K3 surfaces and their Picard groups

Jörg Jahnel
University of Siegen
Mathematische Gesellschaft zu Göttingen
December 15, 2011
joint work with
Andreas-Stephan Elsenhans (Bayreuth)

K3 surfaces

Definition

A K3 surface is a simply connected, projective algebraic surface having a global (algebraic, holomorphic) 2-form without zeroes or poles.

K3 surfaces

Definition

A K3 surface is a simply connected, projective algebraic surface having a global (algebraic, holomorphic) 2-form without zeroes or poles.

Examples

(1) A double cover of \mathbf{P}^{2}, ramified at a smooth sextic curve.

K3 surfaces

Definition

A K3 surface is a simply connected, projective algebraic surface having a global (algebraic, holomorphic) 2-form without zeroes or poles.

Examples

(1) A double cover of \mathbf{P}^{2}, ramified at a smooth sextic curve.
(2) A smooth quartic in \mathbf{P}^{3}.

K3 surfaces

Definition

A K3 surface is a simply connected, projective algebraic surface having a global (algebraic, holomorphic) 2-form without zeroes or poles.

Examples

(1) A double cover of \mathbf{P}^{2}, ramified at a smooth sextic curve.
(2) A smooth quartic in \mathbf{P}^{3}.
(3) A smooth complete intersection of a quadric and a cubic in \mathbf{P}^{4}.

K3 surfaces

Definition

A K3 surface is a simply connected, projective algebraic surface having a global (algebraic, holomorphic) 2-form without zeroes or poles.

Examples

(1) A double cover of \mathbf{P}^{2}, ramified at a smooth sextic curve.
(2) A smooth quartic in \mathbf{P}^{3}.
(3) A smooth complete intersection of a quadric and a cubic in \mathbf{P}^{4}.
(9) A smooth complete intersection of three quadrics in \mathbf{P}^{5}.

K3 surfaces

Definition

A K3 surface is a simply connected, projective algebraic surface having a global (algebraic, holomorphic) 2-form without zeroes or poles.

Examples

(1) A double cover of \mathbf{P}^{2}, ramified at a smooth sextic curve.
(2) A smooth quartic in \mathbf{P}^{3}.
(3) A smooth complete intersection of a quadric and a cubic in \mathbf{P}^{4}.
(9) A smooth complete intersection of three quadrics in \mathbf{P}^{5}.

Remark

Resolutions of singular quartics in \mathbf{P}^{3} are $K 3$ surfaces, too, when the singularities are rational.

K3 surfaces as complex algebraic surfaces

Properties of K3 surfaces

Betti numbers: 1, 0, 22, 0, 1.
Hodge diamond:

K3 surfaces as complex algebraic surfaces

Properties of K3 surfaces

Betti numbers: 1, 0, 22, 0, 1 .
Hodge diamond:

Picard group (Ad hoc definition for us: The subgroup of $H^{2}(X, \mathbb{Z})$, generated by algebraic/holomorphic curves): \mathbb{Z}^{n} for $n \in\{1, \ldots, 20\}$.

Question

Given a concrete $K 3$ surface, defined over \mathbb{Q}, can one compute its geometric Picard group?

Reduction modulo p

Fact

Let S be a $K 3$ surface over \mathbb{Q} and p a prime of good reduction. Then, the homomorphism

$$
\operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right) \rightarrow \operatorname{Pic}\left(S_{\overline{\mathbb{F}}_{p}}\right),
$$

given by reduction, is injective.

Reduction modulo p

Fact

Let S be a $K 3$ surface over \mathbb{Q} and p a prime of good reduction. Then, the homomorphism

$$
\operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right) \rightarrow \operatorname{Pic}\left(S_{\overline{\mathbb{F}}_{p}}\right),
$$

given by reduction, is injective.

Remarks

(1) To prove $\operatorname{rk} \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)=1$, we might want to verify $\operatorname{rk} \operatorname{Pic}\left(S_{\overline{\mathbb{F}}_{p}}\right)=1$. But, unfortunately, we can't.

Reduction modulo p

Fact

Let S be a $K 3$ surface over \mathbb{Q} and p a prime of good reduction. Then, the homomorphism

$$
\operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right) \rightarrow \operatorname{Pic}\left(S_{\overline{\mathbb{F}}_{p}}\right)
$$

given by reduction, is injective.

Remarks

(1) To prove $\operatorname{rk} \operatorname{Pic}\left(S_{\overline{\mathbb{Q}}}\right)=1$, we might want to verify $\operatorname{rk} \operatorname{Pic}\left(S_{\overline{\mathbb{F}}_{p}}\right)=1$. But, unfortunately, we can't.
(2) Alternative approach (Idea due to Ronald van Luijk):

Choose two primes p_{1} and p_{2} of good reduction. Verify

$$
\operatorname{rk} \operatorname{Pic}\left(S_{\overline{\mathbb{F}}_{p_{1}}}\right)=\operatorname{rkPic}\left(S_{\overline{\mathbb{F}}_{P_{2}}}\right)=2
$$

Prove, in addition, that the two Picard lattices are incompatible.
(I.e., show that the discriminants differ by a factor being a non-square.)
J. Jahnel (University of Siegen)

K3 surfaces over finite fields

Facts

(1) The second étale cohomology group $H_{\hat{e} t}^{2}\left(S_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{/}(1)\right)$ is of dimension 22.

K3 surfaces over finite fields

Facts

(1) The second étale cohomology group $H_{e \mathrm{e} t}^{2}\left(S_{\mathbb{F}_{p}}, \mathbb{Q}_{/}(1)\right)$ is of dimension 22.
(2) The Picard group $\operatorname{Pic}\left(S_{\overline{\mathbb{F}}_{p}}\right)$ injects via the Chern class into the second étale cohomology group $H_{\hat{e t}}^{2}\left(S_{\mathbb{F}_{P}}, \mathbb{Q}_{l}(1)\right)$. The rank is at most 22.

K3 surfaces over finite fields

Facts

(1) The second étale cohomology group $H_{\mathrm{ett}}^{2}\left(S_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{l}(1)\right)$ is of dimension 22.
(2) The Picard group $\operatorname{Pic}\left(S_{\overline{\mathbb{F}}_{p}}\right)$ injects via the Chern class into the second étale cohomology group $H_{\text {ett }}^{2}\left(S_{\overline{\mathbb{F}}^{\prime}}, \mathbb{Q}_{/}(1)\right)$. The rank is at most 22.

Remarks (The Galois operation)

- The Galois group operates on the Picard group and on étale cohomology. We have two $\operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right)$-representations.

K3 surfaces over finite fields

Facts

(1) The second étale cohomology group $H_{e \text { ett }}^{2}\left(S_{\mathbb{F}_{p}}, \mathbb{Q}_{l}(1)\right)$ is of dimension 22.
(2) The Picard group $\operatorname{Pic}\left(S_{\overline{\mathbb{F}}_{p}}\right)$ injects via the Chern class into the second étale cohomology group $H_{\text {et }}^{2}\left(S_{\overline{\mathbb{F}_{p}}}, \mathbb{Q}_{/}(1)\right)$. The rank is at most 22.

Remarks (The Galois operation)

- The Galois group operates on the Picard group and on étale cohomology. We have two $\operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right)$-representations.
- The operations are compatible with the Chern class map. The Picard group is a sub-representation of the cohomology.

The Galois operation on étale cohomology

Question

Can we compute the Galois operation on $H_{\mathrm{et}}^{2}\left(S_{\overrightarrow{\mathbb{F}_{p}}}, \mathrm{Q}_{l}(1)\right)$?
As the Galois group is generated by the Frobenius, we had to compute the action of the Frobenius. This would mean to give a 22×22-matrix and a basis of the étale cohomology group. It seems hard to give an explicit basis.

The Galois operation on étale cohomology

Question

Can we compute the Galois operation on $H_{\mathrm{ett}^{2}}^{2}\left(S_{\mathbb{F}_{p}}, \mathbb{Q}_{/}(1)\right)$?
As the Galois group is generated by the Frobenius, we had to compute the action of the Frobenius. This would mean to give a 22×22-matrix and a basis of the étale cohomology group. It seems hard to give an explicit basis.

Easier problem

Compute the characteristic polynomial Φ of the Frobenius.
The characteristic polynomial Φ of the Frobenius is independent of the choice of a basis.

Computing Φ

Theorem (Lefschetz' Trace Formula)

For a $K 3$ surface V over \mathbb{F}_{p}, one has

$$
\# V\left(\mathbb{F}_{p^{e}}\right)=1+p^{2 e}+\operatorname{Tr}\left(\text { Frob }^{e}\right)
$$

Here, Frob denotes the operation of Frobenius on $H_{e ̂ t}^{2}\left(S_{\mathbb{F}_{p}}, \mathbb{Q}_{I}\right)$.

Computing Φ

Theorem (Lefschetz' Trace Formula)

For a $K 3$ surface V over \mathbb{F}_{p}, one has

$$
\# V\left(\mathbb{F}_{p^{e}}\right)=1+p^{2 e}+\operatorname{Tr}\left(\text { Frob }^{e}\right)
$$

Here, Frob denotes the operation of Frobenius on $H_{e \mathrm{et}}^{2}\left(S_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{I}\right)$.

Theorem (Newton's identities)

Let V be a $K 3$ surface over \mathbb{F}_{p} and Φ be the characteristic polynomial of Frob on $H_{\text {et }}^{2}\left(S_{\mathbb{F}_{p}}, \mathbb{Q}_{I}\right)$.
Then, the coefficient of Φ at T^{22-e} may be computed from the traces of Frob, Frob $^{2}, \ldots$, Frob e.

Interlude: Two versions of the characteristic polynomial

- The Picard group injects into $H_{\text {ett }}^{2}\left(S_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{/}(1)\right)$.
- However, $H_{\text {ét }}^{2}\left(S_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\prime}\right)$ appears to be more natural. And it occurs in the Lefschetz trace formula.
- Both differ only in the operation of Frob.

The operation of Frob on $H_{\text {et }}^{2}\left(S_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{/}(1)\right)$ is the operation on $H_{\text {ét }}^{2}\left(S_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{I}\right)$ divided by p.

Interlude: Two versions of the characteristic polynomial

- The Picard group injects into $H_{\text {ett }}^{2}\left(S_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{/}(1)\right)$.
- However, $H_{\text {ett }}^{2}\left(S_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{\prime}\right)$ appears to be more natural. And it occurs in the Lefschetz trace formula.
- Both differ only in the operation of Frob.

The operation of Frob on $H_{\text {ét }}^{2}\left(S_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{l}(1)\right)$ is the operation on $H_{\text {ett }}^{2}\left(S_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{I}\right)$ divided by p.

Fact

We therefore have

$$
\Phi^{(1)}(T)=\frac{1}{p^{22}} \Phi(p T)
$$

Interlude: Two versions of the characteristic polynomial

- The Picard group injects into $H_{\text {ett }}^{2}\left(S_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{/}(1)\right)$.
- However, $H_{e \text { et }}^{2}\left(S_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{1}\right)$ appears to be more natural. And it occurs in the Lefschetz trace formula.
- Both differ only in the operation of Frob.

The operation of Frob on $H_{\text {ét }}^{2}\left(S_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{l}(1)\right)$ is the operation on $H_{\text {ett }}^{2}\left(S_{\overline{\mathbb{F}}_{p}}, \mathbb{Q}_{I}\right)$ divided by p.

Fact

We therefore have

$$
\Phi^{(1)}(T)=\frac{1}{p^{22}} \Phi(p T)
$$

Remark

From now on, in this talk, we will prefer $\Phi^{(1)}$ versus Φ.

Restrictions on $\phi^{(1)}$

Not every polynomial of degree 22 may appear as the characteristic polynomial of Frobenius for a $K 3$ surface over \mathbb{F}_{p}. There are the following restrictions, which were established in the Grothendieck era.

Restrictions on $\phi^{(1)}$

Not every polynomial of degree 22 may appear as the characteristic polynomial of Frobenius for a $K 3$ surface over \mathbb{F}_{p}. There are the following restrictions, which were established in the Grothendieck era.

Theorem (Restrictions on $\phi^{(1)}$)

Let V be a $K 3$ surface over \mathbb{F}_{p} and $\Phi^{(1)}$ the characteristic polynomial of Frob on $H_{\mathrm{et}}^{2}\left(S_{\mathbb{F}_{p}}, \mathbb{Q}_{ノ}(1)\right)$. Then $\Phi^{(1)} \in \mathbb{Q}[T]$, independent of I. Further,

- Functional equation: $\Phi^{(1)}(T)= \pm T^{22} \Phi^{(1)}(1 / T)$.

Restrictions on $\phi^{(1)}$

Not every polynomial of degree 22 may appear as the characteristic polynomial of Frobenius for a $K 3$ surface over \mathbb{F}_{p}. There are the following restrictions, which were established in the Grothendieck era.

Theorem (Restrictions on $\phi^{(1)}$)

Let V be a $K 3$ surface over \mathbb{F}_{p} and $\Phi^{(1)}$ the characteristic polynomial of Frob on $H_{\mathrm{et}}^{2}\left(S_{\mathbb{F}_{p}}, \mathbb{Q}_{ノ}(1)\right)$. Then $\Phi^{(1)} \in \mathbb{Q}[T]$, independent of I. Further,

- Functional equation: $\Phi^{(1)}(T)= \pm T^{22} \Phi^{(1)}(1 / T)$.
- Weil conjectures (Deligne): Every zero of $\Phi^{(1)}$ is of absolute value 1 .

Restrictions on $\phi^{(1)}$

Not every polynomial of degree 22 may appear as the characteristic polynomial of Frobenius for a $K 3$ surface over \mathbb{F}_{p}. There are the following restrictions, which were established in the Grothendieck era.

Theorem (Restrictions on $\phi^{(1)}$)

Let V be a $K 3$ surface over \mathbb{F}_{p} and $\Phi^{(1)}$ the characteristic polynomial of Frob on $H_{e \mathrm{et}}^{2}\left(S_{\mathbb{F}_{p}}, \mathbb{Q}_{/}(1)\right)$. Then $\Phi^{(1)} \in \mathbb{Q}[T]$, independent of I. Further,

- Functional equation: $\Phi^{(1)}(T)= \pm T^{22} \Phi^{(1)}(1 / T)$.
- Weil conjectures (Deligne): Every zero of $\Phi^{(1)}$ is of absolute value 1.
- Katz' conjecture (Newton polygon versus Hodge polygon, Mazur and Ogus):
Let $\Phi(T)=T^{22}+a_{21} T^{21}+\cdots+a_{0}$. Then, $p a_{i} \in \mathbb{Z}$ (and $a_{0}= \pm 1$).

Restrictions on $\phi^{(1)}$

Not every polynomial of degree 22 may appear as the characteristic polynomial of Frobenius for a $K 3$ surface over \mathbb{F}_{p}. There are the following restrictions, which were established in the Grothendieck era.

Theorem (Restrictions on $\phi^{(1)}$)

Let V be a $K 3$ surface over \mathbb{F}_{p} and $\Phi^{(1)}$ the characteristic polynomial of Frob on $H_{e \mathrm{e} t}^{2}\left(S_{\bar{F}_{p}}, \mathbb{Q}_{/}(1)\right)$. Then $\Phi^{(1)} \in \mathbb{Q}[T]$, independent of I. Further,

- Functional equation: $\Phi^{(1)}(T)= \pm T^{22} \Phi^{(1)}(1 / T)$.
- Weil conjectures (Deligne): Every zero of $\Phi^{(1)}$ is of absolute value 1 .
- Katz' conjecture (Newton polygon versus Hodge polygon, Mazur and Ogus):
Let $\Phi(T)=T^{22}+a_{21} T^{21}+\cdots+a_{0}$. Then, $p a_{i} \in \mathbb{Z}$ (and $a_{0}= \pm 1$).

Observation (Hyperplane section)

Generally, for projective varieties, we also have $\Phi^{(1)}(1)=0$.

Computing Φ II

Algorithm (Candidates for the characteristic polynomial)

(1) Count $V\left(\mathbb{F}_{q}\right), V\left(\mathbb{F}_{q^{2}}\right), \ldots, V\left(\mathbb{F}_{q^{10}}\right)$.
(2) Compute the coefficients of T^{21}, \ldots, T^{12}. (Newton's identities)
(3) Determine the coefficients of T^{0}, \ldots, T^{10} up to a common sign. (Functional equation)
(9) Calculate the coefficient of T^{11} using $\Phi^{(1)}(1)=0$.

The result are two candidates for $\Phi^{(1)}$. One for each sign in the functional equation.

Computing Φ II

Algorithm (Candidates for the characteristic polynomial)

(1) Count $V\left(\mathbb{F}_{q}\right), V\left(\mathbb{F}_{q^{2}}\right), \ldots, V\left(\mathbb{F}_{q^{10}}\right)$.
(2) Compute the coefficients of T^{21}, \ldots, T^{12}. (Newton's identities)
(3) Determine the coefficients of T^{0}, \ldots, T^{10} up to a common sign. (Functional equation)
(9) Calculate the coefficient of T^{11} using $\Phi^{(1)}(1)=0$.

The result are two candidates for $\Phi^{(1)}$. One for each sign in the functional equation. The task is to exclude one of them.

Computing Φ III

Algorithm (A naive method to determine the sign)

- Count $V\left(\mathbb{F}_{q^{11}}\right), V\left(\mathbb{F}_{q^{12}}\right), \ldots$ until the sign is determined.

Computing Φ III

Algorithm (A naive method to determine the sign)

- Count $V\left(\mathbb{F}_{q^{11}}\right), V\left(\mathbb{F}_{q^{12}}\right), \ldots$ until the sign is determined.

Algorithm (A better algorithm)

- For both candidates, calculate the absolute values of their zeroes.
- If that excludes neither candidate then count $V\left(\mathbb{F}_{q^{11}}\right), V\left(\mathbb{F}_{q^{12}}\right), \ldots$ until the sign is determined.

Computing Φ III

Algorithm (A naive method to determine the sign)

- Count $V\left(\mathbb{F}_{q^{11}}\right), V\left(\mathbb{F}_{q^{12}}\right), \ldots$ until the sign is determined.

Algorithm (A better algorithm)

- For both candidates, calculate the absolute values of their zeroes.
- If that excludes neither candidate then count $V\left(\mathbb{F}_{q^{11}}\right), V\left(\mathbb{F}_{q^{12}}\right), \ldots$ until the sign is determined.

Question

Can we do better? I.e., can we exclude a candidate in another way?
Unfortunately, the Theorem of Mazur-Ogus never excludes any of the candidates.

The Frobenius eigenspaces

Question

Can we describe some of the Frobenius eigenspaces?

The Frobenius eigenspaces

Question

Can we describe some of the Frobenius eigenspaces?

Partial answer

The arithmetic Picard group injects into to second étale cohomology. The image is contained in the eigenspace for the eigenvalue 1.

The Frobenius eigenspaces

Question

Can we describe some of the Frobenius eigenspaces?

Partial answer

The arithmetic Picard group injects into to second étale cohomology. The image is contained in the eigenspace for the eigenvalue 1.

Consequence

The number of eigenvalues that are roots of unity, counted with multiplicity, is an upper bound for the geometric Picard rank.

The Tate conjecture

Conjecture (Tate)

The image of the arithmetic Picard group generates the entire eigenspace.

The Tate conjecture

Conjecture (Tate)

The image of the arithmetic Picard group generates the entire eigenspace.

Remarks

- The Tate conjecture implies that the geometric Picard rank equals the number of eigenvalues that are roots of unity, counted with multiplicity.

The Tate conjecture

Conjecture (Tate)

The image of the arithmetic Picard group generates the entire eigenspace.

Remarks

- The Tate conjecture implies that the geometric Picard rank equals the number of eigenvalues that are roots of unity, counted with multiplicity.
- Consequently, for every $K 3$ surface over $\overline{\mathbb{F}}_{p}$, the Picard rank is predicted to be even.

The Tate conjecture

Conjecture (Tate)

The image of the arithmetic Picard group generates the entire eigenspace.

Remarks

- The Tate conjecture implies that the geometric Picard rank equals the number of eigenvalues that are roots of unity, counted with multiplicity.
- Consequently, for every $K 3$ surface over $\overline{\mathbb{F}}_{p}$, the Picard rank is predicted to be even. (This implies rk $\operatorname{Pic}(V) \geq 2$ for every $K 3$ surface over $\overline{\mathbb{F}}_{p}$.)

The Tate conjecture

Conjecture (Tate)

The image of the arithmetic Picard group generates the entire eigenspace.

Remarks

- The Tate conjecture implies that the geometric Picard rank equals the number of eigenvalues that are roots of unity, counted with multiplicity.
- Consequently, for every $K 3$ surface over $\overline{\mathbb{F}}_{p}$, the Picard rank is predicted to be even. (This implies rk $\operatorname{Pic}(V) \geq 2$ for every $K 3$ surface over $\overline{\mathbb{F}}_{p}$.)
- The Tate conjecture is proven for most $K 3$ surfaces.

The Artin-Tate conjecture

Notation

- V - a $K 3$ surface over \mathbb{F}_{q},
- $\Phi^{(1)}$ - the characteristic polynomial of Frob on $H_{\text {ett }}^{2}\left(V_{\overline{\mathbb{F}^{\prime}}}, \mathbb{Q}_{/}(1)\right)$,
- ρ - the rank of the arithmetic Picard group,
- Δ - the discriminant of the arithmetic Picard group,
- $\operatorname{Br}(V)$ - the Brauer group. $\# \operatorname{Br}(V)$ is a perfect square (if finite).

Conjecture (Artin-Tate, special case of a K3 surface)
In the notation above, one has

$$
|\Delta|=\frac{q \cdot \lim _{T \rightarrow 1} \frac{\Phi^{(1)}(T)}{(T-1)^{\rho}}}{\# \operatorname{Br}(V)}
$$

The Artin-Tate conjecture

Notation

- V - a $K 3$ surface over \mathbb{F}_{q},
- $\Phi^{(1)}$ - the characteristic polynomial of Frob on $H_{\text {ett }}^{2}\left(V_{\overline{\mathbb{F}^{\prime}}}, \mathbb{Q}_{/}(1)\right)$,
- ρ - the rank of the arithmetic Picard group,
- Δ - the discriminant of the arithmetic Picard group,
- $\operatorname{Br}(V)$ - the Brauer group. $\# \operatorname{Br}(V)$ is a perfect square (if finite).

Conjecture (Artin-Tate, special case of a K3 surface)
In the notation above, one has

$$
|\Delta|=\frac{q \cdot \lim _{T \rightarrow 1} \frac{\Phi^{(1)}(T)}{(T-1)^{\rho}}}{\# \operatorname{Br}(V)}
$$

Theorem (Milne)

The Tate conjecture implies $\# \operatorname{Br}(V)<\infty$ and the Artin-Tate conjecture.

Another restriction on $\phi^{(1)}$

Observation

Let V be a $K 3$ surface over \mathbb{F}_{p}. Assume that rk $\operatorname{Pic}(V)=\operatorname{rk} \operatorname{Pic}\left(V_{\mathbb{F}_{p^{k}}}\right)$.
Then, as the Picard lattices are contained in each other, the discriminants differ only by a factor being a perfect square.

Suppose further that V and $V_{\mathbb{F}_{p^{k}}}$ satisfy the Tate conjecture. Then, as $\Phi^{(1)}$ determines the polynomial $\Phi_{\mathbb{F}_{p k} k}^{(1)}$, the Artin-Tate formula allows to calculate the square classes of both discriminants.

Another restriction on $\phi^{(1)}$

Observation

Let V be a $K 3$ surface over \mathbb{F}_{p}. Assume that rk $\operatorname{Pic}(V)=\operatorname{rk} \operatorname{Pic}\left(V_{\mathbb{F}_{p^{k}}}\right)$.
Then, as the Picard lattices are contained in each other, the discriminants differ only by a factor being a perfect square.

Suppose further that V and $V_{\mathbb{F}_{p^{k}}}$ satisfy the Tate conjecture. Then, as $\Phi^{(1)}$ determines the polynomial $\Phi_{\mathbb{F}_{p^{k}}}^{(1)}$, the Artin-Tate formula allows to calculate the square classes of both discriminants.

Definition

This yields a restriction for $\Phi^{(1)}$, which we call the field extension condition.

Another restriction on $\phi^{(1)}$

Observation

Let V be a $K 3$ surface over \mathbb{F}_{p}. Assume that $\operatorname{rk} \operatorname{Pic}(V)=\operatorname{rk} \operatorname{Pic}\left(V_{\mathbb{F}_{p^{k}}}\right)$.
Then, as the Picard lattices are contained in each other, the discriminants differ only by a factor being a perfect square.

Suppose further that V and $V_{\mathbb{F}_{p^{k}}}$ satisfy the Tate conjecture. Then, as $\Phi^{(1)}$ determines the polynomial $\Phi_{\mathbb{F}_{p k}}^{(1)}$, the Artin-Tate formula allows to calculate the square classes of both discriminants.

Definition

This yields a restriction for $\Phi^{(1)}$, which we call the field extension condition.

Remark

For us, it was very surprising that the Artin-Tate formula has the potential to contradict itself under field extensions.

The field extension condition II

Theorem (Elsenhans \& J. 2010)

(1) The field extension condition for $\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$ implies all other field extension conditions.
(2) The field extension condition is independent of the Tate conjecture.

Theorem (Elsenhans \& J. 2011)

Let X be a smooth, projective variety of even dimension d over a finite field \mathbb{F}_{q} of characteristic p and $\Phi^{(d / 2)} \in \mathbb{Q}[T]$ be the characteristic polynomial of Frob on $H_{\text {ett }}^{d}\left(X_{\mathbb{F}_{q}}, \mathbb{Q}_{l}(d / 2)\right)$.
Denote the zeroes of $\Phi^{(d / 2)}$ by z_{1}, \ldots, z_{N} and put $e:=-\sum_{\nu_{q}\left(z_{i}\right)<0} \nu_{q}\left(z_{i}\right)$.
(1) Then, $(-2)^{N} q^{e} \Phi^{(d / 2)}(-1)$ is a square or twice a square in \mathbb{Q}.
(2) If $p \neq 2$ then $(-2)^{N} q^{e} \Phi^{(d / 2)}(-1)$ is a square in \mathbb{Q}.

A K3 surface over \mathbb{Q} of geometric Picard rank 1

We want to construct $K 3$ surfaces over \mathbb{Q} of prescribed geometric Picard rank. The example below shows the method in its simplest form.

Example

Let V be a $K 3$ surface of degree 2, given by

$$
w^{2}=f_{6}(x, y, z)
$$

for

$$
\begin{aligned}
f_{6}(x, y, z) \equiv & 4 z^{6}+2 x y^{5}+3 x^{2} z^{4}+x^{2} y^{4}+2 x^{3} z^{3} \\
& \quad+x^{3} y^{3}+3 x^{4} z^{2}+2 x^{4} y^{2}+x^{5} y+2 x^{6}(\bmod 5) \\
f_{6}(x, y, z) \equiv & y^{6}+3 z^{6}+5 x z^{5}+5 x^{2} y^{4}+x^{2} z^{4} \\
& +3 x^{3} y^{3}+x^{3} z^{3}+5 x^{4} y^{2}+x^{4} z^{2}+5 x^{5} y+2 x^{6}(\bmod 7)
\end{aligned}
$$

Then, the geometric Picard rank of V is equal to 1 .

Verifying Picard rank 1

The characteristic polynomials of the Frobenius are

$$
\begin{array}{r}
\begin{array}{r}
\Phi_{5}^{(1)}(t)=\frac{1}{5}(t-1)^{2}\left(5 t^{20}-t^{19}+t^{18}\right. \\
+2 t^{17}
\end{array}+3 t^{15}+t^{14}-2 t^{13}+t^{12}-t^{11} \\
\left.\quad+2 t^{10}-t^{9}+t^{8}-2 t^{7}+t^{6}+3 t^{5}+2 t^{3}+t^{2}-t+5\right) \\
\begin{aligned}
\Phi_{7}^{(1)}(t)=\frac{1}{7}(t-1)(t+1)\left(7 t^{20}-16 t^{19}\right. & +27 t^{18}-37 t^{17}+44 t^{16}-52 t^{15}+60 t^{14} \\
-68 t^{13} & +74 t^{12}-76 t^{11}+75 t^{10}-76 t^{9}+74 t^{8}-68 t^{7} \\
& \left.+60 t^{6}-52 t^{5}+44 t^{4}-37 t^{3}+27 t^{2}-16 t+7\right) .
\end{aligned}
\end{array}
$$

The reductions modulo 5 and 7 are surfaces of geometric Picard rank 2.
The Artin-Tate formula gives us the square classes of (-5) and (-997) for the discriminants.
This yields Picard rank 1 over $\overline{\mathbb{Q}}$.

An improvement using the theory of deformations

Theorem (Elsenhans \& J. 2009)

Let $p \neq 2$ be a prime number and X be a scheme, proper and smooth over \mathbb{Z}.

Then, the specialization homomorphism $\operatorname{Pic}\left(X_{\overline{\mathbb{Q}}}\right) \rightarrow \operatorname{Pic}\left(X_{\overline{\mathbb{F}}_{p}}\right)$ has a torsionfree cokernel.

An improvement using the theory of deformations

Theorem (Elsenhans \& J. 2009)

Let $p \neq 2$ be a prime number and X be a scheme, proper and smooth over \mathbb{Z}.

Then, the specialization homomorphism $\operatorname{Pic}\left(X_{\overline{\mathbb{Q}}}\right) \rightarrow \operatorname{Pic}\left(X_{\overline{\mathbb{F}}_{p}}\right)$ has a torsionfree cokernel.

Remarks

- The same result is true in a more general relative situation over a discrete valuation ring R with perfect residue field of characteristic p and ramification degree $e<p-1$.
- The special case that R is complete is due to M. Raynaud (1979).
- The most elementary proof is based on a deformation-theoretic argument, controlling the obstructions to lifting $\mathscr{L} \in \operatorname{Pic}\left(X_{p}\right)$ to $\operatorname{Pic}\left(X_{\mathbb{Z} / p^{2} \mathbb{Z}}\right), \operatorname{Pic}\left(X_{\mathbb{Z} / p^{3} \mathbb{Z}}\right), \ldots$

An improvement using the theory of deformations II

Example (Elsenhans \& J. 2010)

Let V be a $K 3$ surface of degree 2, given by

$$
w^{2}=f_{6}(x, y, z)
$$

for

$$
\begin{aligned}
f_{6}(x, y, z) \equiv x^{6} & +2 x^{5} z+2 x^{4} y^{2}+2 x^{4} z^{2}+2 x^{3} y^{3}+2 x^{3} z^{3} \\
& +2 x^{2} y^{4}+2 x^{2} y^{3} z+x^{2} z^{4}+x y^{3} z^{2}+2 x z^{5}+y^{6}(\bmod 3)
\end{aligned}
$$

Assume further that the coefficient of $y^{2} z^{4}$ is not divisible by 9 . Then, the geometric Picard rank of V is equal to 1 .

Verifying Picard rank 1

The characteristic polynomial of the Frobenius is

$$
\begin{aligned}
\Phi_{3}^{(1)}(t)= & \frac{1}{3}(t-1)^{2}\left(3 t^{20}-3 t^{19}-3 t^{18}+8 t^{17}-3 t^{16}-4 t^{15}+6 t^{14}-4 t^{13}\right. \\
& \left.+2 t^{12}+4 t^{11}-7 t^{10}+4 t^{9}+2 t^{8}-4 t^{7}+6 t^{6}-4 t^{5}-3 t^{4}+8 t^{3}-3 t^{2}-3 t+3\right)
\end{aligned}
$$

The reduction modulo 3 is a surface of geometric Picard rank 2 .

Verifying Picard rank 1

The characteristic polynomial of the Frobenius is

$$
\begin{aligned}
\Phi_{3}^{(1)}(t)= & \frac{1}{3}(t-1)^{2}\left(3 t^{20}-3 t^{19}-3 t^{18}+8 t^{17}-3 t^{16}-4 t^{15}+6 t^{14}-4 t^{13}\right. \\
& \left.+2 t^{12}+4 t^{11}-7 t^{10}+4 t^{9}+2 t^{8}-4 t^{7}+6 t^{6}-4 t^{5}-3 t^{4}+8 t^{3}-3 t^{2}-3 t+3\right)
\end{aligned}
$$

The reduction modulo 3 is a surface of geometric Picard rank 2 .

Explicit generators

One has

$$
f_{6} \equiv f_{3}^{2}+x f_{5}(\bmod 3)
$$

for $f_{3}=2 x^{3}+2 x^{2} z+x z^{2}+2 y^{3}$ and $f_{5}=2 x^{3} y^{2}+x^{2} z^{3}+2 x y^{4}+2 z^{5}$.
Hence, $x=0$ defines a line ℓ that is a tritangent line to the ramification locus. The pull-back of ℓ splits into two divisors L_{1} and L_{2}.

Verifying Picard rank 1 II

Intersection matrix:

$$
\left(\begin{array}{rr}
-2 & 3 \\
3 & -2
\end{array}\right)
$$

of determinant (-5).

Verifying Picard rank 1 II

Intersection matrix:

$$
\left(\begin{array}{rr}
-2 & 3 \\
3 & -2
\end{array}\right)
$$

of determinant (-5).

Observation

As $\operatorname{Pic}\left(X_{\overline{\mathbb{F}}_{p}}\right) / \operatorname{Pic}\left(X_{\overline{\mathbb{Q}}}\right)$ is torsion-free, for rk $\operatorname{Pic}\left(X_{\overline{\mathbb{Q}}}\right)=1$, it suffices to find one $\mathscr{L} \in \operatorname{Pic}\left(X_{\overline{\mathbb{F}}_{p}}\right)$ that does not lift.

Verifying Picard rank 1 II

Intersection matrix:

$$
\left(\begin{array}{rr}
-2 & 3 \\
3 & -2
\end{array}\right)
$$

of determinant (-5).

Observation

As $\operatorname{Pic}\left(X_{\overline{\mathbb{F}}_{p}}\right) / \operatorname{Pic}\left(X_{\overline{\mathbb{Q}}}\right)$ is torsion-free, for rk $\operatorname{Pic}\left(X_{\overline{\mathbb{Q}}}\right)=1$, it suffices to find one $\mathscr{L} \in \operatorname{Pic}\left(X_{\overline{\mathbb{F}}_{p}}\right)$ that does not lift.

Explicit obstruction

Put $f_{6} \equiv f_{3}^{2}+x f_{5}(\bmod p)$. Then, the obstruction to lifting $\mathscr{O}\left(L_{1}\right)$ and $\mathscr{O}\left(L_{2}\right)$ to $V_{\mathbb{Z} / p^{2} \mathbb{Z}}$ is given by $\left(G \bmod \left(p, x, f_{3}, f_{5}\right)\right)$ for

$$
G(x, y, z):=\left(f_{6}-f_{3}^{2}-x f_{5}\right) / p
$$

Do we have a practical algorithm to compute the Picard rank for a K3 surface given?

Problems

- The method of R. van Luijk gives an upper bound for the Picard rank. The resulting bound depends on the primes used.
Good primes do not always exist (Charles 2011).
- To verify the rank bound 2 at a place p, we need $\# V\left(\mathbb{F}_{p}\right), \ldots$, $\# V\left(\mathbb{F}_{p^{10}}\right)$.
How to determine these numbers even for medium sized primes?
- A systematic search for divisors seems to be too complicated.

Do we have a practical algorithm to compute the Picard rank for a K3 surface given?

Problems

- The method of R. van Luijk gives an upper bound for the Picard rank. The resulting bound depends on the primes used.
Good primes do not always exist (Charles 2011).
- To verify the rank bound 2 at a place p, we need $\# V\left(\mathbb{F}_{p}\right), \ldots$, $\# V\left(\mathbb{F}_{p^{10}}\right)$.
How to determine these numbers even for medium sized primes?
- A systematic search for divisors seems to be too complicated.

To summarize, in general, we don't. Let me nevertheless continue showing

- a few improvements, mainly to save computational time.
- A systematic test on the existence of good primes.

Verify rank two using $\# V\left(\mathbb{F}_{q}\right), \ldots, \# V\left(\mathbb{F}_{q^{9}}\right)$

In some cases, we can prove an upper bound of 2 for the geometric Picard rank without the most expensive counting step.

Algorithm (Bounding the Picard rank using $\# V\left(\mathbb{F}_{q}\right), \ldots, \# V\left(\mathbb{F}_{q^{9}}\right)$)

(1) Compute the coefficients for $T^{21}, \ldots, T^{13}, T^{9}, \ldots, T^{0}$. Three coefficients remain plus an unknown sign.
(2) Assume, there are more than two zeroes that are roots of unity. I.e., assume a Picard rank bigger than 2.
The order of such a root of unity is not bigger than 66 .
(3) Compute the characteristic polynomial for each assumption. This means to solve a linear system of equations in each case.
(9) Exclude as many of the candidates as possible.

An example

Example

Consider the $K 3$ surface of degree 2 over \mathbb{F}_{7}, given by $w^{2}=y^{6}+3 z^{6}+5 x z^{5}+5 x^{2} y^{4}+x^{2} z^{4}+3 x^{3} y^{3}+x^{3} z^{3}+5 x^{4} y^{2}+x^{4} z^{2}+5 x^{5} y+2 x^{6}$.

Point counting up to $\mathbb{F}_{7^{9}}$ yields 66, 2378, 118113, 5768710 , $282535041, \quad 13841275877,678223852225,33232944372654$, and 1628413551007224.

An example

Example

Consider the $K 3$ surface of degree 2 over \mathbb{F}_{7}, given by

$$
w^{2}=y^{6}+3 z^{6}+5 x z^{5}+5 x^{2} y^{4}+x^{2} z^{4}+3 x^{3} y^{3}+x^{3} z^{3}+5 x^{4} y^{2}+x^{4} z^{2}+5 x^{5} y+2 x^{6} .
$$

Point counting up to $\mathbb{F}_{7} 9$ yields 66, 2378, 118113, 5768710 , $282535041, \quad 13841275877,678223852225, \quad 33232944372654$, and 1628413551007224.

Question

Can we prove an upper bound of 2 for the Picard rank?

Hypothetical characteristic polynomials

Assuming that the geometric Picard rank is bigger than 2, we find three candidates,

$$
\begin{aligned}
& \Phi_{i}^{(1)}(t)= \frac{1}{7}\left(7 t^{22}-16 t^{21}+20 t^{20}-21 t^{19}+17 t^{18}-15 t^{17}+16 t^{16}-16 t^{15}\right. \\
&+14 t^{14}-8 t^{13}+a_{i} t^{12}+b_{i} t^{11}+c_{i} t^{10}+(-1)^{j_{i}}\left(-8 t^{9}+14 t^{8}\right. \\
&\left.\left.-16 t^{7}+16 t^{6}-15 t^{5}+17 t^{4}-21 t^{3}+20 t^{2}-16 t+7\right)\right)
\end{aligned}
$$

for

$$
\begin{array}{ll}
j_{1}=0, & \left(a_{1}, b_{1}, c_{1}\right)=(4,-4,4) \\
j_{2}=1, & \left(a_{2}, b_{2}, c_{2}\right)=(2,0,-2) \\
j_{3}=1, & \left(a_{3}, b_{3}, c_{3}\right)=(3,0,-3)
\end{array}
$$

All roots are of absolute value 1 .

Application of the Artin-Tate formula

polynomial	field	arithmetic Picard rank	$\# \operatorname{Br}(V)\|\Delta\|$
Φ_{1}	\mathbb{F}_{7}	2	58
	\mathbb{F}_{49}	2	4524
Φ_{2}	\mathbb{F}_{7}	1	4
	\mathbb{F}_{49}	2	1996
Φ_{3}	\mathbb{F}_{7}	1	6
	\mathbb{F}_{49}	2	2997

Interpretation

Φ_{1} is impossible, in general. Φ_{2} and Φ_{3} are impossible in degree 2.

Application of the Artin-Tate formula

polynomial	field	arithmetic Picard rank	$\# \operatorname{Br}(V)\|\Delta\|$
Φ_{1}	\mathbb{F}_{7}	2	58
	\mathbb{F}_{49}	2	4524
Φ_{2}	\mathbb{F}_{7}	1	4
	\mathbb{F}_{49}	2	1996
Φ_{3}	\mathbb{F}_{7}	1	6
	\mathbb{F}_{49}	2	2997

Interpretation

Φ_{1} is impossible, in general. Φ_{2} and Φ_{3} are impossible in degree 2 .

Conclusion

The geometric Picard rank is at most 2 .

Using $\mathbb{F}_{7^{10}}$ data

To determine the characteristic polynomial exactly, we have to count the number of points over $\mathbb{F}_{7^{10}}$. The result is

$$
\# V\left(\mathbb{F}_{7^{10}}\right)=79792267067823523
$$

We find two candidates Φ_{4} and Φ_{5}, one for each sign in the functional equation.

$$
\begin{aligned}
& \Phi_{i}^{(1)}(t)=\frac{1}{7}\left(7 t^{22}-16 t^{21}+20 t^{20}-21 t^{19}\right.+17 t^{18}-15 t^{17}+16 t^{16}-16 t^{15} \\
&+14 t^{14}-8 t^{13}+t^{12}+a_{i} t^{11}+(-1)^{j_{i}}\left(-t^{10}+8 t^{9}-14 t^{8}+16 t^{7}\right. \\
&\left.\left.-16 t^{6}+15 t^{5}-17 t^{4}+21 t^{3}-20 t^{2}+16 t-7\right)\right)
\end{aligned}
$$

for $j_{4}=0$, and $a_{4}=0$, or $j_{5}=1$, and $a_{5}=2$.

All roots are of absolute value 1 .

Application of the Artin-Tate formula

polynomial	field	arithmetic Picard rank	$\# \operatorname{Br}(V)\|\Delta\|$
Φ_{4}	\mathbb{F}_{7}	1	2
	\mathbb{F}_{49}	2	997
Φ_{5}	\mathbb{F}_{7}	2	55
	\mathbb{F}_{49}	2	4125

Interpretation

Φ_{4} is possible for a $K 3$ surface of degree 2. Φ_{5} is impossible for $K 3$ surfaces, in general.

Application of the Artin-Tate formula

polynomial	field	arithmetic Picard rank	$\# \operatorname{Br}(V)\|\Delta\|$
Φ_{4}	\mathbb{F}_{7}	1	2
	\mathbb{F}_{49}	2	997
Φ_{5}	\mathbb{F}_{7}	2	55
	\mathbb{F}_{49}	2	4125

Interpretation

Φ_{4} is possible for a $K 3$ surface of degree 2. Φ_{5} is impossible for $K 3$ surfaces, in general.

Conclusion

Φ_{4} is the characteristic polynomial. In the functional equation, the minussign is correct.

A statistical test of the conditions

Our sample

	$p=2$	$p=3$	$p=5$	$p=7$
$d=2$	1000 rand	1000 rand	1000 dec	1000 dec
$d=4$	1000 rand	1000 ell		
$d=6$	1000 rand	1000 ell		
$d=8$	1000 rand	1000 ell		
dec $=$ decoupled, ell $=$ elliptic, rand $=$ random				

Methods for point counting:

- Naive counting.
- Using the elliptic fibration (if existing).
- Calculating a convolution (Decoupled case).

Proving geometric Picard rank ≤ 2 using data up to $\mathbb{F}_{q^{9}}$

	Number of polynomials	0	1	2	3	4	5	6
$d=2, p=2$	without	84	479	312	89	21	12	3
	with A-T conditions	149	598	218	28	7	0	0
$d=2, p=3$	without	116	480	285	88	24	4	3
	with A-T conditions	214	573	193	20	0	0	0
$d=2, p=5$	without	85	581	209	96	25	4	0
	with A-T conditions	158	651	169	20	2	0	0
$d=2, p=7$	without	92	534	232	98	37	7	0
	with A-T conditions	214	611	154	21	0	0	0
$d=4, p=2$	without	40	532	303	87	29	8	1
	with A-T conditions	81	638	249	27	5	0	0
$d=4, p=3$	without	22	669	242	57	9	1	0
	with A-T conditions	53	785	161	1	0	0	0
$d=6, p=2$	without	39	549	312	70	22	6	2
	with A-T conditions	83	645	257	14	1	0	0
$d=6, p=3$	without	16	713	217	47	7	0	0
	with A-T conditions	50	797	148	5	0	0	0
$d=8, p=2$	without	25	657	268	38	8	4	0
	with A-T conditions	29	723	239	5	4	0	0
$d=8, p=3$	without	12	720	236	27	4	1	0
	with A-T conditions	20	803	175	2	0	0	0

Determination of sign using data up to $\mathbb{F}_{q^{10}}$

p	2	3	5	7	2	3	2	3	2	3
d	2	2	2	2	4	4	6	6	8	8
Known signs without A-T	768	843	864	869	761	876	790	888	822	897
Known signs using A-T	863	940	940	961	863	943	868	933	867	944
Remaining unknown signs	137	60	60	39	137	57	132	67	133	56
Data up to $\mathbb{F}_{p^{11}}$ insufficient	84	23	15	12	69	19	77	25	72	21
Data up to $\mathbb{F}_{p^{12}}$ insufficient	41	11	2	1	39	3	42	11	47	7
Data up to $\mathbb{F}_{p^{13}}$ insufficient	22	5	1	0	24	2	20	2	24	2
Data up to $\mathbb{F}_{p^{14}}$ insufficient	13	2	0	0	12	0	13	1	8	0
Data up to $\mathbb{F}_{p^{15}}$ insufficient	7	0	0	0	8	0	7	0	5	0
Data up to $\mathbb{F}_{p^{16}}$ insufficient	4	0	0	0	3	0	2	0	4	0
Data up to $\mathbb{F}_{p^{17}}$ insufficient	4	0	0	0	2	0	2	0	0	0
Data up to $\mathbb{F}_{p^{18}}$ insufficient	4	0	0	0	0	0	1	0	0	0
Data up to $\mathbb{F}_{p^{19}}$ insufficient	2	0	0	0	0	0	1	0	0	0
Data up to $\mathbb{F}_{p^{20}}$ insufficient	0	0	0	0	0	0	0	0	0	0

Proving geometric Picard rank ≤ 2 using data up to $\mathbb{F}_{q^{10}}$

		rank 2 proven not using $\# V\left(\mathbb{F}_{p^{10}}\right)$	rank 2 proven	rank 2 possible
$p=2, d=2$	without with A-T conditions	$\begin{gathered} \hline 84 \\ 149 \end{gathered}$	$\begin{aligned} & \hline 271 \\ & 278 \end{aligned}$	$\begin{aligned} & \hline 330 \\ & 301 \end{aligned}$
$p=3, d=2$	without with A-T conditions	$\begin{aligned} & 116 \\ & 214 \end{aligned}$	$\begin{aligned} & 397 \\ & 409 \end{aligned}$	$\begin{aligned} & 460 \\ & 428 \end{aligned}$
$p=5, d=2$	without with A-T conditions	$\begin{gathered} 85 \\ 158 \end{gathered}$	$\begin{aligned} & 353 \\ & 360 \end{aligned}$	$\begin{aligned} & 425 \\ & 382 \end{aligned}$
$p=7, d=2$	without with A-T conditions	$\begin{gathered} 92 \\ 214 \\ \hline \end{gathered}$	$\begin{array}{r} 460 \\ 464 \\ \hline \end{array}$	$\begin{aligned} & 511 \\ & 476 \end{aligned}$
$p=2, d=4$	without with A-T conditions	$\begin{aligned} & 40 \\ & 81 \end{aligned}$	$\begin{aligned} & \hline \hline 132 \\ & 138 \end{aligned}$	$\begin{aligned} & \hline \hline 197 \\ & 163 \end{aligned}$
$p=3, d=4$	without with A-T conditions	$\begin{aligned} & 22 \\ & 53 \end{aligned}$	$\begin{aligned} & 79 \\ & 79 \end{aligned}$	$\begin{gathered} 114 \\ 81 \end{gathered}$
$p=2, d=6$	without with A-T conditions	$\begin{aligned} & 39 \\ & 83 \end{aligned}$	$\begin{aligned} & 145 \\ & 152 \\ & \hline \end{aligned}$	$\begin{aligned} & 183 \\ & 163 \\ & \hline \end{aligned}$
$p=3, d=6$	without with A-T conditions	$\begin{aligned} & 16 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 74 \\ & 74 \end{aligned}$	$\begin{gathered} 101 \\ 81 \end{gathered}$
$p=2, d=8$	without with A-T conditions	$\begin{aligned} & 25 \\ & 29 \end{aligned}$	$\begin{aligned} & \hline 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 93 \\ & 74 \end{aligned}$
$p=3, d=8$	without with A-T conditions	$\begin{aligned} & 12 \\ & 20 \end{aligned}$	23 23	$\begin{array}{r} 47 \\ \quad \equiv 25 \\ \hline \end{array}$

Existence of good primes

By a good prime, we mean one that leads to a good bound for the Picard rank.

Question

Given a $K 3$ surface, do there exist good primes for it?

Problem

In the case of a K3 surface of low rank, one can not practically work with primes of moderate size.

Existence of good primes

By a good prime, we mean one that leads to a good bound for the Picard rank.

Question

Given a $K 3$ surface, do there exist good primes for it?

Problem

In the case of a K3 surface of low rank, one can not practically work with primes of moderate size.

Test case: $K 3$ surfaces of Picard rank 15 or bigger. This gives us at least 15 eigenvalues of the Frobenius for free.

Our sample

Quartics with many singularities of type A_{1}. Then, the desingularization is a K3 surface. Each singularity will lead to an exceptional divisor.

Determinantal quartics

Fact (Cayley, Rohn; Quartics with 14 singularities)

Let $l_{1}, l_{2}, l_{3}, l_{1}^{\prime}, l_{2}^{\prime}, l_{3}^{\prime}$ be six linear forms in four variables. Then,

$$
\operatorname{det}\left(\begin{array}{cccc}
0 & I_{1} & I_{2} & l_{3} \\
l_{1} & 0 & l_{3}^{\prime} & l_{2}^{\prime} \\
l_{2} & l_{3}^{\prime} & 0 & l_{1}^{\prime} \\
l_{3} & l_{2}^{\prime} & l_{1}^{\prime} & 0
\end{array}\right)=0
$$

defines a quartic surface. A generic member of this family has exactly 14 singular points.

Determinantal quartics

Fact (Cayley, Rohn; Quartics with 14 singularities)

Let $l_{1}, l_{2}, l_{3}, l_{1}^{\prime}, l_{2}^{\prime}, l_{3}^{\prime}$ be six linear forms in four variables. Then,

$$
\operatorname{det}\left(\begin{array}{cccc}
0 & I_{1} & I_{2} & l_{3} \\
l_{1} & 0 & l_{3}^{\prime} & l_{2}^{\prime} \\
l_{2} & l_{3}^{\prime} & 0 & l_{1}^{\prime} \\
l_{3} & I_{2}^{\prime} & l_{1}^{\prime} & 0
\end{array}\right)=0
$$

defines a quartic surface. A generic member of this family has exactly 14 singular points.

Our sample

- 1600 randomly chosen examples.
- Computation with increasing primes, until the rank is determined.
- We succeeded in all cases.

Verification of rank 15 (using van Luijk's method)

prime	\#cases finished	\#cases left
11	2	1502
13	15	1487
17	36	1451
19	57	1394
23	151	1243
29	181	1062
31	219	843
37	214	629
41	173	456
43	136	320
47	118	202
53	80	122
59	44	78
61	36	42
67	20	22
71	12	10
73	6	4
79	2	2
103	1	1

For the remaining example, we found an additional divisor.

Kummer surfaces

Fact (Kummer, Quartics with 16 singularities)

For parameters a, b, c, put

$$
\begin{aligned}
& k:=a^{2}+b^{2}+c^{2}-1-2 a b c \\
& \phi:=x^{2}+y^{2}+z^{2}+w^{2}+2 a(y z+x w)+2 b(x z+y w)+2 c(x y+z w)
\end{aligned}
$$

Then,

$$
16 k x y z w-\phi^{2}=0
$$

defines a quartic surface. A generic member of this family has exactly 16 singular points.

Kummer surfaces

Fact (Kummer, Quartics with 16 singularities)

For parameters a, b, c, put

$$
\begin{aligned}
& k:=a^{2}+b^{2}+c^{2}-1-2 a b c \\
& \phi:=x^{2}+y^{2}+z^{2}+w^{2}+2 a(y z+x w)+2 b(x z+y w)+2 c(x y+z w)
\end{aligned}
$$

Then,

$$
16 k x y z w-\phi^{2}=0
$$

defines a quartic surface. A generic member of this family has exactly 16 singular points.

Our sample

- $a, b, c \in\{-30, \ldots, 30\}$. This leads to 9452 essentially different singular quartics.
- We used all the 168 primes <1000.
- We determined the Picard rank in all cases.

Probability for a prime not to be good

probability of rank > 18

How many primes with reduction to rank $18 ?$

The density $\frac{1}{2}$ case

The plot suggests that, for some surfaces, the density of the good primes is close to $\frac{1}{2}$, while, for others, it is close to 1 .

Explanation

- All examples with density $\leq \frac{1}{2}$ have Picard rank 18 over $\overline{\mathbb{Q}}$.
- In many cases, the corresponding abelian surfaces split into two elliptic curves. Usually, this splitting is defined over a quadratic extension $\mathbb{Q}(\sqrt{d})$ of \mathbb{Q}.
Thus, the resulting elliptic curves are conjugate to each other over $\mathbb{Q}(\sqrt{d})$. Modulo an inert prime, the reductions are isogenous via Frob. We find Picard rank ≥ 20 after reduction modulo such a prime.

Summary

Goal

Compute the geometric Picard groups of $K 3$ surfaces. Use R.van Luijk's method.
This requires point counting over relatively large finite fields.

Improvements

- Use the Artin-Tate formula to exclude some characteristic polynomials.
- Verify the rank bound 2 without the most expensive counting step.
- Use the Galois module structure of the Picard group together with the discriminants to reduce the rank bound by more than one.
- Use the fact that $\operatorname{Pic}\left(V_{\overline{\mathbb{F}}_{p}}\right) / \operatorname{Pic}\left(V_{\overline{\mathbb{Q}}}\right)$ is torsion-free.

Summary II - The statistical test

Statistical test

We tested our improvements of van Luijk's method on K3 surfaces given by quartics having 14 or 16 singular points.

Observations

- In all cases, the method of van Luijk works when sufficiently large primes are used.
- Good primes seem to have density one in the odd rank case.
- Good primes seem to have density at least $\frac{1}{2}$ in the even rank case.
- We needed primes up to 103 to determine the Picard ranks in our examples.

Point counting took several weeks of CPU time.

