$.
I.e, the Hasse principle for $\mathbb{Z}\left[\frac{1}{17}\right]$-valued points is violated. In particular, a failure of the integral Hasse principle occurs.
The violations are explained by a transcendental Brauer class.

A further modification of the example-Blowing up

Example

Let $\mathscr{S} \subset \mathrm{P}_{\mathbb{Z}}^{3}$ be given by the equation

$$
-Y_{0}^{2} Y_{2}+Y_{0} Y_{1}^{2}+2 Y_{0} Y_{2}^{2}+Y_{1} Y_{2} Y_{3}-2 Y_{1}^{2} Y_{2}+Y_{2}^{2} Y_{3}+Y_{3}^{3}=0
$$

and put $\mathscr{V}:=\mathscr{S} \backslash \mathscr{E}$, for the hyperplane $\mathscr{E}:=V\left(Y_{0}\right) \subset \mathrm{P}_{\mathbb{Z}}^{3}$.
Then every integral point $\left(1: y_{1}: y_{2}: y_{3}\right) \in \mathscr{V}(\mathbb{Z})$ such that $y_{2} y_{3} \neq 0$ satisfies $\left(\left(y_{2}-y_{1}^{2}\right) y_{3}, y_{2}\right)_{2}=1$ or $\operatorname{gcd}\left(2 y_{2}-1, y_{3}\right)>1$.

A further modification of the example-Blowing up

Example

Let $\mathscr{S} \subset \mathrm{P}_{\mathbb{Z}}^{3}$ be given by the equation

$$
-Y_{0}^{2} Y_{2}+Y_{0} Y_{1}^{2}+2 Y_{0} Y_{2}^{2}+Y_{1} Y_{2} Y_{3}-2 Y_{1}^{2} Y_{2}+Y_{2}^{2} Y_{3}+Y_{3}^{3}=0
$$

and put $\mathscr{V}:=\mathscr{S} \backslash \mathscr{E}$, for the hyperplane $\mathscr{E}:=V\left(Y_{0}\right) \subset \mathrm{P}_{\mathbb{Z}}^{3}$.
Then every integral point $\left(1: y_{1}: y_{2}: y_{3}\right) \in \mathscr{V}(\mathbb{Z})$ such that $y_{2} y_{3} \neq 0$ satisfies $\left(\left(y_{2}-y_{1}^{2}\right) y_{3}, y_{2}\right)_{2}=1$ or $\operatorname{gcd}\left(2 y_{2}-1, y_{3}\right)>1$.

Proof. \mathscr{S} is obtained from \mathscr{X} by blowing up $(0: 1: 0: 0: 0)$. From the computational viewpoint, this means to eliminate X_{1} from the equations defining \mathscr{X}. We replaced $X_{0}, X_{2}, X_{3}, X_{4}$ by Y_{0}, Y_{1}, Y_{2}, and Y_{3}.
An integral point on \mathscr{V} is a \mathbb{Q}-rational point $\left(1: x_{1}: x_{2}: x_{3}: x_{4}\right) \in U(\mathbb{Q})$ such that x_{2}, x_{3}, and x_{4} are integers, but x_{1} not necessarily. If, however, $\operatorname{gcd}\left(2 x_{3}-1, x_{4}\right)=1$ then $x_{4} \cdot x_{1}=x_{3}-x_{2}^{2}$ and $\left(2 x_{3}-1\right) \cdot x_{1}=-\left(x_{4}^{2}+x_{2} x_{3}+x_{3}^{2}\right)$ together imply that x_{1} has to be an integer, as well. Then, $\left(x_{1}, x_{3}\right)_{2}=1$.

A further modification of the example-Blowing up II

Remark

There exist integral points on \mathscr{V} of all three kinds allowed by the statement.

- For $(1:-1: 2:-1)$, the gcd is 1 and the Hilbert symbol is 1 .
- For $(1: 15:-8:-17)$, the gcd is $17>1$ and the Hilbert symbol is 1 .
- For $(1: 5: 2: 3)$, the gcd is $3>1$ and the Hilbert symbol is (-1).

A further modification of the example-Blowing up III

Example

Let $\mathscr{S}^{\prime} \subset \mathrm{P}_{\mathbb{Z}}^{3}$ be given by the equation

$$
\begin{aligned}
& 12 Y_{0}^{3}+40 Y_{0}^{2} Y_{2}+66 Y_{0}^{2} Y_{3}-3 Y_{0} Y_{1}^{2}-4 Y_{0} Y_{1} Y_{2}+8 Y_{0} Y_{1} Y_{3}+80 Y_{0} Y_{2}^{2} \\
& +80 Y_{0} Y_{2} Y_{3}+144 Y_{0} Y_{3}^{2}-16 Y_{1}^{2} Y_{2}+32 Y_{1} Y_{2} Y_{3}+128 Y_{2}^{2} Y_{3}+128 Y_{3}^{3}=0
\end{aligned}
$$

$$
\text { and put } \mathscr{V}^{\prime}:=\mathscr{S}^{\prime} \backslash \mathscr{E}, \text { for the hyperplane } \mathscr{E}:=V\left(Y_{0}\right) \subset \mathrm{P}_{\mathbb{Z}}^{3} \text {. }
$$

Then every integral point $\left(1: y_{1}: y_{2}: y_{3}\right) \in \mathscr{V}^{\prime}(\mathbb{Z})$ satisfies

$$
\operatorname{gcd}\left(16 y_{2}+3,8 y_{3}+3\right)>1
$$

Proof. The equation is obtained from the example before by plugging in $\left(y_{0}, 2 y_{1}+1,16 y_{2}+3,8 y_{3}+3\right)$ for $\left(y_{0}, y_{1}, y_{2}, y_{3}\right)$.

A further modification of the example-Blowing up IV

Remark

The surface \mathscr{V}^{\prime} contains infinitely many integral points. Indeed, define the two sequences c and c^{\prime} in \mathbb{Z}^{3} recursively by
$c_{1}:=[-2,0,0], c_{2}:=[170,-24,-48], \quad c_{i+2}:=-110 c_{i+1}-c_{i}-[48,24,48]$,
$c_{1}^{\prime}:=[2,0,0], \quad c_{2}^{\prime}:=[-266,-24,-48], c_{i+2}^{\prime}:=-110 c_{i+1}^{\prime}-c_{i}^{\prime}-[48,24,48]$.
Then, for each $i \in \mathbb{N},\left(1: c_{i 1}: c_{i 2}: c_{i 3}\right) \in \mathscr{V}^{\prime}(\mathbb{Z})$ and $\left(1: c_{i 1}^{\prime}: c_{i 2}^{\prime}: c_{i 3}^{\prime}\right) \in \mathscr{V}^{\prime}(\mathbb{Z})$. [Intersection of \mathscr{S}^{\prime} with plane given by $Y_{3}=2 Y_{2}$ contains \mathbb{Q}-rational (-1)curve. Therefore splits off a conic. We solve a Pell-like equation.]
There are further integral points on \mathscr{V}^{\prime}, for instance ($\left.1: 5414:-803:-1536\right)$ and (1:-344 632:534:20706).
Moreover, both are the smallest members of infinite sequences of integral points of the same kind as above. The second member of the sequence starting at (1:5414:-803:-1536) involves 1340-digit integers, already.

Another example

Example

Let the degree four del Pezzo surface $X \subset P_{\mathbb{Q}}^{4}$ be given by the system of equations

$$
\begin{aligned}
\left(X_{1}+X_{4}\right) X_{4} & =X_{2}^{2}+\left(X_{0}+X_{4}\right)^{2} \\
\left(X_{2}+X_{4}\right)\left(2 X_{2}+X_{4}\right) & =2 X_{1}^{2}+3 X_{3}^{2}
\end{aligned}
$$

and put $U:=X \backslash H$ for $H:=V\left(X_{0}\right)$.

Another example II

(1) Then the manifold $X(\mathbb{R})$ consists of two connected components and its submanifold $U(\mathbb{R})$ decomposes into three connected components.
(2) Strong approximation off $S_{1}:=\{p$ prime $\mid p \equiv 1(\bmod 4)\}$ is violated. A $\mathbb{Z}\left[\frac{1}{S_{1}}\right]$-valued point must necessarily fulfil $\left(\frac{x_{4}}{x_{0}},-1\right)_{2}+\left(\frac{x_{4}}{x_{0}},-1\right)_{\infty}=0$, although not all adelic points outside S_{1} satisfy this relation.
(3) Similarly, there is a violation of strong approximation off

$$
S_{2}:=\left\{p \text { prime } \left\lvert\,\left(\frac{-6}{p}\right)=1\right.\right\}=\{p \text { prime } \mid p \equiv 1,5,7,11 \quad(\bmod 24)\}
$$

A $\mathbb{Z}\left[\frac{1}{S_{2}}\right]$-valued point with $x_{2}+x_{4} \neq 0$ must necessarily fulfil the nontrivial relation $\left(\frac{x_{2}+x_{4}}{x_{0}},-6\right)_{2}+\left(\frac{x_{2}+x_{4}}{x_{0}},-6\right)_{3}+\left(\frac{x_{2}+x_{4}}{x_{0}},-6\right)_{\infty}=0$.
(9) In addition, U is strongly obstructed at ∞, (according to our understanding in the non-connected case).
And therefore there is a violation of strong approximation off $\{\infty\}$.

Another example III

Idea of proof. Components:

- The sign of $\frac{X_{2}+X_{4}}{X_{4}}$ distinguishes the two components X_{+}and X_{-}.
- $D:=H \cap X$ does not meet X_{-}, but decomposes X_{+}into two components according to the sign of $\frac{X_{4}}{X_{0}}$.
No transcendental Brauer classes:
- $D\left(\mathbb{Q}_{3}\right)=\varnothing \Longrightarrow D(\mathbb{Q})=\varnothing$, but $J(D)(\mathbb{Q}) \cong \mathbb{Z}$.

Algebraic Brauer classes:

- The two rank-4 quadrics given yield the algebraic Brauer classes $\alpha_{1}, \alpha_{2} \in \operatorname{Br}(U)$, given by $\left(\frac{x_{4}}{x_{0}},-1\right)$ and $\left(\frac{x_{2}+x_{4}}{x_{0}},-6\right)$.
- α_{1} works only at 2 and ∞, while α_{2} works only at 2,3 and ∞.

Obstruction at ∞ :

- X_{-}is a compact component of U. According to our definition, U is strongly obstructed at ∞.

Another example IV

Remark

- There is exactly one integral point on \mathscr{U} lying on the compact component of $U(\mathbb{R})$, namely $(1: 0: 1: 0:-1)$.
- A search for integral points on \mathscr{U} delivered the following twelve others.
($1: 3: 4: \pm 13: 17$), ($1: 147:-452: \pm 383: 1409$), ($1: 12972: 9043: \pm 3550: 6305$),
($1: 12759: 15044: \pm 20351: 17741$), $(1:-2328:-7367: \pm 19622:-23293)$, and ($1: 2052: 11143: \pm 44472: 60569$).

Another example IV

Remark

- There is exactly one integral point on \mathscr{U} lying on the compact component of $U(\mathbb{R})$, namely $(1: 0: 1: 0:-1)$.
- A search for integral points on \mathscr{U} delivered the following twelve others.
(1:3:4: $4: 13: 17$), ($1: 147:-452: \pm 383: 1409),(1: 12972: 9043: \pm 3550: 6305)$,
$(1: 12759: 15044: \pm 20351: 17741),(1:-2328:-7367: \pm 19622:-23293)$, and $(1: 2052: 11143: \pm 44472: 60569)$.
Violation of strong approximation off ∞ :
- Consider the adelic point x outside ∞ that is equal to $(1: 0: 1: 0:-1)$ at every prime $p \neq 5, \infty$ and equal to $(1: 3: 4: 13: 17)$ at $p=5$.
Strong approximation off $\{\infty\}$ would imply that there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of integral points $x_{n} \in \mathscr{U}(\mathbb{Z})$ being convergent to x simultaneously with respect to the 2 -, 3 -, and 5 -adic topologies.
The Brauer classes α_{1} and α_{2} now enforce that x_{n} must be contained in the same connected component of $U(\mathbb{R})$ as the point $(-1: 0: 1: 0: 1)$. This component, however, does not contain any other integral point.

Another example V

In this example, algebraic Brauer classes interact with effects caused by $U(\mathbb{R})$ being disconnected into compact and non-compact components.

- The two non-compact components of $U(\mathbb{R})$ in fact fulfil the requirements of our definition of unobstructedness in the strong sense.
- Nevertheless, strong approximation off $\{\infty\}$ is violated, as there are Brauer classes α_{1} and α_{2} working at the primes 2,3 , and ∞.

Remark (concerning concepts of obstruction at ∞)

This shows that a serious definition of being unobstructed at infinity must include requirements on all connected components of $U(\mathbb{R})$.

Thanks

Thank you!!

