On the distribution of the Picard ranks of the reductions of a K3 surface

Jörg Jahnel

Universität Siegen

Banff, March 16, 2017

joint work with
Edgar Costa (Dartmouth College) and
Andreas-Stephan Elsenhans (Paderborn)

Étale cohomology

Consider (smooth proper) varieties over a field of characteristic p [or 0]. The I-adic (étale) cohomology theory shares many properties of the usual (topological) cohomology of varieties over \mathbb{C}. Differences:

- \mathbb{Z} or \mathbb{Q} may not be used as coefficients. Only $\mathbb{Z}_{\text {/ }}$ or $\mathbb{Q}_{\text {/ }}$ for $I \neq p$.
- There is an operation of Frob on $H_{e \text { et }}^{i}\left(S_{\mathbb{F}_{q}}, \mathbb{Z}_{l}(j)\right)$.

There is even an operation of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on $H_{\text {ét }}^{i}\left(S_{\overline{\mathbb{Q}}}, \mathbb{Z}_{l}(j)\right)$, for S a over \mathbb{Q} [although the operation of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on $S_{\mathbb{C}}$ is far from continuous].

Étale cohomology

Consider (smooth proper) varieties over a field of characteristic p [or 0]. The I-adic (étale) cohomology theory shares many properties of the usual (topological) cohomology of varieties over \mathbb{C}. Differences:

- \mathbb{Z} or \mathbb{Q} may not be used as coefficients. Only $\mathbb{Z}_{\text {/ }}$ or $\mathbb{Q}_{\text {/ }}$ for $I \neq p$.
- There is an operation of Frob on $H_{e ́ t}^{i}\left(S_{\mathbb{F}_{q}}, \mathbb{Z}_{l}(j)\right)$.

There is even an operation of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on $H_{\text {ét }}^{i}\left(S_{\overline{\mathbb{Q}}}, \mathbb{Z}_{l}(j)\right)$, for S a over \mathbb{Q} [although the operation of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on $S_{\mathbb{C}}$ is far from continuous].

The characteristic polynomial $\Phi_{j}^{(i)}$ of Frob is independent of $I \neq p$ and has coefficients in \mathbb{Q}.

Functional equation, sign, det Frob

Theorem (Deligne, Suh)

Let S be a proper and smooth scheme over a finite field \mathbb{F}_{q} of characteristic $p>0$.
(1) The polynomial $\Phi_{j}^{(i)} \in \mathbb{Q}[T]$ fulfils the functional equation

$$
\begin{equation*}
T^{N} \Phi\left(q^{i-2 j} / T\right)= \pm q^{\frac{N}{2}(i-2 j)} \Phi(T) \tag{1}
\end{equation*}
$$

for $N:=\operatorname{rk} H_{\text {ett }}^{i}\left(S_{\mathbb{F}_{q}}, \mathbb{Z}_{l}(j)\right)$.
(2) The sign in the functional equation is that of

$$
\begin{aligned}
\operatorname{det}\left(- \text { Frob: } H _ { \mathrm { ett } } ^ { i } \left(S_{\overline{\mathbb{F}}_{q}},\right.\right. & \left.\left.\mathbb{Q}_{l}(j)\right) \circlearrowleft\right) \\
& =(-1)^{N} \operatorname{det}\left(\text { Frob : } H_{\mathrm{ett}}^{i}\left(S_{\overline{\mathbb{F}}_{q}}, \mathbb{Q}_{l}(j)\right) \circlearrowright\right) .
\end{aligned}
$$

It is independent of the Tate twist, i.e., of the choice of j.
(3) If i is even then $\operatorname{det}\left(-\right.$ Frob: $\left.H_{\mathrm{et}}^{i}\left(S_{\overline{\mathbb{F}}_{q}}, \mathbb{Q}_{\prime}(i / 2)\right) \bigcirc\right)$ is either $(+1)$ or (-1). I.e., it gives the sign in (1) exactly.
(9) If i is odd then N is even and the plus sign always holds.

A twofold étale covering

Goal

We want to study the behaviour of the sign in the functional equation

$$
\left[=\operatorname{det}\left(- \text { Frob: } H_{e t}^{i}\left(S_{\overline{\mathbb{F}}_{q}}, \mathbb{Q}_{l}(i / 2)\right) \circlearrowleft\right)\right]
$$

within families, thereby varying S and p.

A twofold étale covering

Goal

We want to study the behaviour of the sign in the functional equation

$$
\left[=\operatorname{det}\left(- \text { Frob }: H_{e t t}^{i}\left(S_{\overline{\mathbb{F}}_{q}}, \mathbb{Q}_{l}(i / 2)\right) \circlearrowleft\right)\right]
$$

within families, thereby varying S and p.

Theorem (det Frob in families - T. Saito 2012)

Let K be a number field, \mathscr{O}_{K} its ring of integers, X an irreducible \mathscr{O}_{K}-scheme, and $\pi: F \rightarrow X$ a smooth and proper family of schemes. Assume that π is pure of even relative dimension i.
Then there exists naturally a [unique] twofold étale covering $\varrho: Y \rightarrow X$ such that, for every closed point $x \in X$, the determinant of Frob on $H_{\text {ét }}^{i}\left(F_{\bar{x}}, \mathbb{Q}_{/}(i / 2)\right)$ is $(+1)$ if and only if x splits under ϱ.

A twofold étale covering

Goal

We want to study the behaviour of the sign in the functional equation

$$
\left[=\operatorname{det}\left(- \text { Frob }: H_{e t t}^{i}\left(S_{\overline{\mathbb{F}}_{q}}, \mathbb{Q}_{l}(i / 2)\right) \circlearrowleft\right)\right]
$$

within families, thereby varying S and p.

Theorem (det Frob in families - T. Saito 2012)

Let K be a number field, \mathscr{O}_{K} its ring of integers, X an irreducible \mathscr{O}_{K}-scheme, and $\pi: F \rightarrow X$ a smooth and proper family of schemes. Assume that π is pure of even relative dimension i.
Then there exists naturally a [unique] twofold étale covering $\varrho: Y \rightarrow X$ such that, for every closed point $x \in X$, the determinant of Frob on $H_{\text {ett }}^{i}\left(F_{\bar{x}}, \mathbb{Q}_{/}(i / 2)\right)$ is $(+1)$ if and only if x splits under ϱ.

Remark

In the projective case, the same is true for non-middle cohomology.

A twofold étale covering II

Idea of proof. The higher direct image sheaf $R^{i} \pi_{*} \mathbb{Z}_{l}(i / 2)$ on X is twisted constant [according to smooth base change]. Hence,

$$
\Lambda^{\max } R^{i} \pi_{*} \mathbb{Z}_{l}(i / 2)
$$

is twisted constant of rank one. It is therefore given by a representation

$$
r: \pi_{1}^{\text {ét }}(X, \bar{\eta}) \longrightarrow \mathbb{Z}_{l}^{*},
$$

for $\bar{\eta}$ any geometric point on X.
Moreover, Poincaré duality yields a perfect pairing

$$
\Lambda^{\max } R^{i} \pi_{*} \mathbb{Z}_{l}(i / 2) \times \Lambda^{\max } R^{i} \pi_{*} \mathbb{Z}_{l}(i / 2) \longrightarrow \mathbb{Z}_{l}
$$

As this must be compatible with the operation of $\pi_{1}^{\text {et }}(X, \bar{\eta})$, the image of r is actually contained in $\{ \pm 1\}$. Thus, r gives rise to a twofold étale covering $\varrho: Y \rightarrow X$.
[Technical issues: The argument works only away from the prime I. The higher direct image sheaf $R^{i} \pi_{*} \mathbb{Z}_{l}(i / 2)$ might have torsion,.$\left._{1}\right] \equiv \square$

Concrete description

Lemma

(*) Let $X:=P \backslash D$, for P a non-singular, integral, separated, and Noetherian scheme and $D \subset P$ a closed subscheme. Furthermore, let a twofold étale covering $Y \rightarrow X$ be given.

Then there exist an invertible sheaf $\mathscr{D} \in \operatorname{Pic}(P)$ being divisible by 2 and a global section $\Delta \in \Gamma(P, \mathscr{D})$ such that $\operatorname{div} \Delta$ is a reduced divisor, supp div $\Delta \subseteq D$, and $Y \rightarrow X$ is described by the equation

$$
w^{2}=\Delta .
$$

Concrete description

Lemma

(*) Let $X:=P \backslash D$, for P a non-singular, integral, separated, and Noetherian scheme and $D \subset P$ a closed subscheme. Furthermore, let a twofold étale covering $Y \rightarrow X$ be given.

Then there exist an invertible sheaf $\mathscr{D} \in \operatorname{Pic}(P)$ being divisible by 2 and a global section $\Delta \in \Gamma(P, \mathscr{D})$ such that $\operatorname{div} \Delta$ is a reduced divisor, supp div $\Delta \subseteq D$, and $Y \rightarrow X$ is described by the equation

$$
w^{2}=\Delta .
$$

For a closed point $x \in X$ with finite residue field $k(x)$, the following statements are equivalent.

- $\operatorname{det}\left(\right.$ Frob: $\left.H_{e ́ t}^{i}\left(F_{\bar{x}}, \mathbb{Q}_{\prime}(i / 2)\right) \multimap\right)=1$,
- $\Delta(x) \in\left(k(x)^{*}\right)^{2}$.

A criterion for non-triviality

Theorem (Non-triviality criterion - Costa/Elsenhans/J. 2015)

Let K be a number field, \mathscr{O}_{K} its ring of integers, P a non-singular, irreducible scheme that is flat over $\mathscr{O}_{K}, D \subset P$ a closed subscheme, and $X:=P \backslash D$. As above, let $\pi^{\prime}: F^{\prime} \rightarrow X$ be a smooth and proper family of schemes. Suppose, moreover, that π^{\prime} extends to a proper and flat family $\pi: F \rightarrow P$ of even relative dimension i, in which F is still non-singular.
(**) Furthermore, assume that, for some geometric point $\bar{z}: \bar{K} \rightarrow D$, the fibre $F_{\bar{z}}$ has exactly one singular point, which is an ordinary double point.
Then the twofold étale covering $\varrho: Y \rightarrow X$, associated with π, is obstructed at D. [In particular, it is non-trivial.]

Idea of proof. The Picard-Lefschetz formula [SGA7] describes the monodromy operation around singular fibres of $R^{i} \pi_{*} \mathbb{Z}_{l}(i / 2)$. One ordinary double point in the fibre leads to one eigenvalue (-1).

The normalised discriminant (model case)

Definition

If P is proper and $X \subset P$ the exact subset over which π is smooth then one calls $D=P \backslash X$ the discriminant locus.

The normalised discriminant (model case)

Definition

If P is proper and $X \subset P$ the exact subset over which π is smooth then one calls $D=P \backslash X$ the discriminant locus.

Assume that the discriminant locus $D=D_{1} \cup \ldots \cup D_{m}$ is a union of divisors. If the non-triviality criterion applies to every divisor D_{i} then

$$
\operatorname{div} \Delta=\left(D_{1}\right)+\ldots+\left(D_{m}\right) .
$$

Classically, every section Λ such that $\operatorname{div} \Lambda=\left(D_{1}\right)+\ldots+\left(D_{m}\right)$ is called a discriminant.

- If P is proper over a field K then the discriminant is thus unique up to a scaling factor from K^{*}.
- If P is proper over \mathbb{Z} then the discriminant is unique up to sign.

The normalised discriminant (model case) II

Definition (The normalised discriminant)

Let P be a non-singular, integral, and proper \mathbb{Z}-scheme and $X:=P \backslash D$, for $D \subset P$ a closed subscheme. Furthermore, let $\pi: F \rightarrow X$ be a smooth and proper family of schemes, which is pure of even relative dimension i. Then, the property

$$
\begin{equation*}
\Delta(x) \in\left(k(x)^{*}\right)^{2} \Longleftrightarrow \operatorname{det}\left(\text { Frob : } H_{\text {et }}^{i}\left(F_{\bar{x}}, \mathbb{Q}_{l}(i / 2)\right) \wp\right)=1 \tag{2}
\end{equation*}
$$

provides a unique section Δ. We call Δ the normalised discriminant of the family π.

The normalised discriminant (model case) II

Definition (The normalised discriminant)

Let P be a non-singular, integral, and proper \mathbb{Z}-scheme and $X:=P \backslash D$, for $D \subset P$ a closed subscheme. Furthermore, let $\pi: F \rightarrow X$ be a smooth and proper family of schemes, which is pure of even relative dimension i. Then, the property

$$
\begin{equation*}
\Delta(x) \in\left(k(x)^{*}\right)^{2} \Longleftrightarrow \operatorname{det}\left(\text { Frob: } H_{\text {ett }}^{i}\left(F_{\bar{x}}, \mathbb{Q}_{\prime}(i / 2)\right) \wp\right)=1 \tag{2}
\end{equation*}
$$

provides a unique section Δ. We call Δ the normalised discriminant of the family π.

Thus, in the situation above, property (2) distinguishes a sign for the discriminant.

The normalised discriminant (model case) II

Definition (The normalised discriminant)

Let P be a non-singular, integral, and proper \mathbb{Z}-scheme and $X:=P \backslash D$, for $D \subset P$ a closed subscheme. Furthermore, let $\pi: F \rightarrow X$ be a smooth and proper family of schemes, which is pure of even relative dimension i.
Then, the property

$$
\begin{equation*}
\Delta(x) \in\left(k(x)^{*}\right)^{2} \Longleftrightarrow \operatorname{det}\left(\text { Frob: } H_{\text {ett }}^{i}\left(F_{\bar{x}}, \mathbb{Q}_{l}(i / 2)\right) \wp\right)=1 \tag{2}
\end{equation*}
$$

provides a unique section Δ. We call Δ the normalised discriminant of the family π.

Thus, in the situation above, property (2) distinguishes a sign for the discriminant.

The assumptions are not hard to fulfil.

Complete intersections

$$
V:=\operatorname{Proj} \operatorname{Sym} \bigoplus_{1 \leqslant i \leqslant c} H^{0}\left(\mathbf{P}_{\mathbb{Z}}^{n}, \mathscr{O}\left(d_{i}\right)\right)^{\vee}
$$

is a naive parameter space for complete intersections in \mathbf{P}^{n} of multidegree $\left(d_{1}, \ldots, d_{c}\right) . V$ is smooth over \mathbb{Z}.

Complete intersections

$$
V:=\operatorname{Proj} \operatorname{Sym} \bigoplus_{1 \leqslant i \leqslant c} H^{0}\left(\mathbf{P}_{\mathbb{Z}}^{n}, \mathscr{O}\left(d_{i}\right)\right)^{\vee}
$$

is a naive parameter space for complete intersections in \mathbf{P}^{n} of multidegree $\left(d_{1}, \ldots, d_{c}\right) . V$ is smooth over \mathbb{Z}.

Lemma

(1) There is an irreducible closed subscheme $D \subset V$ of codimension 1 such that the fibre F_{X} is non-singular of dimension $n-c$ if and only if $x \notin D$. The restriction of π to $\pi^{-1}(V \backslash D)$ is smooth.
(2) There is a closed subscheme $Z \subset D$ such that $\operatorname{dim} F_{x}=n-c$ if and only if $x \notin Z$. The restriction of π to $\pi^{-1}(V \backslash Z)$ is flat.
(3) There exists a closed point $z \in(D \backslash Z)_{\mathbb{Q}} \subset V_{\mathbb{Q}}$ such that $F_{\bar{Z}}$ has exactly one singular point, which is an ordinary double point.

Idea of proof. This is mostly standard algebraic geometry. Part 3 and the fact that D is irreducible of codimension 1 are due to O. Benoist (2012).

Complete intersections II

Thus, we naturally have a distinguished sign for the discriminant of an even-dimensional complete intersection.

Complete intersections II

Thus, we naturally have a distinguished sign for the discriminant of an even-dimensional complete intersection.

Theorem (Normalised discriminant for complete intersections, Costa/ Elsenhans/J. 2015)

Let $i=n-c$ be even. Then the normalised discriminant Δ is a section $\Delta \in \mathscr{O}_{V}(D)$ such that $\operatorname{div} \Delta=(D)$. It has the property below. Let K be a number field and $x \in(V \backslash D)(K)$ be any K-rational point. Then, for any prime $\mathfrak{p} \subset \mathscr{O}_{K}$ of good reduction,

$$
\operatorname{det}\left(\text { Frob: } H_{\mathrm{ett}}^{i}\left(\left(F_{x}\right)_{\overline{\mathbb{F}}_{\mathfrak{p}}}, \mathbb{Q}_{\prime}(i / 2)\right) \wp\right)=\left(\frac{\Delta(x)}{\mathfrak{p}}\right) .
$$

A particular case: Hypersurfaces

In this case, several simplifications occur.

- the subscheme $Z \subset V$ is empty.
- An explicit example of a hypersurface of degree d with exactly one singular point, which is an ordinary double point, is provided by the equation

$$
X_{0}^{d-2}\left(X_{1}^{2}+\cdots+X_{n}^{2}\right)+X_{1}^{d}+\cdots+X_{n}^{d}=0
$$

A particular case: Hypersurfaces

In this case, several simplifications occur.

- the subscheme $Z \subset V$ is empty.
- An explicit example of a hypersurface of degree d with exactly one singular point, which is an ordinary double point, is provided by the equation

$$
X_{0}^{d-2}\left(X_{1}^{2}+\cdots+X_{n}^{2}\right)+X_{1}^{d}+\cdots+X_{n}^{d}=0
$$

Theorem (G. Boole 1841/45)

The discriminant of degree d hypersurfaces in \mathbf{P}^{n} is of degree $(d-1)^{n}(n+1)$.

Double covers

Let d be even. Then

$$
W:=\operatorname{Proj} \operatorname{Sym}\left(\mathbb{Z} \oplus H^{0}\left(\mathbf{P}_{\mathbb{Z}}^{n}, \mathscr{O}(d)\right)^{\vee}\right)
$$

is a naive parameter space for double covers $t w^{2}=s$ of \mathbf{P}^{n} ramified at a degree d hypersurface. W is smooth over \mathbb{Z}.

Double covers

Let d be even. Then

$$
W:=\operatorname{Proj} \operatorname{Sym}\left(\mathbb{Z} \oplus H^{0}\left(\mathbf{P}_{\mathbb{Z}}^{n}, \mathscr{O}(d)\right)^{\vee}\right)
$$

is a naive parameter space for double covers $t w^{2}=s$ of \mathbf{P}^{n} ramified at a degree d hypersurface. W is smooth over \mathbb{Z}.

Lemma

The closed subset $D \subset W$ parametrising singular double covers of \mathbf{P}^{n} is the union of three irreducible components. These are

- the cone $C_{D_{d}}$ over the locus $D_{d} \subset V$ parametrising singular hypersurfaces in \mathbf{P}^{n} of degree d [i.e., the ramification locus is singular],
- the hyperplane H_{0} [corresponding to the case $t=0$], and
- the special fibre W_{2}.

Double covers II

Theorem (Normalised discriminant for double covers, Costa/Elsenhans/J. 2016)
Let $i=n$ be even. Then the normalised discriminant Δ is a section $\Delta \in \mathscr{O}_{W}(D)$ such that $\operatorname{supp}(\operatorname{div} \Delta)_{\mathbb{Q}}=\left(C_{D_{d}} \cup H_{0}\right)_{\mathbb{Q}}$. It has the property below.
Let K be a number field and $x \in\left(W \backslash\left(C_{D_{d}} \cup H_{0}\right)\right)(K)$ be any K-rational point. Then, for any prime $\mathfrak{p} \subset \mathscr{O}_{K}$ of good reduction,

$$
\operatorname{det}\left(\text { Frob: } H_{e \mathrm{et}}^{i}\left(\left(F_{x}\right)_{\overline{\mathbb{F}}_{\mathfrak{p}}}, \mathbb{Q}_{\prime}(i / 2)\right) \wp\right)=\left(\frac{\Delta(x)}{\mathfrak{p}}\right) .
$$

Double covers II

Theorem (Normalised discriminant for double covers, Costa/Elsenhans/J. 2016)

Let $i=n$ be even. Then the normalised discriminant Δ is a section $\Delta \in \mathscr{O}_{W}(D)$ such that $\operatorname{supp}(\operatorname{div} \Delta)_{\mathbb{Q}}=\left(C_{D_{d}} \cup H_{0}\right)_{\mathbb{Q}}$. It has the property below.
Let K be a number field and $x \in\left(W \backslash\left(C_{D_{d}} \cup H_{0}\right)\right)(K)$ be any K-rational point. Then, for any prime $\mathfrak{p} \subset \mathscr{O}_{K}$ of good reduction,

$$
\operatorname{det}\left(\text { Frob: } H_{\mathrm{et}}^{i}\left(\left(F_{x}\right)_{\overline{\mathbb{F}}_{\mathfrak{p}}}, \mathbb{Q}_{l}(i / 2)\right) \supset\right)=\left(\frac{\Delta(x)}{\mathfrak{p}}\right) .
$$

Idea of proof. Everything except for supp $(\operatorname{div} \Delta)_{\mathbb{Q}}=\left(C_{D_{d}} \cup H_{0}\right)_{\mathbb{Q}}$ just follows from the model case. The double cover, given by

$$
w^{2}=X_{0}^{d-2}\left(X_{1}^{2}+\cdots+X_{n}^{2}\right)+X_{1}^{d}+\cdots+X_{n}^{d}
$$

has exactly one singular point, which is an ordinary double point. Thus, the non-triviality criterion applies to $C_{D_{d}}$. As $\operatorname{deg} C_{D_{d}}=(d-1)^{n}(n+1)$ is odd, supp div $\Delta \supseteq H_{0}$ is enforced, too.
The non-occurrence of W_{2} is slightly more subtle.

Double covers III

Remarks

(1) The result says, in particular, that the relationship between the normalised discriminant of the double cover $t w^{2}=s$ and the discriminant of the hypersurface $s=0$ is given by the formula

$$
\Delta(t, s)= \pm t \Delta_{\mathrm{hyp}}(s)
$$

However, as $(n-1)$ is odd, for the discriminant of a hypersurface in \mathbf{P}^{n}, we do not have a canonical choice of sign, anyway.

Double covers III

Remarks

(1) The result says, in particular, that the relationship between the normalised discriminant of the double cover $t w^{2}=s$ and the discriminant of the hypersurface $s=0$ is given by the formula

$$
\Delta(t, s)= \pm t \Delta_{\mathrm{hyp}}(s)
$$

However, as ($n-1$) is odd, for the discriminant of a hypersurface in \mathbf{P}^{n}, we do not have a canonical choice of sign, anyway.
(2) If we adopt Demazure's convention that $X_{0}^{d}+\cdots+X_{n}^{d}=0$ has positive discriminant then the sign is $(-1)^{\frac{n d}{4}}$.

K3 surfaces-Generalities

Let S be a $K 3$ surface over a number field K.

K3 surfaces-Generalities

Let S be a $K 3$ surface over a number field K.
One has $\operatorname{dim} H_{\text {et }}^{2}\left(S_{\bar{K}}, \mathbb{Q}_{\prime}(1)\right)=22$.

K3 surfaces-Generalities

Let S be a $K 3$ surface over a number field K.
One has $\operatorname{dim} H_{\text {ett }}^{2}\left(S_{\bar{K}}, \mathbb{Q}_{\prime}(1)\right)=22$.
The theory above shows that

$$
\operatorname{det}\left(\operatorname{Frob}: H_{\text {êt }}^{2}\left(S_{\overline{\mathbb{F}_{\mathfrak{p}}},}, \mathbb{Q}_{\prime}(1)\right) \emptyset\right)
$$

extends to a quadratic character $\operatorname{Gal}(\bar{K} / K) \rightarrow\{1,-1\}$. I.e.,

$$
\operatorname{det}\left(\text { Frob: } H_{\hat{e t t}}^{2}\left(S_{\overline{\mathbb{F}}_{\mathfrak{p}}}, \mathbb{Q}_{ノ}(1)\right) \bigcirc\right)=\left(\frac{\Delta_{H^{2}}(S)}{\mathfrak{p}}\right)
$$

for some $\Delta_{H^{2}}(S) \in K^{*}$, unique up to squares.

- If $S=F_{X}$ is a member of a "reasonable" family of $K 3$ surfaces then $\Delta_{H^{2}}(S)=\left(\Delta(x) \bmod \left(K^{*}\right)^{2}\right)$, for $\Delta(x)$ the normalised discriminant.

K3 surfaces-Generalities

Let S be a $K 3$ surface over a number field K.
One has $\operatorname{dim} H_{\text {ett }}^{2}\left(S_{\bar{K}}, \mathbb{Q}_{\prime}(1)\right)=22$.
The theory above shows that

$$
\operatorname{det}\left(\operatorname{Frob}: H_{\text {êt }}^{2}\left(S_{\overline{\mathbb{F}_{\mathfrak{p}}},}, \mathbb{Q}_{\prime}(1)\right) \emptyset\right)
$$

extends to a quadratic character $\operatorname{Gal}(\bar{K} / K) \rightarrow\{1,-1\}$. I.e.,

$$
\operatorname{det}\left(\operatorname{Frob}: H_{\mathrm{ett}}^{2}\left(S_{\mathbb{F}_{\mathfrak{p}}}, \mathbb{Q}_{ノ}(1)\right) \circlearrowleft\right)=\left(\frac{\Delta_{H^{2}}(S)}{\mathfrak{p}}\right)
$$

for some $\Delta_{H^{2}}(S) \in K^{*}$, unique up to squares.

- If $S=F_{X}$ is a member of a "reasonable" family of $K 3$ surfaces then $\Delta_{H^{2}}(S)=\left(\Delta(x) \bmod \left(K^{*}\right)^{2}\right)$, for $\Delta(x)$ the normalised discriminant.

There are the algebraic part $H_{\mathrm{alg}}:=\operatorname{im}\left(c_{1}: \operatorname{Pic}\left(S_{\bar{K}}\right) \rightarrow H_{\text {ett }}^{2}\left(S_{\bar{K}}, \mathbb{Q}_{\prime}(1)\right)\right)$ and its orthogonal complement $T:=\left(H_{\mathrm{alg}}\right)^{\perp}$, the transcendental part of the cohomology $\left.H_{\text {et }}^{2}\left(S_{\bar{K}}, \mathbb{Q}_{\prime}(1)\right)\right)$.

K3 surfaces-Generalities II

The field of definition of $\operatorname{Pic}\left(S_{\bar{K}}\right)$ is a finite Galois extension L of K.

Lemma

L / K is unramified at every prime, where S has good reduction.
Idea of proof. This follows directly from smooth base change.

K3 surfaces-Generalities II

The field of definition of $\operatorname{Pic}\left(S_{\bar{K}}\right)$ is a finite Galois extension L of K.

Lemma

L / K is unramified at every prime, where S has good reduction.
Idea of proof. This follows directly from smooth base change.

Definition

The field of definition of $\Lambda^{\max } \operatorname{Pic}\left(S_{K}\right)$ is an at most quadratic extension $K\left(\sqrt{\Delta_{\mathrm{alg}}(S)}\right) \subseteq L$.

K3 surfaces-Generalities II

The field of definition of $\operatorname{Pic}\left(S_{\bar{K}}\right)$ is a finite Galois extension L of K.

Lemma

L / K is unramified at every prime, where S has good reduction.
Idea of proof. This follows directly from smooth base change.

Definition

The field of definition of $\Lambda^{\max } \operatorname{Pic}\left(S_{K}\right)$ is an at most quadratic extension $K\left(\sqrt{\Delta_{\mathrm{alg}}(S)}\right) \subseteq L$.

Fact

One has

$$
\operatorname{det}\left(\operatorname{Frob}_{\mathfrak{p}}: H_{\mathrm{alg}} \wp\right)=\left(\frac{\Delta_{\mathrm{alg}}(S)}{\mathfrak{p}}\right)
$$

Application to K3 surfaces: Rank jumps

Proposition (Rank jumps)

Let S be a $K 3$ surface over a number field K and $\mathfrak{p} \subset \mathscr{O}_{K}$ be a prime of good reduction of residue characteristic $\neq 2$.
(1) Then rkPic $S_{\mathbb{F}_{\mathfrak{p}}} \geqslant \operatorname{rkPic} S_{\bar{K}}$.
(2) Assume that rk Pic $S_{\bar{K}}$ is even. Then the following is true. If $\left.\operatorname{det} \mathrm{Frob}_{\mathfrak{p}}\right|_{T}=-1$ then rkPic $S_{\overline{\mathbb{F}}_{\mathfrak{p}}} \geqslant \mathrm{rkPic} S_{\bar{K}}+2$.

Application to K3 surfaces: Rank jumps

Proposition (Rank jumps)

Let S be a $K 3$ surface over a number field K and $\mathfrak{p} \subset \mathscr{O}_{K}$ be a prime of good reduction of residue characteristic $\neq 2$.
(1) Then rkPic $S_{\mathbb{F}_{\mathfrak{p}}} \geqslant \operatorname{rkPic} S_{\bar{K}}$.
(2) Assume that rk Pic $S_{\bar{K}}$ is even. Then the following is true. If det Frob $\left._{\mathfrak{p}}\right|_{T}=-1$ then rkPic $S_{\overline{\mathbb{F}}_{\mathfrak{p}}} \geqslant \operatorname{rkPic} S_{\bar{K}}+2$.

Idea of proof. 1. Upon $\operatorname{Pic} S_{\bar{K}}, \operatorname{Gal}(\bar{K} / K)$ operates via the finite quotient $\mathrm{Gal}(L / K)$. Hence, some power of $\mathrm{Frob}_{\mathfrak{p}}$ acts as the identity. Tate's conjecture [proven for K3 surfaces by Charles, Madapusi Pera, and Lieblich/ Maulik/Snowden 2013/15] implies the claim.
2. According to the Weil conjectures [Deligne 1973], every eigenvalue of Frob on T has absolute value 1 . Those different form 1 and (-1) come in pairs of conjugates. Thus, to have determinant (-1), at least one eigenvalue must be (-1) and at least one must be 1 . Use the Tate conjecture.

Application to K3 surfaces: Rank jumps II

Theorem (Costa/Elsenhans/J. 2015)

Let S be a $K 3$ surface over a number field K and $\mathfrak{p} \subset \mathscr{O}_{K}$ be any prime of good reduction.
(1) Then one has

$$
\operatorname{det}\left(\operatorname{Frob}_{\mathfrak{p}}: T \bigcirc\right)=\left(\frac{\Delta_{H^{2}}(S) \Delta_{\mathrm{alg}}(S)}{\mathfrak{p}}\right) .
$$

(2) Assume that rkPic $S_{\bar{K}}$ is even. If $\left(\frac{\Delta_{H^{2}}(S) \Delta_{\mathrm{alg}}(S)}{\mathfrak{p}}\right)=-1$ then one has $\operatorname{rkPic} S_{\overline{\mathbb{F}}_{\mathfrak{p}}} \geqslant \operatorname{rkPic} S_{\bar{K}}+2$.

Application to K3 surfaces: Rank jumps II

Theorem (Costa/Elsenhans/J. 2015)

Let S be a $K 3$ surface over a number field K and $\mathfrak{p} \subset \mathscr{O}_{K}$ be any prime of good reduction.
(1) Then one has

$$
\operatorname{det}\left(\operatorname{Frob}_{\mathfrak{p}}: T \bigcirc\right)=\left(\frac{\Delta_{H^{2}}(S) \Delta_{\mathrm{alg}}(S)}{\mathfrak{p}}\right)
$$

(2) Assume that rkPic $S_{\bar{K}}$ is even. If $\left(\frac{\Delta_{H^{2}}(S) \Delta_{\mathrm{alg}}(S)}{\mathfrak{p}}\right)=-1$ then one has $\operatorname{rkPic} S_{\overline{\mathbb{F}}_{\mathfrak{p}}} \geqslant \operatorname{rkPic} S_{\bar{K}}+2$.

Remark

Thus, unless $\Delta_{H^{2}}(S) \Delta_{\text {alg }}(S)$ is a square in K, the Picard rank jumps for at least half the primes. We call $\left(\frac{\Delta_{H^{2}}(S) \Delta_{\text {alg }}(S)}{\mathfrak{p}}\right)$ the jump character of S.

Application to K3 surfaces: Rank jumps III

Remarks

- $\Delta_{H^{2}}(S)$ is a product of only bad primes. Thus, for a given surface, it can be computed by just counting points.
- To compute $\Delta_{\text {alg }}(S)$, some information on $\operatorname{Pic}\left(S_{K}\right)$ is necessary.

Application to K3 surfaces: Rank jumps III

Remarks

- $\Delta_{H^{2}}(S)$ is a product of only bad primes. Thus, for a given surface, it can be computed by just counting points.
- To compute $\Delta_{\text {alg }}(S)$, some information on $\operatorname{Pic}\left(S_{\bar{K}}\right)$ is necessary.

Example

For the diagonal surface $S: X_{0}^{4}+X_{1}^{4}+X_{2}^{4}+X_{3}^{4}=0$ over \mathbb{Q}, one has

- $\Delta_{H^{2}}(S)=1$ and
- $\Delta_{\mathrm{alg}}(S)=-1$.

Idea of proof. 2 is the only bad prime of S. To exclude the options that $\Delta_{H^{2}}(S)$ might be (-1) or ± 2, it suffices to count points on the reductions S_{3} and S_{5}.
On the other hand, the Galois operation on Pic $S_{\bar{Q}}$ is completely described in the Ph.D. thesis of M. Bright.

Special space quartics

Theorem (Costa/Elsenhans/J. 2016)

Let K be a number field and S the space quartic

$$
S: c X_{3}^{4}+f_{2}\left(X_{0}, X_{1}, X_{2}\right) X_{3}^{2}+f_{4}\left(X_{0}, X_{1}, X_{2}\right)=0
$$

Then rk Pic $S_{\bar{K}} \geqslant 8$. Assuming rk Pic $S_{\bar{K}}=8$, one has
(1) one has $\Delta_{\text {alg }}(S)=\delta\left(f_{2}^{2}-4 c f_{4}\right)$.
(2) The jump character is $\left(\frac{c \delta\left(f_{4}\right) \delta\left(f_{2}^{2}-4 c f_{4}\right)}{}\right)$.

Special space quartics

Theorem (Costa/Elsenhans/J. 2016)

Let K be a number field and S the space quartic

$$
S: c X_{3}^{4}+f_{2}\left(X_{0}, X_{1}, X_{2}\right) X_{3}^{2}+f_{4}\left(X_{0}, X_{1}, X_{2}\right)=0
$$

Then rk Pic $S_{\bar{K}} \geqslant 8$. Assuming rkPic $S_{\bar{K}}=8$, one has
(1) one has $\Delta_{\text {alg }}(S)=\delta\left(f_{2}^{2}-4 c f_{4}\right)$.
(2) The jump character is $\left(\frac{\kappa \delta\left(f_{4}\right) \delta\left(f_{2}^{2}-4 c f_{4}\right)}{}\right)$.

Idea of proof. The surface $c w^{2}+f_{2}\left(X_{0}, X_{1}, X_{2}\right) w+f_{4}\left(X_{0}, X_{1}, X_{2}\right)=0$, which is Del Pezzo of degree 2, is covered 2:1 by S. This shows that rk Pic $S_{\bar{K}} \geqslant 8$ and claim 1.
The discriminant splits on this subfamily into $c, \delta\left(f_{4}\right)$, and a third factor that enters quadratically.

Special space quartics

Theorem (Costa/Elsenhans/J. 2016)

Let K be a number field and S the space quartic

$$
S: c X_{3}^{4}+f_{2}\left(X_{0}, X_{1}, X_{2}\right) X_{3}^{2}+f_{4}\left(X_{0}, X_{1}, X_{2}\right)=0
$$

Then rk Pic $S_{\bar{K}} \geqslant 8$. Assuming rk Pic $S_{\bar{K}}=8$, one has
(1) one has $\Delta_{\mathrm{alg}}(S)=\delta\left(f_{2}^{2}-4 c f_{4}\right)$.
(2) The jump character is $\left(\frac{c \delta\left(f_{4}\right) \delta\left(f_{2}^{2}-4 c f_{4}\right)}{}\right)$.

Idea of proof. The surface $c w^{2}+f_{2}\left(X_{0}, X_{1}, X_{2}\right) w+f_{4}\left(X_{0}, X_{1}, X_{2}\right)=0$, which is Del Pezzo of degree 2, is covered 2:1 by S. This shows that rkPic $S_{\bar{K}} \geqslant 8$ and claim 1.
The discriminant splits on this subfamily into $c, \delta\left(f_{4}\right)$, and a third factor that enters quadratically.

Remark

The discriminant δ of ternary quartics is of degree 27 and [thanks to the efforts of A.-S. Elsenhans] easily computable using magma.

Special space quartics II

Example (Surfaces with CM by $\mathbb{Q}(i)$)

Let S be a space quartic of type

$$
X_{3}^{4}+f_{4}\left(X_{0}, X_{1}, X_{2}\right)=0
$$

which is of geometric Picard rank 8. Then the jump character is $\left(\frac{-1}{.}\right)$.
Idea of proof. $\delta\left(f_{4}\right) \delta\left(-4 f_{4}\right)=(-4)^{27} \delta\left(f_{4}\right)^{2}$.

Special space quartics II

Example (Surfaces with CM by $\mathbb{Q}(i)$)

Let S be a space quartic of type

$$
X_{3}^{4}+f_{4}\left(X_{0}, X_{1}, X_{2}\right)=0
$$

which is of geometric Picard rank 8. Then the jump character is $\left(\frac{-1}{.}\right)$.
Idea of proof. $\delta\left(f_{4}\right) \delta\left(-4 f_{4}\right)=(-4)^{27} \delta\left(f_{4}\right)^{2}$.

Example (A surface with with trivial jump character)

Consider the space quartic $S: X_{3}^{4}+f_{2}\left(X_{0}, X_{1}, X_{2}\right) X_{3}^{2}+f_{4}\left(X_{0}, X_{1}, X_{2}\right)=0$, for

$$
\begin{aligned}
& f_{2}\left(X_{0}, X_{1}, X_{2}\right):=X_{0}^{2}-X_{0} X_{1}-X_{0} X_{2}-X_{1} X_{2} \quad \text { and } \\
& f_{4}\left(X_{0}, X_{1}, X_{2}\right):=-X_{0}^{3} X_{2}+X_{0} X_{1}^{2} X_{2}-X_{1}^{4}-X_{2}^{4} .
\end{aligned}
$$

Then the geometric Picard rank of S is 8 and the jump character of S is trivial.

Idea of proof. The reduction modulo, e.g., 19 has geometric Picard rank 8. Moreover, $\delta\left(f_{4}\right)=-2^{8} 3^{3} 431^{2}$ and $\delta\left(f_{2}^{2}-4 f_{4}\right)=-2^{60} 3^{3} 47^{2}$.

Another application to K3 surfaces: Infinitely many rational curves

Conjecture

Every K3 surface S over an algebraically closed field K contains infinitely many rational curves.

Evidence. Odd rank case was proven by Li/Liedtke (2012), based on ideas of Bogomolov, Hassett, and Tschinkel. Further sufficient conditions include that S has infinitely many automorphisms or that S is elliptic.

Another application to K3 surfaces: Infinitely many rational curves II

Theorem (Costa/Elsenhans/J. 2016)

Let S be a K3 surface over a number field K. Assume that rkPic $S_{\bar{K}}$ is even,

- that S_{K} has neither real nor complex multiplication, and
- that $\Delta_{H^{2}}(S) \Delta_{\text {alg }}(S)$ is a non-square in K.

Then $S_{\bar{K}}$ contains infinitely many rational curves.

Another application to K3 surfaces: Infinitely many rational curves II

Theorem (Costa/Elsenhans/J. 2016)

Let S be a K3 surface over a number field K. Assume that rkPic $S_{\bar{K}}$ is even,

- that $S_{\bar{K}}$ has neither real nor complex multiplication, and
- that $\Delta_{H^{2}}(S) \Delta_{\text {alg }}(S)$ is a non-square in K.

Then $S_{\bar{K}}$ contains infinitely many rational curves.
Idea of proof. The approach of $\mathrm{Li} /$ Liedtke shows that one needs infinitely jump primes \mathfrak{p} such that $S_{\mathfrak{p}}$ is not supersingular. Infinitely many jump primes are provided by the second assumption. The first one assures that only modulo a small subset of these, the reduction is supersingular.

Thanks

Thank you!!

