Moduli spaces and the inverse Galois problem for cubic surfaces

Jörg Jahnel

University of Siegen

University of Bristol, November 7, 2012

joint work with Andreas-Stephan Elsenhans (University of Sydney)

1 / 35

Let $C \subseteq \mathbf{P}^3$ be a smooth cubic surface over an algebraically closed field. Classical algebraic geometry gives a lot of information about such surfaces. For instance,

- C is isomorphic to \mathbf{P}^2 , blown up in six points in general position.
- C contains precisely 27 lines.

The configuration of the 27 lines is highly symmetric. The group of all permutations respecting the intersection pairing is isomorphic to the Weyl group $W(E_6)$ of order 51840.

- There is a pentahedron associated with a general C (Sylvester).
- There are (at least) two kinds of moduli spaces, coming out of classical invariant theory.
 - The coarse moduli scheme of smooth cubic surfaces (Salmon, Clebsch).
 - The fine moduli scheme of marked cubic surfaces (Cayley, Coble).

An arithmetic problem

Suppose the base field is \mathbb{Q} . Then the 27 lines on *C* are defined only over $\overline{\mathbb{Q}}$. Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) permutes them. The intersection pairing must be respected. I.e., after having fixed a marking on the lines, there is a homomorphism $\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to W(E_6)$.

Definition

One says that the Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ acts upon the lines of C via $G := \operatorname{im} \rho \subseteq W(E_6)$.

When no marking is chosen, the subgroup G is determined only up to conjugation.

An arithmetic problem

Suppose the base field is \mathbb{Q} . Then the 27 lines on C are defined only over $\overline{\mathbb{Q}}$. Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) permutes them. The intersection pairing must be respected. I.e., after having fixed a marking on the lines, there is a homomorphism $\rho \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to W(E_6)$.

Definition

One says that the Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ acts upon the lines of C via $G := \operatorname{im} \rho \subseteq W(E_6)$.

When no marking is chosen, the subgroup G is determined only up to conjugation.

Problem

Let $G \subseteq W(E_6)$ be any subgroup. Is there a smooth cubic surface C over \mathbb{Q} such that $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ acts via G upon the lines of C?

3

Theorem (Elsenhans+J. 2012)

Let \mathfrak{g} be an arbitrary conjugacy class of subgroups of $W(E_6)$.

Then there exists a smooth cubic surface C over \mathbb{Q} such that $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on the lines of C via a subgroup $G \subseteq W(E_6)$ belonging to the class \mathfrak{g} .

Theorem (Elsenhans+J. 2012)

Let \mathfrak{g} be an arbitrary conjugacy class of subgroups of $W(E_6)$.

Then there exists a smooth cubic surface C over \mathbb{Q} such that $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on the lines of C via a subgroup $G \subseteq W(E_6)$ belonging to the class \mathfrak{g} .

Remark

There are 350 conjugacy classes of subgroups in $W(E_6)$.

The result is proven by a list of 350 examples.

These are available on our web pages, e.g.

http://www.uni-math.gwdg.de/jahnel/linkstopapers.html. Actually, we offer six lists.

This is the problem the other way round. Given a cubic surface such as

gl:= 5*x^3 - 9*x^2*y + 15*x^2*z - 216*x^2*w + 2*x*y*z + 5*x*y*w - 255*x*z^2 - 96*x*z*w + 104*x*w^2 + 9*y^2*z - 4*y^2*w + 11*y*z^2 - 139*y*z*w - 16*y*w^2 - 45*z^3 + 35*z^2*w - 11*z*w^2 + 108*w^3;

how to determine the Galois group operating on the lines?

This is the problem the other way round. Given a cubic surface such as

gl:= 5*x^3 - 9*x^2*y + 15*x^2*z - 216*x^2*w + 2*x*y*z + 5*x*y*w - 255*x*z^2 - 96*x*z*w + 104*x*w^2 + 9*y^2*z - 4*y^2*w + 11*y*z^2 - 139*y*z*w - 16*y*w^2 - 45*z^3 + 35*z^2*w - 11*z*w^2 + 108*w^3;

how to determine the Galois group operating on the lines?

Algorithm (Computation of the 27 lines and the Galois group)

Parametrize a line ℓ in the form w = ay + bz, x = cy + dz. The condition that ℓ ⊂ C means

 $(a:c:1:0), (b:d:0:1), ((a+b):(c+d):1:1), ((a-b):(c-d):1:(-1)) \in C.$

This defines an ideal $I \subset \mathbb{Q}[a, b, c, d]$, generated by four polynomials, which are at most cubic.

This is the problem the other way round. Given a cubic surface such as

gl:= 5*x^3 - 9*x^2*y + 15*x^2*z - 216*x^2*w + 2*x*y*z + 5*x*y*w - 255*x*z^2 - 96*x*z*w + 104*x*w^2 + 9*y^2*z - 4*y^2*w + 11*y*z^2 - 139*y*z*w - 16*y*w^2 - 45*z^3 + 35*z^2*w - 11*z*w^2 + 108*w^3;

how to determine the Galois group operating on the lines?

Algorithm (Computation of the 27 lines and the Galois group)

• Parametrize a line ℓ in the form w = ay + bz, x = cy + dz. The condition that $\ell \subset C$ means

 $(a:c:1:0), (b:d:0:1), ((a+b):(c+d):1:1), ((a-b):(c-d):1:(-1)) \in C.$

This defines an ideal $I \subset \mathbb{Q}[a, b, c, d]$, generated by four polynomials, which are at most cubic.

② Calculate a Gröbner base of *I*. Typically, this will consist of a univariate polynomial *p* ∈ ℚ[*a*] of degree 27 and formulas to compute *b*, *c*, and *d* from *a*.

Otherwise, apply a random automorphism of \mathbf{P}^3 and go back to step 1.

5/35

This is the problem the other way round. Given a cubic surface such as

gl:= 5*x^3 - 9*x^2*y + 15*x^2*z - 216*x^2*w + 2*x*y*z + 5*x*y*w - 255*x*z^2 - 96*x*z*w + 104*x*w^2 + 9*y^2*z - 4*y^2*w + 11*y*z^2 - 139*y*z*w - 16*y*w^2 - 45*z^3 + 35*z^2*w - 11*z*w^2 + 108*w^3;

how to determine the Galois group operating on the lines?

Algorithm (Computation of the 27 lines and the Galois group)

• Parametrize a line ℓ in the form w = ay + bz, x = cy + dz. The condition that $\ell \subset C$ means

 $(a:c:1:0), (b:d:0:1), ((a+b):(c+d):1:1), ((a-b):(c-d):1:(-1)) \in C.$

This defines an ideal $I \subset \mathbb{Q}[a, b, c, d]$, generated by four polynomials, which are at most cubic.

② Calculate a Gröbner base of *I*. Typically, this will consist of a univariate polynomial *p* ∈ ℚ[*a*] of degree 27 and formulas to compute *b*, *c*, and *d* from *a*.

Otherwise, apply a random automorphism of \mathbf{P}^3 and go back to step 1.

Calculate the Galois group of p. (Stauduhar's algorithm, Cannon-Holt)
 Output a list of generating permutations and the intersection matrix.

J. Jahnel (University of Siegen)

Inverse Galois problem for cubic surfaces

Bristol, November 7, 2012 5 / 35

Experiments

In a sample of 20000 random surfaces with coefficients in [0...50], we found the whole $W(E_6)$, 20000 times. The same for 20000 random surfaces with coefficients in [-100...100].

 $W(E_6)$ is the generic answer. To find a proper subgroup, a construction is necessary.

Experiments

In a sample of 20000 random surfaces with coefficients in [0...50], we found the whole $W(E_6)$, 20000 times. The same for 20000 random surfaces with coefficients in [-100...100].

 $W(E_6)$ is the generic answer. To find a proper subgroup, a construction is necessary.

Remark

There are several very interesting constructions that work in particular cases. Nevertheless, the plan of this talk is to ignore about these and to present a construction that, in principle, works for an arbitrary subgroup $G \subseteq W(E_6)$.

The pentahedron

Definition (Sylvester)

The cubic surface $S^{(a_0,...,a_4)}$ given in \mathbf{P}^4 by

$$\begin{aligned} &a_0 X_0^3 + a_1 X_1^3 + a_2 X_2^3 + a_3 X_3^3 + a_4 X_4^3 = 0 \,, \\ &X_0 + X_1 + X_2 + X_3 + X_4 = 0 \,, \end{aligned}$$

is said to be in *pentahedral form*.

The pentahedron

Definition (Sylvester)

The cubic surface $S^{(a_0,...,a_4)}$ given in \mathbf{P}^4 by

$$egin{aligned} &a_0X_0^3+a_1X_1^3+a_2X_2^3+a_3X_3^3+a_4X_4^3=0\,,\ &X_0+X_1+X_2+X_3+X_4=0\,, \end{aligned}$$

is said to be in *pentahedral form*.

Remarks

- The five planes given by $X_k = 0$ for k = 0, ..., 4 form the *pentahedron* associated with the cubic surface.
- Over an algebraically closed field, a general cubic surface has a unique pentahedron.
- If $a_0, \ldots, a_4 \neq 0$ then the Hessian of $S^{(a_0, \ldots, a_4)}$ is a quartic surface having exactly ten singular points. These are the triple intersection points of the five planes.

7 / 35

Suppose that a_0, \ldots, a_4 are not in \mathbb{Q} , but the zeroes of a separable polynomial $f \in \mathbb{Q}[T]$ of degree 5. Then $S^{(a_0,\ldots,a_4)}$ is, a priori, defined only over the splitting field L of f.

Suppose that a_0, \ldots, a_4 are not in \mathbb{Q} , but the zeroes of a separable polynomial $f \in \mathbb{Q}[T]$ of degree 5. Then $S^{(a_0,\ldots,a_4)}$ is, a priori, defined only over the splitting field L of f.

A construction

• Assume that f is separable. Then $L' := \mathbb{Q}[T]/(f)$ is an étale algebra having five embeddings $i_0, \ldots, i_4 \colon L' \to L$. There is some $a \in L'$ such that $a_k = i_k(a), \ k = 0, \ldots, 4$.

8 / 35

Suppose that a_0, \ldots, a_4 are not in \mathbb{Q} , but the zeroes of a separable polynomial $f \in \mathbb{Q}[T]$ of degree 5. Then $S^{(a_0,\ldots,a_4)}$ is, a priori, defined only over the splitting field L of f.

A construction

- Assume that f is separable. Then $L' := \mathbb{Q}[T]/(f)$ is an étale algebra having five embeddings $i_0, \ldots, i_4 \colon L' \to L$. There is some $a \in L'$ such that $a_k = i_k(a), \ k = 0, \ldots, 4$.
- Choose a linear form $l \in L'[w, x, y, z]$ such that $l^{i_0} + \ldots + l^{i_4} = 0$, but no further linear relations are true.

(This is fulfilled when the four coefficients of / form a basis of the L'-vector space defined by tr x = 0.)

Suppose that a_0, \ldots, a_4 are not in \mathbb{Q} , but the zeroes of a separable polynomial $f \in \mathbb{Q}[T]$ of degree 5. Then $S^{(a_0,\ldots,a_4)}$ is, a priori, defined only over the splitting field L of f.

A construction

- Assume that f is separable. Then $L' := \mathbb{Q}[T]/(f)$ is an étale algebra having five embeddings $i_0, \ldots, i_4 \colon L' \to L$. There is some $a \in L'$ such that $a_k = i_k(a), \ k = 0, \ldots, 4$.
- Choose a linear form $l \in L'[w, x, y, z]$ such that $l^{i_0} + \ldots + l^{i_4} = 0$, but no further linear relations are true.

(This is fulfilled when the four coefficients of / form a basis of the L'-vector space defined by tr x = 0.)

 \bullet Then the cubic surface $S_{(a_0,\ldots,a_4)}$ over ${\mathbb Q}$ defined by

$$\operatorname{Tr} al^3 = 0$$

8 / 35

is *L*-isomorphic to $S^{(a_0,\ldots,a_4)}$.

Remarks

- This construction immediately yields an algorithm. Computations have to be done in *L'*, but not in the Galois hull *L*.
- Substituting linear forms into the coordinates was a standard technique of the 19th century geometers.

Remarks

- This construction immediately yields an algorithm. Computations have to be done in L', but not in the Galois hull L.
- Substituting linear forms into the coordinates was a standard technique of the 19th century geometers.
- There is the general concept of Galois descent due to A. Weil, which was further generalized by A. Grothendieck. This requires a *descent datum* {U_σ}_{σ∈G} for G := Gal(L/Q).

Here, $U_{\sigma}: S^{(a_0,...,a_4)} \to S^{(a_0,...,a_4)}$ has to be a morphism twisted by σ and the U_{σ} together have to form a group operation.

• The construction above yields Galois descent for $U_{\sigma} = T_{\sigma} \circ \sigma$, where $\sigma : (x_0 : \ldots : x_4) \mapsto (\sigma(x_0) : \ldots : \sigma(x_4))$, $T_{\sigma} : (x_0 : \ldots : x_4) \mapsto (x_{\Pi(\sigma)^{-1}(0)} : \ldots : x_{\Pi(\sigma)^{-1}(4)})$, and $\Pi : G \to S_5$ is the permutation representation defined by the op-

eration of G on a_0, \ldots, a_4 .

Marked cubic surfaces

Definition

Let S be any scheme. Then a family of cubic surfaces over S or a cubic surface over S is a flat morphism $p: C \to S$ such that there exist

- a rank-4 vector bundle \mathscr{E} on S,
- a non-zero section $c \in \Gamma(\mathscr{O}(3), \mathbf{P}(\mathscr{E}))$, and
- an isomorphism $\operatorname{div}(c) \xrightarrow{\cong} C$ of S-schemes.

Definition

Let S be any scheme. Then a family of cubic surfaces over S or a cubic surface over S is a flat morphism $p: C \to S$ such that there exist

- a rank-4 vector bundle $\mathscr E$ on S,
- a non-zero section $c \in \Gamma(\mathscr{O}(3), \mathbf{P}(\mathscr{E}))$, and
- an isomorphism $\operatorname{div}(c) \xrightarrow{\cong} C$ of S-schemes.

Definitions

A line on a smooth cubic surface p: C → S is a P¹-bundle I ⊂ C over S such that, for every x ∈ S, one has deg_{Ø(1)} l_x = 1.

10 / 35

Definition

Let S be any scheme. Then a family of cubic surfaces over S or a cubic surface over S is a flat morphism $p: C \to S$ such that there exist

- a rank-4 vector bundle $\mathscr E$ on S,
- a non-zero section $c \in \Gamma(\mathscr{O}(3), \mathbf{P}(\mathscr{E}))$, and
- an isomorphism $\operatorname{div}(c) \xrightarrow{\cong} C$ of S-schemes.

Definitions

- A line on a smooth cubic surface p: C → S is a P¹-bundle I ⊂ C over S such that, for every x ∈ S, one has deg_{𝔅(1)} I_x = 1.
- ② A family of marked cubic surfaces over S or a marked cubic surface over S is a cubic surface p: C → S together with a sequence (l₁,..., l₆) of six mutually disjoint lines.

10 / 35

The sequence (l_1, \ldots, l_6) itself is called a *marking* on *C*.

The moduli scheme of marked cubic surfaces

Theorem

Let K be a field.

Then there exists a fine moduli scheme *M* for marked cubic surfaces over K. I.e., the functor

 $\begin{array}{rcl} {\it F: $\{{\it K}$-schemes}\} & \longrightarrow $\{{\rm sets}\}$,}\\ {\it S} & \mapsto $\{{\rm marked \ cubic \ surfaces \ over \ S}\} / \sim $} \end{array}$

is representable by a K-scheme $\widetilde{\mathcal{M}}$.

M is a smooth, quasi-projective fourfold and, in addition, a rational variety.

The moduli scheme of marked cubic surfaces

Theorem

Let K be a field.

Then there exists a fine moduli scheme *M* for marked cubic surfaces over K. I.e., the functor

$$\begin{array}{rcl} {\sf F} \colon \{{\sf K}\text{-schemes}\} & \longrightarrow \{{\sf sets}\} \ , \\ & {\sf S} & \mapsto & \{{\sf marked \ cubic \ surfaces \ over \ } {\sf S} \} / {\sim} \end{array}$$

is representable by a K-scheme \mathcal{M} .

If is a smooth, quasi-projective fourfold and, in addition, a rational variety.

Idea of proof: Let $\mathscr{U} \subset (\mathbf{P}^2)^6$ be the open subscheme parametrizing all ordered 6-tuples of points in \mathbf{P}^2 in general position. By the Hilbert-Mumford numerical criterion, \mathscr{U} is contained in the PGL₃-stable locus. One proves that $\mathscr{M} := \mathscr{U} / \text{PGL}_3$ represents the functor F.

To give a point $p \in \mathscr{U}(\overline{K})$ is equivalent to giving $p_1, \ldots, p_6 \in \mathbf{P}^2(\overline{K})$ in general position. Projective geometry shows that there is a unique $\gamma \in \mathrm{PGL}_3(\overline{K})$ that maps (p_1, p_2, p_3, p_4) to the standard projective basis ((1:0:0), (0:1:0), (0:0:1), (1:1:1)). To give a point $p \in \mathscr{U}(\overline{K})$ is equivalent to giving $p_1, \ldots, p_6 \in \mathbf{P}^2(\overline{K})$ in general position. Projective geometry shows that there is a unique $\gamma \in \mathrm{PGL}_3(\overline{K})$ that maps (p_1, p_2, p_3, p_4) to the standard projective basis ((1:0:0), (0:1:0), (0:0:1), (1:1:1)).

Observation (A naive embedding) The \overline{K} -rational points on $\widetilde{\mathcal{M}}$ may thus be represented by 3×6 -matrices of the form $\begin{pmatrix} 1 & 0 & 0 & 1 & w & y \\ 0 & 1 & 0 & 1 & x & z \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}.$

Vanishing of the third coordinate of p_5 would mean that p_1, p_2 , and p_5 were collinear, and similarly for p_6 .

The moduli scheme of marked cubic surfaces III

Corollary

We have an open embedding $\widetilde{\mathcal{M}} \hookrightarrow \mathbf{A}^4$. In particular, $\widetilde{\mathcal{M}}$ is an affine scheme.

The moduli scheme of marked cubic surfaces III

Corollary

We have an open embedding $\widetilde{\mathcal{M}} \hookrightarrow \mathbf{A}^4$. In particular, $\widetilde{\mathcal{M}}$ is an affine scheme.

Remark

The moduli scheme \mathcal{M} of marked cubic surfaces has its origins in the work of Arthur Cayley from 1849. His approach was as follows.

- There are 45 tritangent planes meeting the surface in three lines. Through each line there are five tritangent planes.
- This leads to a total of 135 cross ratios, which are invariants of the cubic surface, as soon as a marking is fixed on the lines. Only 45 of these cross ratios are essentially different, due to constraints within the cubic surfaces.
- They provide an embedding $\widetilde{\mathscr{M}} \hookrightarrow (\mathbf{P}^1)^{45}$. The closure of the image is Cayley's "cross ratio variety".

Cayley's "cross ratio variety" was rediscovered by I. Naruki in 1982.

Coble's compactification—The gamma variety

For us, another compactification is more convenient, which was conceived by Arthur Coble in 1917.

Coble's compactification—The gamma variety

For us, another compactification is more convenient, which was conceived by Arthur Coble in 1917.

SL₃ operates naturally on $\mathcal{O}(n)$, and hence on $\Gamma(\mathbf{P}^2, \mathcal{O}(n))$, for every *n*. But PGL₃ does not. There is no PGL₃-linearization for $\mathcal{O}_{\mathbf{P}^2}(1)$.

Via the canonical isogeny $SL_3 \rightarrow PGL_3$, the kernel of which consists of the multiples of the identity matrix by the third roots of unity, there is a canonical PGL₃-linearization for $\mathcal{O}(3)$.

Further, the PGL_3 -invariant sections are the same as the SL_3 -invariant ones.

Minors of the 6 \times 3-matrix

$$\begin{pmatrix} x_{1,0} & x_{1,1} & x_{1,2} \\ x_{2,0} & x_{2,1} & x_{2,2} \\ & \dots & \\ x_{6,0} & x_{6,1} & x_{6,2} \end{pmatrix}$$

define invariant sections on $(\mathbf{P}^2)^6$.

Coble's compactification—The gamma variety II

Notation

• For example, for $1 \le i_1 < i_2 < i_3 \le 6$,

$$m_{i_1,i_2,i_3} := \det \begin{pmatrix} x_{i_1,0} & x_{i_1,1} & x_{i_1,2} \\ x_{i_2,0} & x_{i_2,1} & x_{i_2,2} \\ x_{i_3,0} & x_{i_3,1} & x_{i_3,2} \end{pmatrix}$$

defines an invariant section of $\mathscr{O}(n_1) \boxtimes \ldots \boxtimes \mathscr{O}(n_6)$. Here, $n_i := 1$ when $i \in \{i_1, i_2, i_3\}$ and $n_i := 0$, otherwise.

We write $m_{i_{\sigma(1)},i_{\sigma(2)},i_{\sigma(3)}} := m_{i_1,i_2,i_3}$ for $\sigma \in S_3$.

Coble's compactification—The gamma variety II

Notation

• For example, for $1 \le i_1 < i_2 < i_3 \le 6$,

$$m_{i_1,i_2,i_3} := \det \begin{pmatrix} x_{i_1,0} & x_{i_1,1} & x_{i_1,2} \\ x_{i_2,0} & x_{i_2,1} & x_{i_2,2} \\ x_{i_3,0} & x_{i_3,1} & x_{i_3,2} \end{pmatrix}$$

defines an invariant section of $\mathscr{O}(n_1) \boxtimes \ldots \boxtimes \mathscr{O}(n_6)$. Here, $n_i := 1$ when $i \in \{i_1, i_2, i_3\}$ and $n_i := 0$, otherwise.

We write $m_{i_{\sigma(1)},i_{\sigma(2)},i_{\sigma(3)}} := m_{i_1,i_2,i_3}$ for $\sigma \in S_3$.

• Further,

$$d_{2} := \det \begin{pmatrix} x_{1,0}^{2} & x_{1,1}^{2} & x_{1,2}^{2} & x_{1,0}x_{1,1} & x_{1,0}x_{1,2} & x_{1,1}x_{1,2} \\ x_{2,0}^{2} & x_{2,1}^{2} & x_{2,2}^{2} & x_{2,0}x_{2,1} & x_{2,0}x_{2,2} & x_{2,1}x_{2,2} \\ & & \ddots & \\ x_{6,0}^{2} & x_{6,1}^{2} & x_{6,2}^{2} & x_{6,0}x_{6,1} & x_{6,0}x_{6,2} & x_{6,1}x_{6,2} \end{pmatrix}$$
is an invariant section of $\mathscr{O}(2) \boxtimes \ldots \boxtimes \mathscr{O}(2)$.

Remark

One has the beautiful relation

$$d_2 = -\det \left(\begin{array}{cc} m_{1,3,4}m_{1,5,6} & m_{1,3,5}m_{1,4,6} \\ m_{2,3,4}m_{2,5,6} & m_{2,3,5}m_{2,4,6} \end{array} \right)$$

.

Remark

One has the beautiful relation

$$d_2 = -\det \left(\begin{array}{c} m_{1,3,4}m_{1,5,6} & m_{1,3,5}m_{1,4,6} \\ m_{2,3,4}m_{2,5,6} & m_{2,3,5}m_{2,4,6} \end{array} \right)$$

Definition (Coble 1917)

For $\{i_1,\ldots,i_6\}=\{1,\ldots,6\}$, consider

 $\begin{array}{l} \gamma_{(i_1i_2i_3)(i_4i_5i_6)} := m_{i_1,i_2,i_3}m_{i_4,i_5,i_6} d_2 \quad \text{and} \\ \gamma_{(i_1i_2)(i_3i_4)(i_5i_6)} := m_{i_1,i_3,i_4}m_{i_2,i_3,i_4}m_{i_3,i_5,i_6}m_{i_4,i_5,i_6}m_{i_5,i_1,i_2}m_{i_6,i_1,i_2} \end{array}$

Following the original work, we call these 40 SL₃-invariant, and hence PGL₃-invariant, sections $\gamma_{.} \in \Gamma((\mathbf{P}^2)^6, \mathscr{O}(3) \boxtimes ... \boxtimes \mathscr{O}(3))$ the *irrational invariants*.

.

Coble's compactification—The gamma variety IV

Remarks

• Within the parentheses, the indices may be arbitrarily permuted without changing the symbol.

Further, in the symbols $\gamma_{(i_1i_2i_3)(i_4i_5i_6)}$, the two triples may be interchanged.

However, in the symbols $\gamma_{(i_1i_2)(i_3i_4)(i_5i_6)}$, the three pairs may be permuted only cyclically. Thus, altogether there are ten invariants of the first type and 30 invariants of the second type.

35
Coble's compactification—The gamma variety IV

Remarks

• Within the parentheses, the indices may be arbitrarily permuted without changing the symbol.

Further, in the symbols $\gamma_{(i_1i_2i_3)(i_4i_5i_6)}$, the two triples may be interchanged.

However, in the symbols $\gamma_{(i_1i_2)(i_3i_4)(i_5i_6)}$, the three pairs may be permuted only cyclically. Thus, altogether there are ten invariants of the first type and 30 invariants of the second type.

• The irrational invariants γ_{\cdot} do *not* generate the invariant ring

 $\bigoplus_{d \ge 0} \Gamma((\mathbf{P}^2)^6, \mathscr{O}(3d) \boxtimes \ldots \boxtimes \mathscr{O}(3d))^{\mathsf{PGL}_3}$ and do *not* define an embedding of the categorical quotient $((\mathbf{P}^2)^6)^{\mathsf{semi-stable}} / \mathsf{PGL}_3$ into \mathbf{P}^{39} . They behave well, however, on $\mathscr{U} / \mathsf{PGL}_3 \subset ((\mathbf{P}^2)^6)^{\mathsf{semi-stable}} / \mathsf{PGL}_3$.

Coble's compactification—The gamma variety V

Notation

The PGL₃-invariant local sections of $\mathscr{O}(3) \boxtimes \ldots \boxtimes \mathscr{O}(3)$ form an invertible sheaf on $\widetilde{\mathscr{M}} = \mathscr{U} / \operatorname{PGL}_3$, which we will denote by \mathscr{L} .

Theorem (Coble)

- **1** The invertible sheaf \mathscr{L} on $\widetilde{\mathscr{M}}$ is very ample.
- Output: The 40 irrational invariants γ. ∈ Γ(M, L) define a projective embedding γ: M̃ → P³⁹_K.
- The Zariski closure of the image of γ is contained in a nine-dimensional linear subspace.
- **1** In this **P**⁹, it is the intersection of 30 cubic hypersurfaces.

Coble's compactification—The gamma variety V

Notation

The PGL₃-invariant local sections of $\mathscr{O}(3) \boxtimes \ldots \boxtimes \mathscr{O}(3)$ form an invertible sheaf on $\widetilde{\mathscr{M}} = \mathscr{U} / \operatorname{PGL}_3$, which we will denote by \mathscr{L} .

Theorem (Coble)

- Output: The 40 irrational invariants γ. ∈ Γ(M, L) define a projective embedding γ: M̃ → P³⁹_K.
- The Zariski closure of the image of γ is contained in a nine-dimensional linear subspace.
- In this P⁹, it is the intersection of 30 cubic hypersurfaces.

Definitions

• We call $\gamma: \mathscr{M} \hookrightarrow \mathbf{P}^{39}_{\mathcal{K}}$ Coble's gamma map.

• The Zariski closure of the image of γ is called *Coble's gamma variety* and denoted by \widetilde{M} .

Remarks

- We prove part 2, first. This implies part 1.
- To prove 2, we work in the naive embedding into **A**⁴. The gamma map is then given by 40 explicit polynomials. We show that they separate points and tangent vectors. (This requires some computer work.)

Remarks

- We prove part 2, first. This implies part 1.
- To prove 2, we work in the naive embedding into **A**⁴. The gamma map is then given by 40 explicit polynomials. We show that they separate points and tangent vectors. (This requires some computer work.)
- Part 3 is equivalent to the statement that the vector space (γ.) is only of dimension ten. This was known to Coble in 1917 and is easily checked by computer.

Remarks

- We prove part 2, first. This implies part 1.
- To prove 2, we work in the naive embedding into **A**⁴. The gamma map is then given by 40 explicit polynomials. We show that they separate points and tangent vectors. (This requires some computer work.)
- Part 3 is equivalent to the statement that the vector space (γ.) is only of dimension ten. This was known to Coble in 1917 and is easily checked by computer.
- Finally, the purely cubic expressions in the $\gamma_{.}$ form a vector space of dimension 190. Since $\binom{12}{3} = 220$, this shows that there are 30 cubic relations, except for those coming from the linear ones.

The intersection of the 30 cubic hypersurfaces in \mathbf{P}^9 is reported by magma as being reduced and irreducible of dimension four.

< ロト < 同ト < ヨト < ヨト

The operation of $W(E_6)$

A marked cubic surface over S is automatically smooth, according to our definition. All its 27 lines are defined over S. They may be labelled as $l_1, \ldots, l_6, l'_1, \ldots, l'_6, l''_{12}, l''_{13}, \ldots, l''_{56}$.

There are exactly 51 840 possible markings for a smooth cubic surface with all 27 lines defined over the base. They are acted upon, transitively, by a group of that order, isomorphic to the Weyl group $W(E_6)$.

Convention

We identify $W(E_6)$ with the permutation group acting on the 27 labels $l_1, \ldots, l_6, l'_1, \ldots, l'_6, l''_{12}, l''_{13}, \ldots, l'_{56}$.

The operation of $W(E_6)$

A marked cubic surface over S is automatically smooth, according to our definition. All its 27 lines are defined over S. They may be labelled as l_1, \ldots, l_6 , $l'_1, \ldots, l'_6, l''_{12}, l''_{13}, \ldots, l''_{56}$

There are exactly 51 840 possible markings for a smooth cubic surface with all 27 lines defined over the base. They are acted upon, transitively, by a group of that order, isomorphic to the Weyl group $W(E_6)$.

Convention

We identify $W(E_6)$ with the permutation group acting on the 27 labels $l_1, \ldots, l_6, l'_1, \ldots, l'_6, l''_{12}, l''_{13}, \ldots, l''_{56}$.

 $W(E_6)$ naturally operates on the moduli functor

$$F: \{K\text{-schemes}\} \to \{\text{sets}\} \ .$$

Therefore, it operates on the moduli scheme \mathcal{M} .

J. Jahnel (University of Siegen) Inverse Galois problem for cubic surfaces Coble's (as well as Cayley's) compactifications explicitly linearize the operation of $W(E_6)$.

Lemma (Coble)

There exists a $W(E_6)$ -linearization of $\mathscr{L} \in \mathsf{Pic}(\widetilde{\mathscr{M}})$ such that

- the 80 sections $\pm \gamma_{\cdot} \in \Gamma(\mathcal{M}, \mathcal{L})$ form a $W(E_6)$ -invariant set.
- The corresponding permutation representation $\Pi: W(E_6) \hookrightarrow S_{80}$ is transitive. It has a system of 40 blocks given by the pairs $\{\gamma, -\gamma\}$.
- The permutation representation $W(E_6) \hookrightarrow S_{40}$ on the 40 blocks is the same as that on decompositions of the 27 lines into three pairs of Steiner trihedra.

It is also defined by the operation of $W(E_6)$ on its cosets modulo one of its maximal subgroups of index 40.

Idea of the proof: We need a system of compatible isomorphisms $i_g \colon T_g^* \mathscr{L} \xrightarrow{\cong} \mathscr{L}$ for $T_g \colon \widetilde{\mathscr{M}} \to \widetilde{\mathscr{M}}$ the operation of g.

For $g \in S_6 \subset W(E_6)$, there is an obvious such isomorphism defined by the permutation of the six labels.

 $W(E_6)$ is generated by S_6 and one additional element, the quadratic transformation I_{123} . In the naive coordinates, this map is given by $(w, x, y, z) \mapsto (\frac{1}{w}, \frac{1}{x}, \frac{1}{y}, \frac{1}{z})$.

List explicit formulas for the 40 irrational invariants $\gamma_{.}$ in terms of these coordinates. Plugging in $(w, x, y, z) \mapsto (\frac{1}{w}, \frac{1}{x}, \frac{1}{y}, \frac{1}{z})$ in a naive way, yields an isomorphism $i'_{l_{123}} : T^*_{l_{123}} \mathscr{L} \xrightarrow{\cong} \mathscr{L}$, permuting the 40 sections $\gamma_{.}$ up to signs and a common scaling factor of $\frac{1}{w^2 x^2 y^2 z^2}$.

Un-marked cubic surfaces

As cubic surfaces may have automorphisms, a fine moduli scheme cannot exist.

Facts

- The quotient *M*/*W*(*E*₆) =: *M* is the coarse moduli scheme of smooth cubic surfaces.
- On the other hand, *M* ≅ 𝒴/ PGL₄ for 𝒴 ⊂ P¹⁹ the open subscheme parametrizing smooth cubic surfaces.

Un-marked cubic surfaces

As cubic surfaces may have automorphisms, a fine moduli scheme cannot exist.

Facts

- The quotient $\mathscr{M}/W(E_6) =: \mathscr{M}$ is the coarse moduli scheme of smooth cubic surfaces.
- On the other hand, *M* ≅ 𝒴/ PGL₄ for 𝒴 ⊂ P¹⁹ the open subscheme parametrizing smooth cubic surfaces.

Remarks

- Every smooth cubic surface corresponds to a PGL₄-stable point in **P**¹⁹.
- The PGL₄-invariants have been determined by A. Clebsch as early as 1861. In today's language, Clebsch's result is that there is an open embedding Cl: $\mathscr{V} / PGL_4 \cong \mathscr{M} \hookrightarrow \mathbf{P}(1, 2, 3, 4, 5)$.

One writes A, \ldots, E for the coordinates of P(1, 2, 3, 4, 5).

Example

The *pentahedral* family $\mathscr{C} \to \mathbf{P}^4/S_5$ of cubic surfaces is given by

$$\begin{aligned} &a_0 X_0^3 + a_1 X_1^3 + a_2 X_2^3 + a_3 X_3^3 + a_4 X_4^3 = 0 \,, \\ &X_0 + X_1 + X_2 + X_3 + X_4 = 0 \,. \end{aligned}$$

Example

The *pentahedral* family $\mathscr{C} \to \mathbf{P}^4/S_5$ of cubic surfaces is given by

$$a_0 X_0^3 + a_1 X_1^3 + a_2 X_2^3 + a_3 X_3^3 + a_4 X_4^3 = 0,$$

 $X_0 + X_1 + X_2 + X_3 + X_4 = 0.$

Remarks

- One has $\mathbf{P}^4/S_5 \cong \mathbf{P}(1,2,3,4,5)$. The elementary symmetric functions $\sigma_1, \ldots, \sigma_5$ in a_0, \ldots, a_4 are natural homogeneous coordinates.
- ② We restrict our considerations to the open subset $\mathscr{P} \subset \mathbf{P}^4/S_5$ representing smooth cubic surfaces having a *proper pentahedron*. This means $\sigma_5 \neq 0$.

Theorem (Clebsch/Salmon)

For $t: \mathscr{P} \longrightarrow \mathscr{M}$ the classifying morphism, the composition $C \circ t: \mathscr{P} \to \mathscr{M} \hookrightarrow \mathbf{P}(1, 2, 3, 4, 5)$ is given by the S₅-invariant sections $I_8 := \sigma_4^2 - 4\sigma_3\sigma_5, \quad I_{16} := \sigma_1\sigma_5^3, \quad I_{24} := \sigma_4\sigma_5^4, \quad I_{32} := \sigma_2\sigma_5^6, \quad I_{40} := \sigma_5^8$ of $\mathscr{O}(8), \ \mathscr{O}(16), \ \mathscr{O}(24), \ \mathscr{O}(32), and \ \mathscr{O}(40), respectively.$

Theorem (Clebsch/Salmon)

For $t: \mathscr{P} \longrightarrow \mathscr{M}$ the classifying morphism, the composition $C \circ t: \mathscr{P} \to \mathscr{M} \hookrightarrow \mathbf{P}(1, 2, 3, 4, 5)$ is given by the S₅-invariant sections $I_8 := \sigma_4^2 - 4\sigma_3\sigma_5, \quad I_{16} := \sigma_1\sigma_5^3, \quad I_{24} := \sigma_4\sigma_5^4, \quad I_{32} := \sigma_2\sigma_5^6, \quad I_{40} := \sigma_5^8$ of $\mathscr{O}(8), \ \mathscr{O}(16), \ \mathscr{O}(24), \ \mathscr{O}(32), and \ \mathscr{O}(40), respectively.$

Lemma

The classifying morphism $t: \mathscr{P} \to \mathscr{M}$ is an open embedding.

Idea of the proof: This is not a deep observation. One shows actually that $Clot: \mathscr{P} \to P(1,2,3,4,5)$ is an open embedding. For that, one verifies that Clot is birational and finite, and that P(1,2,3,4,5) is a normal scheme.

Theorem (Elsenhans+J. 2012)

1 The canonical morphism

$$\psi \colon \widetilde{\mathscr{M}} \xrightarrow{\mathsf{pr}} \mathscr{M} \xrightarrow{\mathsf{Cl}} \mathbf{P}(1,2,3,4,5)$$

allows an extension to \mathbf{P}^{39} under the gamma map. More precisely, there exists a rational map $\tilde{\psi}: \mathbf{P}^{39} - \operatorname{P}(1, 2, 3, 4, 5)$ such that the following diagram commutes,

$$\begin{array}{ccc} \widetilde{\mathcal{M}} & \stackrel{\mathsf{pr}}{\longrightarrow} \mathscr{M} \xrightarrow{\mathsf{Cl}} \mathbf{P}(1,2,3,4,5) \\ \gamma & & & \\ \gamma & & & \\ \mathbf{P}^{39} - - - \stackrel{\widetilde{\psi}}{\longrightarrow} - - - \end{array} \times \mathbf{P}(1,2,3,4,5) \,.$$

Theorem (Elsenhans+J. 2012, continued)

- Explicitly, the rational map ψ̃: P³⁹−→P(1,2,3,4,5), defined by the global sections
 - $-6P_2 \in \Gamma(\mathbf{P}^{39}, \mathscr{O}(2))$,
 - $-24P_4 + \frac{41}{16}P_2^2 \in \Gamma(\mathbf{P}^{39}, \mathscr{O}(4))$,
 - $\frac{576}{13}P_6 \frac{396}{13}P_4P_2 + \frac{29}{13}P_2^3 \in \Gamma(\mathbf{P}^{39}, \mathscr{O}(\mathbf{6})),$
 - $-\frac{62208}{1171}P_8 + \frac{54864}{1171}P_6P_2 + \frac{203616}{1171}P_4^2 \frac{61287}{1171}P_4P_2^2 + \frac{13393}{4684}P_2^4 \in \Gamma(\mathbf{P}^{39}, \mathcal{O}(\mathbf{8})),$
 - $\frac{41472}{155}P_{10} \frac{4605984}{36301}P_8P_2 \frac{106272}{403}P_6P_4 + \frac{19990440}{471913}P_6P_2^2 + \frac{47719206}{471913}P_4^2P_2$

 $-\frac{7468023}{471913}P_4P_2^3+\frac{10108327}{18876520}P_2^5\in\Gamma(\mathbf{P}^{39},\mathscr{O}(10))\,,$

satisfies this condition. Here, P_k denotes the sum of the 40 k-th powers.

In other words, these formulas express Clebsch's invariants A,..., E in terms of Coble's 40 irrational invariants γ.

Coble's gammas versus Clebsch's invariants III

Idea of the proof: $\psi := CI \circ pr$ defines a rational map $\varphi : \widetilde{M} - \rightarrow P(1, 2, 3, 4, 5)$ from the gamma variety. Extend ψ to a morphism by closing the graph,

Coble's gammas versus Clebsch's invariants III

Idea of the proof: $\psi := \text{Cl} \circ \text{pr}$ defines a rational map $\varphi : \widetilde{M} - \rightarrow \mathbf{P}(1, 2, 3, 4, 5)$ from the gamma variety. Extend ψ to a morphism by closing the graph,

One may show that $\varphi'^* \mathscr{O}(1) \cong \pi_1^* \mathscr{O}(2)|_{\widetilde{M}} \otimes \mathscr{O}(-E_1)$, where E_1 is an effective Cartier divisor supported in the exceptional fibers of π_1 . Consequently,

$$\pi_{1*}\varphi'^*\mathscr{O}(i)\subseteq \mathscr{O}(2i)|_{\widetilde{M}}.$$

The rational map $\varphi: \widetilde{M} - \twoheadrightarrow \mathbf{P}(1, 2, 3, 4, 5)$ is therefore given by sections t_i of $\mathscr{O}(2i)|_{\widetilde{M}}$, $i = 1, \ldots, 5$.

Coble's gammas versus Clebsch's invariants III

Idea of the proof: $\psi := CI \circ pr$ defines a rational map $\varphi : \widetilde{M} - \rightarrow P(1, 2, 3, 4, 5)$ from the gamma variety. Extend ψ to a morphism by closing the graph,

One may show that $\varphi'^* \mathscr{O}(1) \cong \pi_1^* \mathscr{O}(2)|_{\widetilde{M}} \otimes \mathscr{O}(-E_1)$, where E_1 is an effective Cartier divisor supported in the exceptional fibers of π_1 . Consequently,

$$\pi_{1*}\varphi'^*\mathscr{O}(i)\subseteq \mathscr{O}(2i)|_{\widetilde{M}}.$$

The rational map $\varphi: \widetilde{M} - \rightarrow \mathbf{P}(1, 2, 3, 4, 5)$ is therefore given by sections t_i of $\mathscr{O}(2i)|_{\widetilde{M}}$, $i = 1, \ldots, 5$.

It is classically known that $\varphi'^{-1}(A) = (-6) \sum_{j=0}^{39} X_j^2$. The other four sections extend to $\mathscr{O}(4), \ldots, \mathscr{O}(10)$, i.e. to \mathbf{P}^{39} , as the Castelnuovo-Mumford regularity of $\mathscr{I}_{\widetilde{M}}$ may be computed to 5.

J. Jahnel (University of Siegen)

Coble's gammas versus Clebsch's invariants IV

The sections t_i may be assumed $W(E_6)$ -invariant. Molien's formula shows

$$\dim \Gamma(\mathbf{P}(V), \mathscr{O}(2i))^{W(E_6)} = \begin{cases} 1 & \text{for } i=1, \\ 2 & \text{for } i=2, \\ 5 & \text{for } i=3, \\ 11 & \text{for } i=4, \\ 23 & \text{for } i=5, \end{cases}$$

for V the relevant 10-dimensional representation of $W(E_6)$.

Coble's gammas versus Clebsch's invariants IV

The sections t_i may be assumed $W(E_6)$ -invariant. Molien's formula shows

$$\dim \Gamma(\mathbf{P}(V), \mathcal{O}(2i))^{W(E_6)} = \begin{cases} 1 & \text{for } i=1, \\ 2 & \text{for } i=2, \\ 5 & \text{for } i=3, \\ 11 & \text{for } i=4, \\ 23 & \text{for } i=5, \end{cases}$$

for V the relevant 10-dimensional representation of $W(E_6)$.

All these sections may be found explicitly. The reduction process modulo a Gröbner base of $\mathscr{I}_{\widetilde{M}}$ then shows that

$$\Gamma(\widetilde{M}, \mathscr{O}(2i)|_{\widetilde{M}})^{W(E_6)} = \begin{cases} \langle P_2 \rangle & \text{for } i=1, \\ \langle P_4, P_2^2 \rangle & \text{for } i=2, \\ \langle P_6, P_4 P_2, P_2^3 \rangle & \text{for } i=3, \\ \langle P_8, P_6 P_2, P_4^2, P_4 P_2^2, P_2^4 \rangle & \text{for } i=4, \\ \langle P_{10}, P_8 P_2, P_6 P_4, P_6 P_2^2, P_4^2 P_2, P_4 P_2^3, P_5^2 \rangle & \text{for } i=5. \end{cases}$$

Coble's gammas versus Clebsch's invariants IV

The sections t_i may be assumed $W(E_6)$ -invariant. Molien's formula shows

$$\dim \Gamma(\mathbf{P}(V), \mathcal{O}(2i))^{W(E_6)} = \begin{cases} 1 & \text{for } i=1, \\ 2 & \text{for } i=2, \\ 5 & \text{for } i=3, \\ 11 & \text{for } i=4, \\ 23 & \text{for } i=5, \end{cases}$$

for V the relevant 10-dimensional representation of $W(E_6)$.

All these sections may be found explicitly. The reduction process modulo a Gröbner base of $\mathscr{I}_{\widetilde{M}}$ then shows that

$$\Gamma(\widetilde{M}, \mathscr{O}(2i)|_{\widetilde{M}})^{W(E_6)} = \begin{cases} \langle P_2 \rangle & \text{for } i=1, \\ \langle P_4, P_2^2 \rangle & \text{for } i=2, \\ \langle P_6, P_4 P_2, P_2^3 \rangle & \text{for } i=3, \\ \langle P_8, P_6 P_2, P_4^2, P_4 P_2^2, P_2^4 \rangle & \text{for } i=4, \\ \langle P_{10}, P_8 P_2, P_6 P_4, P_6 P_2^2, P_4^2 P_2, P_4 P_2^3, P_2^5 \rangle & \text{for } i=5. \end{cases}$$

To determine the coefficients in this basis is, finally, an interpolation problem.

How to interpolate

Algorithm (Pentahedron from cubic surface—generic case)

- Determine a Gröbner basis for the ideal 𝒴_{H_{sing}} ⊂ 𝐾[𝑋₀,...,𝑋₃] of the singular locus of the Hessian *H* of *C*. In particular, this yields a univariate degree-10 polynomial *F* defining an S₅-extension.
- **2** Uncover a degree-5 polynomial F with the same splitting field.

How to interpolate

Algorithm (Pentahedron from cubic surface—generic case)

- Determine a Gröbner basis for the ideal 𝒴_{H_{sing}} ⊂ 𝐾[𝑋₀,...,𝑋₃] of the singular locus of the Hessian *H* of *C*. In particular, this yields a univariate degree-10 polynomial *F* defining an S₅-extension.
- ² Uncover a degree-5 polynomial F with the same splitting field.
- Factorize F over L := K[T]/(F). Two irreducible factors, F₁ of degree 4 and F₂ of degree 6, are found.

How to interpolate

Algorithm (Pentahedron from cubic surface—generic case)

- Determine a Gröbner basis for the ideal 𝒴_{H_{sing}} ⊂ K[X₀,...,X₃] of the singular locus of the Hessian H of C. In particular, this yields a univariate degree-10 polynomial F defining an S₅-extension.
- ⁽²⁾ Uncover a degree-5 polynomial F with the same splitting field.
- Sectorize \overline{F} over L := K[T]/(F). Two irreducible factors, \overline{F}_1 of degree 4 and \overline{F}_2 of degree 6, are found.
- Determine, in a second Gröbner base calculation, an element of minimal degree in the ideal $(\mathscr{I}_{H_{\text{sing}}}, \overline{F}_2) \subset L[X_0, \ldots, X_3]$. The result is a linear polynomial *I*. Its conjugates define the five individual planes that form the pentahedron.
- Scale *I* by a suitable non-zero factor from *L* such that $\text{Tr}_{L/K} I = 0$. Then calculate $a \in L$ such that the equation of the surface is exactly $\text{Tr}_{L/K} a I^3 = 0$.
- Seturn a. One might want to return I as a second value.

J. Jahnel (University of Siegen)

Twisting Coble's gamma variety

Fix a continuous homomorphism $\rho: \operatorname{Gal}(\overline{K}/K) \to W(E_6)$ and consider $F_{\rho}: \{K \text{-schemes}\} \longrightarrow \{\text{sets}\},$ $S \mapsto \{\text{marked cubic surfaces over } S_{\overline{K}} \text{ such that}$ $\operatorname{Gal}(\overline{K}/K) \text{ operates on the 27 lines as}$ $\operatorname{described by } \rho\}/\sim,$

the moduli functor, *twisted by* ρ .

Theorem (Elsenhans+J. 2012)

The functor F_{ρ} is representable by a K-scheme \mathcal{M}_{ρ} that is a twist of \mathcal{M} .

Twisting Coble's gamma variety

Fix a continuous homomorphism $\rho: \operatorname{Gal}(\overline{K}/K) \to W(E_6)$ and consider $F_{\rho}: \{K\text{-schemes}\} \longrightarrow \{\text{sets}\},$ $S \mapsto \{\text{marked cubic surfaces over } S_{\overline{K}} \text{ such that}$ $\operatorname{Gal}(\overline{K}/K) \text{ operates on the 27 lines as}$ described by $\rho\}/\sim$,

the moduli functor, *twisted by* ρ .

Theorem (Elsenhans+J. 2012)

The functor F_{ρ} is representable by a K-scheme \mathcal{M}_{ρ} that is a twist of \mathcal{M} .

Strategy (to construct a cubic surface for $G \subseteq W(E_6)$)

- First, one should find a Galois extension L/Q such that Gal(L/Q) ≃ G. This defines the homomorphism ρ.
- **2** Then a Q-rational point $P \in \widetilde{\mathscr{M}_{\rho}}(\mathbb{Q})$ is sought for.
- So For the corresponding cubic surface \mathscr{C}_P over \mathbb{Q} , the Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ operates on the 27 lines exactly as desired.

Algorithm (Cubic surface for a given group)

Given a subgroup $G \subseteq W(E_6)$ and a field such that $Gal(L/\mathbb{Q}) \cong G$, this algorithm computes a smooth cubic surface C over \mathbb{Q} such that $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ operates upon the lines of C via the group $Gal(L/\mathbb{Q})$.

• Fix a system $\Gamma \subseteq G$ of generators of G. For every $g \in \Gamma$, store the permutation $\Pi(g) \in S_{80}$, which describes the operation of g on the 80 irrational invariants $\pm \gamma_{.}$. Further fix, once and for ever, ten of the $\pm \gamma_{.}$ that are linearly independent. Express the other 70 explicitly as linear combinations of these basis vectors.

Algorithm (Cubic surface for a given group)

Given a subgroup $G \subseteq W(E_6)$ and a field such that $Gal(L/\mathbb{Q}) \cong G$, this algorithm computes a smooth cubic surface C over \mathbb{Q} such that $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ operates upon the lines of C via the group $Gal(L/\mathbb{Q})$.

- Fix a system $\Gamma \subseteq G$ of generators of G. For every $g \in \Gamma$, store the permutation $\Pi(g) \in S_{80}$, which describes the operation of g on the 80 irrational invariants $\pm \gamma_{.}$. Further fix, once and for ever, ten of the $\pm \gamma_{.}$ that are linearly independent. Express the other 70 explicitly as linear combinations of these basis vectors.
- Proves in the 10×10-matrix describing the operation of g on the 10-dimensional L-vector space (γ.). Use the explicit basis, fixed in step 1.

Algorithm (Cubic surface for a given group)

Given a subgroup $G \subseteq W(E_6)$ and a field such that $Gal(L/\mathbb{Q}) \cong G$, this algorithm computes a smooth cubic surface C over \mathbb{Q} such that $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ operates upon the lines of C via the group $Gal(L/\mathbb{Q})$.

- Fix a system $\Gamma \subseteq G$ of generators of G. For every $g \in \Gamma$, store the permutation $\Pi(g) \in S_{80}$, which describes the operation of g on the 80 irrational invariants $\pm \gamma_{.}$. Further fix, once and for ever, ten of the $\pm \gamma_{.}$ that are linearly independent. Express the other 70 explicitly as linear combinations of these basis vectors.
- Proves in the 10×10-matrix describing the operation of g on the 10-dimensional L-vector space ⟨γ.⟩. Use the explicit basis, fixed in step 1.
- Choose an explicit basis of the field L as a Q-vector space. Finally, make explicit the isomorphism ρ⁻¹: G → Gal(L/Q) ⊆ Hom_Q(L, L). I.e., write down a matrix for every g ∈ Γ.

(Explicit Galois descent I) The condition that

$$(\sigma(x_{\Pi(\rho(\sigma))^{-1}(0)}),\ldots,\sigma(x_{\Pi(\rho(\sigma))^{-1}(79)})) = (x_0,\ldots,x_{79})$$

for all $\sigma \in G$ is a Q-linear system of equations in $10[L : \mathbb{Q}]$ variables. We start with Γ instead of G and get $80[L : \mathbb{Q}] \# \Gamma$ equations. The result is a ten dimensional Q-vector space $V \subset \langle \gamma_{.} \rangle$, described by an explicit basis.

(Explicit Galois descent I) The condition that

$$(\sigma(x_{\Pi(\rho(\sigma))^{-1}(0)}),\ldots,\sigma(x_{\Pi(\rho(\sigma))^{-1}(79)})) = (x_0,\ldots,x_{79})$$

for all $\sigma \in G$ is a \mathbb{Q} -linear system of equations in $10[L : \mathbb{Q}]$ variables. We start with Γ instead of G and get $80[L : \mathbb{Q}] \# \Gamma$ equations. The result is a ten dimensional \mathbb{Q} -vector space $V \subset \langle \gamma_{.} \rangle$, described by an explicit basis.

• (Explicit Galois descent II) Convert the 30 cubic forms defining the image of $\gamma_L : \widetilde{\mathcal{M}_L} \hookrightarrow \mathbf{P}_L^{79}$ into terms of this basis of V. The result are 30 explicit cubic forms with coefficients in \mathbb{Q} . They describe the Zariski closure of $\widetilde{\mathcal{M}_\rho}$ in $\mathbf{P}(V)$.

(Explicit Galois descent I) The condition that

$$(\sigma(x_{\Pi(\rho(\sigma))^{-1}(0)}),\ldots,\sigma(x_{\Pi(\rho(\sigma))^{-1}(79)}))=(x_0,\ldots,x_{79})$$

for all $\sigma \in G$ is a Q-linear system of equations in $10[L : \mathbb{Q}]$ variables. We start with Γ instead of G and get $80[L : \mathbb{Q}] \# \Gamma$ equations. The result is a ten dimensional Q-vector space $V \subset \langle \gamma_{.} \rangle$, described by an explicit basis.

- (Explicit Galois descent II) Convert the 30 cubic forms defining the image of $\gamma_L : \widetilde{\mathcal{M}_L} \hookrightarrow \mathbf{P}_L^{79}$ into terms of this basis of V. The result are 30 explicit cubic forms with coefficients in \mathbb{Q} . They describe the Zariski closure of $\widetilde{\mathcal{M}_{\rho}}$ in $\mathbf{P}(V)$.
- Search for a Q-rational point on this variety.

(Explicit Galois descent I) The condition that

$$(\sigma(x_{\Pi(\rho(\sigma))^{-1}(0)}),\ldots,\sigma(x_{\Pi(\rho(\sigma))^{-1}(79)})) = (x_0,\ldots,x_{79})$$

for all $\sigma \in G$ is a Q-linear system of equations in $10[L : \mathbb{Q}]$ variables. We start with Γ instead of G and get $80[L : \mathbb{Q}] \# \Gamma$ equations. The result is a ten dimensional Q-vector space $V \subset \langle \gamma_{.} \rangle$, described by an explicit basis.

- (Explicit Galois descent II) Convert the 30 cubic forms defining the image of $\gamma_L : \widetilde{\mathcal{M}_L} \hookrightarrow \mathbf{P}_L^{79}$ into terms of this basis of V. The result are 30 explicit cubic forms with coefficients in \mathbb{Q} . They describe the Zariski closure of $\widetilde{\mathcal{M}_\rho}$ in $\mathbf{P}(V)$.
- ${\small \textcircled{O}}$ Search for a ${\small \mathbbm Q}\xspace$ -rational point on this variety.
- From the coordinates of the point found, read the 40 irrational invariants γ. Calculate Clebsch's invariants A, ..., E from these. Then determine pentahedral coefficients and an explicit equation over Q.

33 / 35
Report

• There are 350 conjugacy classes of subgroups in $W(E_6)$. For each conjugacy class \mathfrak{g} , we constructed a cubic surface over \mathbb{Q} such that $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on its lines via \mathfrak{g} .

- There are 350 conjugacy classes of subgroups in W(E₆). For each conjugacy class g, we constructed a cubic surface over Q such that Gal(Q/Q) acts on its lines via g.
- $W(E_6)$ is the generic result. To realize the index two subgroup $D^1W(E_6)$, one needs that $(-3)\Delta$ is a perfect square for the discriminant $\Delta := (A^2 64B)^2 2^{11}(8D + AC)$.

- There are 350 conjugacy classes of subgroups in W(E₆). For each conjugacy class g, we constructed a cubic surface over Q such that Gal(Q/Q) acts on its lines via g.
- $W(E_6)$ is the generic result. To realize the index two subgroup $D^1W(E_6)$, one needs that $(-3)\Delta$ is a perfect square for the discriminant $\Delta := (A^2 64B)^2 2^{11}(8D + AC)$.
- We used Galois-invariant geometric structures.
 - 158 classes stabilize a double-six,
 - 63 classes stabilize a pair of Steiner trihedra but no double-six,
 - 76 classes stabilize a line but neither a double-six nor a pair of Steiner trihedra.

- There are 350 conjugacy classes of subgroups in W(E₆). For each conjugacy class g, we constructed a cubic surface over Q such that Gal(Q/Q) acts on its lines via g.
- $W(E_6)$ is the generic result. To realize the index two subgroup $D^1W(E_6)$, one needs that $(-3)\Delta$ is a perfect square for the discriminant $\Delta := (A^2 64B)^2 2^{11}(8D + AC)$.
- We used Galois-invariant geometric structures.
 - 158 classes stabilize a double-six,
 - 63 classes stabilize a pair of Steiner trihedra but no double-six,
 - 76 classes stabilize a line but neither a double-six nor a pair of Steiner trihedra.
- 51 conjugacy classes remained. For 44 of them, a surface could be found using naive methods such as a systematic search through all cubic surfaces with coefficients in {-1,0,1}.

- There are 350 conjugacy classes of subgroups in $W(E_6)$. For each conjugacy class \mathfrak{g} , we constructed a cubic surface over \mathbb{Q} such that $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on its lines via \mathfrak{g} .
- $W(E_6)$ is the generic result. To realize the index two subgroup $D^1W(E_6)$, one needs that $(-3)\Delta$ is a perfect square for the discriminant $\Delta := (A^2 64B)^2 2^{11}(8D + AC)$.
- We used Galois-invariant geometric structures.
 - 158 classes stabilize a double-six,
 - 63 classes stabilize a pair of Steiner trihedra but no double-six,
 - 76 classes stabilize a line but neither a double-six nor a pair of Steiner trihedra.
- 51 conjugacy classes remained. For 44 of them, a surface could be found using naive methods such as a systematic search through all cubic surfaces with coefficients in $\{-1, 0, 1\}$.
- The main algorithm had to be run only for the seven most complicated conjugacy classes.

Thank you!!

э

-