On the distribution of the Picard ranks of the reductions of a K3 surface

Jörg Jahnel

Universität Siegen

Banff, March 16, 2017

joint work with Edgar Costa (Dartmouth College) and Andreas-Stephan Elsenhans (Paderborn) Consider (smooth proper) varieties over a field of characteristic p [or 0]. The *l*-adic (étale) cohomology theory shares many properties of the usual (topological) cohomology of varieties over \mathbb{C} . *Differences:*

ℤ or ℚ may not be used as coefficients. Only ℤ_l or ℚ_l for l ≠ p.
There is an operation of Frob on Hⁱ_{ét}(S_{Fa}, ℤ_l(j)).

There is even an operation of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ on $H^{i}_{\acute{e}t}(S_{\overline{\mathbb{Q}}}, \mathbb{Z}_{l}(j))$, for S a over \mathbb{Q} [although the operation of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ on $S_{\mathbb{C}}$ is far from continuous].

Consider (smooth proper) varieties over a field of characteristic p [or 0]. The *l*-adic (étale) cohomology theory shares many properties of the usual (topological) cohomology of varieties over \mathbb{C} . *Differences:*

ℤ or ℚ may not be used as coefficients. Only ℤ_l or ℚ_l for l ≠ p.
There is an operation of Frob on Hⁱ_{ét}(S_{Fa}, ℤ_l(j)).

There is even an operation of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ on $H^{i}_{\acute{e}t}(S_{\overline{\mathbb{Q}}}, \mathbb{Z}_{l}(j))$, for S a over \mathbb{Q} [although the operation of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ on $S_{\mathbb{C}}$ is far from continuous].

The characteristic polynomial $\Phi_j^{(i)}$ of Frob is independent of $l \neq p$ and has coefficients in \mathbb{Q} .

Theorem (Deligne, Suh)

Let S be a proper and smooth scheme over a finite field \mathbb{F}_q of characteristic p > 0.

• The polynomial $\Phi_j^{(i)} \in \mathbb{Q}[T]$ fulfils the functional equation

$$T^{N}\Phi(q^{i-2j}/T) = \pm q^{\frac{N}{2}(i-2j)}\Phi(T), \qquad (1)$$

for $N := \operatorname{rk} H^i_{\operatorname{\acute{e}t}}(S_{\overline{\mathbb{F}}_q}, \mathbb{Z}_l(j)).$

In the sign in the functional equation is that of

$$\begin{array}{l} \mathsf{det}(-\operatorname{\mathsf{Frob}}\colon \mathit{H}^i_{\operatorname{\acute{e}t}}(\mathcal{S}_{\overline{\mathbb{F}}_q}, \mathbb{Q}_l(j)) \circlearrowright) \\ = (-1)^N \mathsf{det}(\operatorname{\mathsf{Frob}}\colon \mathit{H}^i_{\operatorname{\acute{e}t}}(\mathcal{S}_{\overline{\mathbb{F}}_q}, \mathbb{Q}_l(j)) \circlearrowright) \,. \end{array}$$

It is independent of the Tate twist, i.e., of the choice of j.

- If *i* is even then det(-Frob: $H^i_{\text{ét}}(S_{\mathbb{F}_q}, \mathbb{Q}_l(i/2))$) is either (+1) or (-1). I.e., it gives the sign in (1) exactly.
- **If** *i* is odd then N is even and the plus sign always holds.

A twofold étale covering

J. Jahnel (Universität Siegen)

Goal

We want to study the behaviour of the sign in the functional equation $[= \det(-\operatorname{Frob}: H^i_{\operatorname{\acute{e}t}}(S_{\overline{\mathbb{F}}_{a}}, \mathbb{Q}_{I}(i/2)) \circlearrowright)]$

within families, thereby varying S and p.

A twofold étale covering

Goal

We want to study the behaviour of the sign in the functional equation $\sum_{i=1}^{n} \frac{1}{i} \frac{$

$$= \det(-\operatorname{Frob}: H'_{\operatorname{\acute{e}t}}(S_{\overline{\mathbb{F}}_q}, \mathbb{Q}_I(i/2)) \circlearrowright)]$$

within families, thereby varying S and p.

Theorem (det Frob in families – T. Saito 2012)

Let K be a number field, \mathcal{O}_K its ring of integers, X an irreducible \mathcal{O}_K -scheme, and $\pi: F \to X$ a smooth and proper family of schemes. Assume that π is pure of even relative dimension *i*.

Then there exists naturally a [unique] twofold étale covering $\varrho: Y \to X$ such that, for every closed point $x \in X$, the determinant of Frob on $H^i_{\text{ét}}(F_{\overline{x}}, \mathbb{Q}_l(i/2))$ is (+1) if and only if x splits under ϱ .

・ 何 ト ・ ヨ ト ・ ヨ ト

A twofold étale covering

Goal

We want to study the behaviour of the sign in the functional equation $\sum_{i=1}^{n} \frac{1}{i} \frac{$

$$= \det(-\operatorname{Frob}: H'_{\operatorname{\acute{e}t}}(S_{\overline{\mathbb{F}}_q}, \mathbb{Q}_I(i/2)) \circlearrowright)]$$

within families, thereby varying S and p.

Theorem (det Frob in families – T. Saito 2012)

Let K be a number field, \mathcal{O}_K its ring of integers, X an irreducible \mathcal{O}_K -scheme, and $\pi: F \to X$ a smooth and proper family of schemes. Assume that π is pure of even relative dimension *i*.

Then there exists naturally a [unique] twofold étale covering $\varrho: Y \to X$ such that, for every closed point $x \in X$, the determinant of Frob on $H^i_{\text{ét}}(F_{\overline{x}}, \mathbb{Q}_l(i/2))$ is (+1) if and only if x splits under ϱ .

Remark

In the projective case, the same is true for non-middle cohomology.

J. Jahnel (Universität Siegen)

A twofold étale covering II

Idea of proof. The higher direct image sheaf $R^i \pi_* \mathbb{Z}_I(i/2)$ on X is twisted constant [according to smooth base change]. Hence,

 $\Lambda^{\max} R^i \pi_* \mathbb{Z}_I(i/2)$

is twisted constant of rank one. It is therefore given by a representation

$$r: \pi_1^{\text{\'et}}(X, \overline{\eta}) \longrightarrow \mathbb{Z}_I^*,$$

for $\overline{\eta}$ any geometric point on X.

Moreover, Poincaré duality yields a perfect pairing

 $\Lambda^{\max} R^i \pi_* \mathbb{Z}_I(i/2) \times \Lambda^{\max} R^i \pi_* \mathbb{Z}_I(i/2) \longrightarrow \mathbb{Z}_I \,.$

As this must be compatible with the operation of $\pi_1^{\text{\'et}}(X, \overline{\eta})$, the image of r is actually contained in $\{\pm 1\}$. Thus, r gives rise to a twofold étale covering $\varrho \colon Y \to X$.

[Technical issues: The argument works only away from the prime *I*. The higher direct image sheaf $R^i \pi_* \mathbb{Z}_I(i/2)$ might have torsion, ...,]

Concrete description

Lemma

(*) Let $X := P \setminus D$, for P a non-singular, integral, separated, and Noetherian scheme and $D \subset P$ a closed subscheme. Furthermore, let a twofold étale covering $Y \to X$ be given.

Then there exist an invertible sheaf $\mathscr{D} \in Pic(P)$ being divisible by 2 and a global section $\Delta \in \Gamma(P, \mathscr{D})$ such that div Δ is a reduced divisor, supp div $\Delta \subseteq D$, and $Y \to X$ is described by the equation

$$w^2 = \Delta$$
.

Lemma

(*) Let $X := P \setminus D$, for P a non-singular, integral, separated, and Noetherian scheme and $D \subset P$ a closed subscheme. Furthermore, let a twofold étale covering $Y \to X$ be given.

Then there exist an invertible sheaf $\mathscr{D} \in \operatorname{Pic}(P)$ being divisible by 2 and a global section $\Delta \in \Gamma(P, \mathscr{D})$ such that div Δ is a reduced divisor, supp div $\Delta \subseteq D$, and $Y \to X$ is described by the equation

$$w^2 = \Delta$$
.

For a closed point $x \in X$ with finite residue field k(x), the following statements are equivalent.

- det(Frob: $H^i_{\text{ét}}(F_{\overline{x}}, \mathbb{Q}_I(i/2)) \mathfrak{S}) = 1$,
- $\Delta(x) \in (k(x)^*)^2$.

Theorem (Non-triviality criterion – Costa/Elsenhans/J. 2015)

Let K be a number field, \mathcal{O}_K its ring of integers, P a non-singular, irreducible scheme that is flat over \mathcal{O}_K , $D \subset P$ a closed subscheme, and $X := P \setminus D$. As above, let $\pi' \colon F' \to X$ be a smooth and proper family of schemes. Suppose, moreover, that π' extends to a proper and flat family $\pi \colon F \to P$ of even relative dimension *i*, in which F is still non-singular.

(**) Furthermore, assume that, for some geometric point $\overline{z} : \overline{K} \to D$, the fibre $F_{\overline{z}}$ has exactly one singular point, which is an ordinary double point.

Then the twofold étale covering $\varrho: Y \to X$, associated with π , is obstructed at D. [In particular, it is non-trivial.]

Idea of proof. The Picard-Lefschetz formula [SGA7] describes the monodromy operation around singular fibres of $R^i \pi_* \mathbb{Z}_l(i/2)$. One ordinary double point in the fibre leads to one eigenvalue (-1).

The normalised discriminant (model case)

Definition

J. Jahnel (Universität Siegen)

If *P* is proper and $X \subset P$ the exact subset over which π is smooth then one calls $D = P \setminus X$ the *discriminant locus*.

Definition

If *P* is proper and $X \subset P$ the exact subset over which π is smooth then one calls $D = P \setminus X$ the *discriminant locus*.

Assume that the discriminant locus $D = D_1 \cup \ldots \cup D_m$ is a union of divisors. If the non-triviality criterion applies to every divisor D_i then

$$\operatorname{div} \Delta = (D_1) + \ldots + (D_m) \, .$$

Classically, every section Λ such that div $\Lambda = (D_1) + \ldots + (D_m)$ is called a *discriminant*.

- If *P* is proper over a field *K* then the discriminant is thus unique up to a scaling factor from *K*^{*}.
- If P is proper over \mathbb{Z} then the discriminant is unique up to sign.

Definition (The normalised discriminant)

Let *P* be a non-singular, integral, and proper \mathbb{Z} -scheme and $X := P \setminus D$, for $D \subset P$ a closed subscheme. Furthermore, let $\pi \colon F \to X$ be a smooth and proper family of schemes, which is pure of *even* relative dimension *i*. Then, the property

$$\Delta(x) \in (k(x)^*)^2 \iff \det(\operatorname{Frob}: H^i_{\operatorname{\acute{e}t}}(F_{\overline{x}}, \mathbb{Q}_I(i/2)) \circlearrowright) = 1$$
 (2)

provides a unique section Δ . We call Δ the *normalised discriminant* of the family π .

Definition (The normalised discriminant)

Let *P* be a non-singular, integral, and proper \mathbb{Z} -scheme and $X := P \setminus D$, for $D \subset P$ a closed subscheme. Furthermore, let $\pi \colon F \to X$ be a smooth and proper family of schemes, which is pure of *even* relative dimension *i*. Then, the property

$$\Delta(x) \in (k(x)^*)^2 \iff \det(\operatorname{Frob}: H^i_{\operatorname{\acute{e}t}}(F_{\overline{x}}, \mathbb{Q}_I(i/2)) \circlearrowright) = 1$$
 (2)

provides a unique section Δ . We call Δ the *normalised discriminant* of the family π .

Thus, in the situation above, property (2) distinguishes a sign for the discriminant.

Definition (The normalised discriminant)

Let *P* be a non-singular, integral, and proper \mathbb{Z} -scheme and $X := P \setminus D$, for $D \subset P$ a closed subscheme. Furthermore, let $\pi \colon F \to X$ be a smooth and proper family of schemes, which is pure of *even* relative dimension *i*. Then, the property

$$\Delta(x) \in (k(x)^*)^2 \iff \det(\operatorname{Frob}: H^i_{\operatorname{\acute{e}t}}(F_{\overline{x}}, \mathbb{Q}_I(i/2)) \circlearrowright) = 1$$
 (2)

provides a unique section Δ . We call Δ the *normalised discriminant* of the family π .

Thus, in the situation above, property (2) *distinguishes a sign* for the discriminant.

The assumptions are not hard to fulfil.

Complete intersections

$$V := \operatorname{Proj} \operatorname{Sym} \bigoplus_{1 \leqslant i \leqslant c} H^0(\mathbf{P}_{\mathbb{Z}}^n, \mathscr{O}(d_i))^{\vee}$$

is a naive parameter space for complete intersections in \mathbf{P}^n of multidegree (d_1, \ldots, d_c) . V is smooth over \mathbb{Z} .

J. Jahnel (Universität Siegen)

Complete intersections

$$V := \operatorname{Proj} \operatorname{Sym} \bigoplus_{1 \leqslant i \leqslant c} H^0(\mathbf{P}^n_{\mathbb{Z}}, \mathscr{O}(d_i))^{\vee}$$

is a naive parameter space for complete intersections in \mathbf{P}^n of multidegree (d_1, \ldots, d_c) . V is smooth over \mathbb{Z} .

Lemma

- There is an irreducible closed subscheme D ⊂ V of codimension 1 such that the fibre F_x is non-singular of dimension n − c if and only if x ∉ D. The restriction of π to π⁻¹(V\D) is smooth.
- ② There is a closed subscheme *Z* ⊂ *D* such that dim $F_x = n c$ if and only if $x \notin Z$. The restriction of π to $\pi^{-1}(V \setminus Z)$ is flat.
- There exists a closed point $z \in (D \setminus Z)_{\mathbb{Q}} \subset V_{\mathbb{Q}}$ such that $F_{\overline{z}}$ has exactly one singular point, which is an ordinary double point.

Idea of proof. This is mostly standard algebraic geometry. Part 3 and the fact that D is irreducible of codimension 1 are due to O. Benoist (2012).

Thus, we *naturally* have a distinguished sign for the discriminant of an even-dimensional complete intersection.

Thus, we *naturally* have a distinguished sign for the discriminant of an even-dimensional complete intersection.

Theorem (Normalised discriminant for complete intersections, Costa/ Elsenhans/J. 2015)

Let i = n - c be even. Then the normalised discriminant Δ is a section $\Delta \in \mathscr{O}_V(D)$ such that div $\Delta = (D)$. It has the property below.

Let K be a number field and $x \in (V \setminus D)(K)$ be any K-rational point. Then, for any prime $\mathfrak{p} \subset \mathscr{O}_K$ of good reduction,

$$\det(\mathsf{Frob}\colon H^{i}_{\mathrm{\acute{e}t}}((F_{x})_{\mathbb{F}_{p}}, \mathbb{Q}_{I}(i/2)) \circlearrowright) = \left(\frac{\Delta(x)}{\mathfrak{p}}\right)$$

In this case, several simplifications occur.

- the subscheme $Z \subset V$ is empty.
- An explicit example of a hypersurface of degree *d* with exactly one singular point, which is an ordinary double point, is provided by the equation

$$X_0^{d-2}(X_1^2 + \dots + X_n^2) + X_1^d + \dots + X_n^d = 0$$

In this case, several simplifications occur.

- the subscheme $Z \subset V$ is empty.
- An explicit example of a hypersurface of degree *d* with exactly one singular point, which is an ordinary double point, is provided by the equation

$$X_0^{d-2}(X_1^2 + \dots + X_n^2) + X_1^d + \dots + X_n^d = 0$$

Theorem (G. Boole 1841/45)

The discriminant of degree d hypersurfaces in \mathbf{P}^n is of degree $(d-1)^n(n+1)$.

Let d be even. Then

$$W := \operatorname{Proj} \operatorname{Sym}(\mathbb{Z} \oplus H^0(\mathbf{P}^n_{\mathbb{Z}}, \mathscr{O}(d))^{\vee})$$

is a naive parameter space for double covers $tw^2 = s$ of \mathbf{P}^n ramified at a degree d hypersurface. W is smooth over \mathbb{Z} .

Let d be even. Then

$$W := \operatorname{Proj} \operatorname{Sym}(\mathbb{Z} \oplus H^0(\mathbf{P}^n_{\mathbb{Z}}, \mathscr{O}(d))^{\vee})$$

is a naive parameter space for double covers $tw^2 = s$ of \mathbf{P}^n ramified at a degree d hypersurface. W is smooth over \mathbb{Z} .

Lemma

The closed subset $D \subset W$ parametrising singular double covers of \mathbf{P}^n is the union of three irreducible components. These are

- the cone C_{D_d} over the locus D_d ⊂ V parametrising singular hypersurfaces in Pⁿ of degree d [i.e., the ramification locus is singular],
- the hyperplane H_0 [corresponding to the case t = 0], and
- the special fibre W₂.

Double covers II

Theorem (Normalised discriminant for double covers, Costa/Elsenhans/J. 2016)

Let i = n be even. Then the normalised discriminant Δ is a section $\Delta \in \mathscr{O}_W(D)$ such that $\operatorname{supp}(\operatorname{div} \Delta)_{\mathbb{Q}} = (C_{D_d} \cup H_0)_{\mathbb{Q}}$. It has the property below.

Let K be a number field and $x \in (W \setminus (C_{D_d} \cup H_0))(K)$ be any K-rational point. Then, for any prime $\mathfrak{p} \subset \mathscr{O}_K$ of good reduction,

$$\mathsf{det}(\mathsf{Frob} \colon H^i_{\mathsf{\acute{e}t}}((F_x)_{\overline{\mathbb{F}}_p}, \mathbb{Q}_I(i/2)) \circlearrowright) = \left(\frac{\Delta(x)}{\mathfrak{p}}\right)$$

Double covers II

Theorem (Normalised discriminant for double covers, Costa/Elsenhans/J. 2016)

Let i = n be even. Then the normalised discriminant Δ is a section $\Delta \in \mathscr{O}_W(D)$ such that $\operatorname{supp}(\operatorname{div} \Delta)_{\mathbb{Q}} = (C_{D_d} \cup H_0)_{\mathbb{Q}}$. It has the property below.

Let K be a number field and $x \in (W \setminus (C_{D_d} \cup H_0))(K)$ be any K-rational point. Then, for any prime $\mathfrak{p} \subset \mathscr{O}_K$ of good reduction,

$$\mathsf{let}(\mathsf{Frob}\colon H^i_{\mathrm{\acute{e}t}}((F_x)_{\mathbb{F}_p}, \mathbb{Q}_I(i/2)) \circlearrowright) = \left(\frac{\Delta(x)}{\mathfrak{p}}\right)$$

Idea of proof. Everything except for $\operatorname{supp}(\operatorname{div} \Delta)_{\mathbb{Q}} = (C_{D_d} \cup H_0)_{\mathbb{Q}}$ just follows from the model case. The double cover, given by

$$w^{2} = X_{0}^{d-2}(X_{1}^{2} + \dots + X_{n}^{2}) + X_{1}^{d} + \dots + X_{n}^{d}$$

has exactly one singular point, which is an ordinary double point. Thus, the non-triviality criterion applies to C_{D_d} . As deg $C_{D_d} = (d-1)^n (n+1)$ is odd, supp div $\Delta \supseteq H_0$ is enforced, too.

J. Jahnel (Universität Siegen)

Remarks

• The result says, in particular, that the relationship between the normalised discriminant of the double cover $tw^2 = s$ and the discriminant of the hypersurface s = 0 is given by the formula

$$\Delta(t,s) = \pm t \Delta_{\mathsf{hyp}}(s) \,.$$

However, as (n-1) is odd, for the discriminant of a hypersurface in \mathbf{P}^n , we do not have a canonical choice of sign, anyway.

Remarks

• The result says, in particular, that the relationship between the normalised discriminant of the double cover $tw^2 = s$ and the discriminant of the hypersurface s = 0 is given by the formula

$$\Delta(t,s) = \pm t \Delta_{\mathsf{hyp}}(s) \,.$$

However, as (n-1) is odd, for the discriminant of a hypersurface in \mathbf{P}^n , we do not have a canonical choice of sign, anyway.

2 If we adopt Demazure's convention that $X_0^d + \cdots + X_n^d = 0$ has positive discriminant then the sign is $(-1)^{\frac{nd}{4}}$.

J. Jahnel (Universität Siegen)

Let S be a K3 surface over a number field K.

Let S be a K3 surface over a number field K.

One has dim $H^2_{\text{\'et}}(S_{\overline{K}}, \mathbb{Q}_l(1)) = 22.$

J. Jahnel (Universität Siegen)

Let S be a K3 surface over a number field K.

One has dim $H^2_{\text{\'et}}(S_{\overline{K}}, \mathbb{Q}_l(1)) = 22.$

The theory above shows that

•
$$det(\operatorname{Frob}: H^2_{\operatorname{\acute{e}t}}(S_{\overline{\mathbb{F}}_p}, \mathbb{Q}_I(1)) \mathfrak{S})$$
extends to a quadratic character $\operatorname{Gal}(\overline{K}/K) \to \{1, -1\}$. I.e.,

$$det(\operatorname{Frob}: H^2_{\operatorname{\acute{e}t}}(S_{\overline{\mathbb{F}}_p}, \mathbb{Q}_I(1)) \mathfrak{S}) = \left(\frac{\Delta_{H^2}(S)}{\mathfrak{p}}\right)$$

for some $\Delta_{H^2}(S) \in K^*$, unique up to squares.

• If $S = F_x$ is a member of a "reasonable" family of K3 surfaces then $\Delta_{H^2}(S) = (\Delta(x) \mod (K^*)^2)$, for $\Delta(x)$ the normalised discriminant.

Let S be a K3 surface over a number field K.

One has dim $H^2_{\text{\'et}}(S_{\overline{K}}, \mathbb{Q}_l(1)) = 22.$

The theory above shows that

•
$$\begin{aligned} & \det(\operatorname{Frob}: H^2_{\operatorname{\acute{e}t}}(S_{\overline{\mathbb{F}}_p}, \mathbb{Q}_I(1)) \circlearrowright) \\ & \text{extends to a quadratic character } \operatorname{Gal}(\overline{K}/K) \to \{1, -1\}. \text{ I.e.,} \\ & \det(\operatorname{Frob}: H^2_{\operatorname{\acute{e}t}}(S_{\overline{\mathbb{F}}_p}, \mathbb{Q}_I(1)) \circlearrowright) = \left(\frac{\Delta_{H^2}(S)}{\mathfrak{p}}\right) \end{aligned}$$

for some $\Delta_{H^2}(S) \in K^*$, unique up to squares.

• If $S = F_x$ is a member of a "reasonable" family of K3 surfaces then $\Delta_{H^2}(S) = (\Delta(x) \mod (K^*)^2)$, for $\Delta(x)$ the normalised discriminant.

There are the algebraic part $H_{alg} := \operatorname{im}(c_1: \operatorname{Pic}(S_{\overline{K}}) \to H^2_{\operatorname{\acute{e}t}}(S_{\overline{K}}, \mathbb{Q}_I(1)))$ and its orthogonal complement $T := (H_{alg})^{\perp}$, the transcendental part of the cohomology $H^2_{\operatorname{\acute{e}t}}(S_{\overline{K}}, \mathbb{Q}_I(1)))$.

The field of definition of $Pic(S_{\overline{K}})$ is a finite Galois extension L of K.

Lemma

J. Jahnel (Universität Siegen)

L/K is unramified at every prime, where S has good reduction.

Idea of proof. This follows directly from smooth base change.

The field of definition of $Pic(S_{\overline{K}})$ is a finite Galois extension L of K.

Lemma

L/K is unramified at every prime, where S has good reduction.

Idea of proof. This follows directly from smooth base change.

Definition

The field of definition of $\Lambda^{\max}\operatorname{Pic}(S_{\overline{K}})$ is an at most quadratic extension $K(\sqrt{\Delta_{\operatorname{alg}}(S)})\subseteq L.$

The field of definition of $Pic(S_{\overline{K}})$ is a finite Galois extension L of K.

Lemma

L/K is unramified at every prime, where S has good reduction.

Idea of proof. This follows directly from smooth base change.

Definition

The field of definition of $\Lambda^{\max}\operatorname{Pic}(S_{\overline{K}})$ is an at most quadratic extension $K(\sqrt{\Delta_{\operatorname{alg}}(S)})\subseteq L.$

Fact

One has

$$\mathsf{det}(\mathsf{Frob}_{\mathfrak{p}} \colon \mathcal{H}_{\mathsf{alg}} \circlearrowright) = \left(\frac{\Delta_{\mathsf{alg}}(S)}{\mathfrak{p}}\right)$$

3

イロト イヨト イヨト イヨト

Application to K3 surfaces: Rank jumps

Proposition (Rank jumps)

J. Jahnel (Universität Siegen)

Let S be a K3 surface over a number field K and $\mathfrak{p} \subset \mathscr{O}_K$ be a prime of good reduction of residue characteristic $\neq 2$.

- Then $\operatorname{rk}\operatorname{Pic} S_{\overline{\mathbb{F}}_p} \geq \operatorname{rk}\operatorname{Pic} S_{\overline{K}}$.
- ② Assume that rk Pic $S_{\overline{K}}$ is even. Then the following is true. If det Frob_p |_T = −1 then rk Pic $S_{\overline{K}_{p}} \ge$ rk Pic $S_{\overline{K}} + 2$.

Application to K3 surfaces: Rank jumps

Proposition (Rank jumps)

Let S be a K3 surface over a number field K and $\mathfrak{p} \subset \mathscr{O}_K$ be a prime of good reduction of residue characteristic $\neq 2$.

- Then rk Pic $S_{\overline{\mathbb{F}}_p} \ge \operatorname{rk}\operatorname{Pic} S_{\overline{K}}$.
- ② Assume that rk Pic $S_{\overline{K}}$ is even. Then the following is true. If det Frob_p |_T = −1 then rk Pic $S_{\overline{K}_p} \ge$ rk Pic $S_{\overline{K}} + 2$.

Idea of proof. 1. Upon Pic $S_{\overline{K}}$, Gal (\overline{K}/K) operates via the finite quotient Gal(L/K). Hence, some power of Frob_p acts as the identity. Tate's conjecture [proven for K3 surfaces by Charles, Madapusi Pera, and Lieblich/ Maulik/Snowden 2013/15] implies the claim.

2. According to the Weil conjectures [Deligne 1973], every eigenvalue of Frob on T has absolute value 1. Those different form 1 and (-1) come in pairs of conjugates. Thus, to have determinant (-1), at least one eigenvalue must be (-1) and at least one must be 1. Use the Tate conjecture.

Application to K3 surfaces: Rank jumps II

Theorem (Costa/Elsenhans/J. 2015)

Let S be a K3 surface over a number field K and $\mathfrak{p} \subset \mathscr{O}_K$ be any prime of good reduction.

Then one has

$$det(Frob_{\mathfrak{p}}: T \mathfrak{S}) = \left(\frac{\Delta_{H^2}(S)\Delta_{alg}(S)}{\mathfrak{p}}\right).$$

Assume that rk Pic $S_{\overline{K}}$ is even. If $\left(\frac{\Delta_{H^2}(S)\Delta_{alg}(S)}{\mathfrak{p}}\right) = -1$ then one has rk Pic $S_{\overline{K}} \ge$ rk Pic $S_{\overline{K}} + 2$.

Application to K3 surfaces: Rank jumps II

Theorem (Costa/Elsenhans/J. 2015)

Let S be a K3 surface over a number field K and $\mathfrak{p} \subset \mathscr{O}_K$ be any prime of good reduction.

Then one has

$$det(Frob_{\mathfrak{p}}: T \mathfrak{S}) = \left(\frac{\Delta_{H^2}(S)\Delta_{alg}(S)}{\mathfrak{p}}\right).$$

$$P Assume that rk \operatorname{Pic} S_{\overline{K}} \text{ is even. } If\left(\frac{\Delta_{H^2}(S)\Delta_{alg}(S)}{\mathfrak{p}}\right) = -1 \text{ then one has}$$

$$rk \operatorname{Pic} S_{\overline{\mathbb{F}}} \ge rk \operatorname{Pic} S_{\overline{K}} + 2.$$

Remark

Thus, unless $\Delta_{H^2}(S)\Delta_{\text{alg}}(S)$ is a square in K, the Picard rank jumps for at least half the primes. We call $\left(\frac{\Delta_{H^2}(S)\Delta_{\text{alg}}(S)}{\mathfrak{p}}\right)$ the *jump character* of S.

Application to K3 surfaces: Rank jumps III

Remarks

J. Jahnel (Universität Siegen)

- $\Delta_{H^2}(S)$ is a product of only bad primes. Thus, for a given surface, it can be computed by just counting points.
- To compute $\Delta_{\mathsf{alg}}(S)$, some information on $\mathsf{Pic}(S_{\overline{K}})$ is necessary.

Application to K3 surfaces: Rank jumps III

Remarks

- $\Delta_{H^2}(S)$ is a product of only bad primes. Thus, for a given surface, it can be computed by just counting points.
- To compute $\Delta_{\mathsf{alg}}(S)$, some information on $\mathsf{Pic}(S_{\overline{K}})$ is necessary.

Example

For the diagonal surface $S: X_0^4 + X_1^4 + X_2^4 + X_3^4 = 0$ over \mathbb{Q} , one has

- $\Delta_{H^2}(S) = 1$ and
- $\Delta_{\text{alg}}(S) = -1.$

Idea of proof. 2 is the only bad prime of *S*. To exclude the options that $\Delta_{H^2}(S)$ might be (-1) or ± 2 , it suffices to count points on the reductions S_3 and S_5 .

On the other hand, the Galois operation on Pic $S_{\overline{\mathbb{Q}}}$ is completely described in the Ph.D. thesis of M. Bright.

Special space quartics

J. Jahnel (Universität Siegen)

Theorem (Costa/Elsenhans/J. 2016)

Let K be a number field and S the space quartic $S: cX_3^4 + f_2(X_0, X_1, X_2)X_3^2 + f_4(X_0, X_1, X_2) = 0.$ Then rk Pic $S_{\overline{K}} \ge 8$. Assuming rk Pic $S_{\overline{K}} = 8$, one has one has $\Delta_{alg}(S) = \delta(f_2^2 - 4cf_4).$ The jump character is $(\frac{c\delta(f_4)\delta(f_2^2 - 4cf_4)}{2})$.

Special space quartics

Theorem (Costa/Elsenhans/J. 2016)

Let K be a number field and S the space quartic $S: cX_3^4 + f_2(X_0, X_1, X_2)X_3^2 + f_4(X_0, X_1, X_2) = 0.$ Then rk Pic $S_{\overline{K}} \ge 8$. Assuming rk Pic $S_{\overline{K}} = 8$, one has **1** one has $\Delta_{alg}(S) = \delta(f_2^2 - 4cf_4).$ **2** The jump character is $(\frac{c\delta(f_4)\delta(f_2^2 - 4cf_4)}{c})$.

Idea of proof. The surface $cw^2 + f_2(X_0, X_1, X_2)w + f_4(X_0, X_1, X_2) = 0$, which is Del Pezzo of degree 2, is covered 2:1 by S. This shows that rk Pic $S_{\overline{K}} \ge 8$ and claim 1.

The discriminant splits on this subfamily into c, $\delta(f_4)$, and a third factor that enters quadratically.

Special space quartics

Theorem (Costa/Elsenhans/J. 2016)

Let K be a number field and S the space quartic $S: cX_3^4 + f_2(X_0, X_1, X_2)X_3^2 + f_4(X_0, X_1, X_2) = 0.$ Then rk Pic $S_{\overline{K}} \ge 8$. Assuming rk Pic $S_{\overline{K}} = 8$, one has • one has $\Delta_{alg}(S) = \delta(f_2^2 - 4cf_4).$ • The jump character is $(\frac{c\delta(f_4)\delta(f_2^2 - 4cf_4)}{2}).$

Idea of proof. The surface $cw^2 + f_2(X_0, X_1, X_2)w + f_4(X_0, X_1, X_2) = 0$, which is Del Pezzo of degree 2, is covered 2:1 by S. This shows that rk Pic $S_{\overline{K}} \ge 8$ and claim 1.

The discriminant splits on this subfamily into c, $\delta(f_4)$, and a third factor that enters quadratically.

Remark

The discriminant δ of ternary quartics is of degree 27 and [thanks to the efforts of A.-S. Elsenhans] easily computable using magma.

J. Jahnel (Universität Siegen)

Special space quartics II

Example (Surfaces with CM by $\mathbb{Q}(i)$)

Let S be a space quartic of type

J. Jahnel (Universität Siegen)

$$X_3^4 + f_4(X_0, X_1, X_2) = 0$$
,

which is of geometric Picard rank 8. Then the jump character is $(\frac{-1}{\cdot})$. Idea of proof. $\delta(f_4)\delta(-4f_4) = (-4)^{27}\delta(f_4)^2$.

Special space quartics II

Example (Surfaces with CM by $\mathbb{Q}(i)$)

Let S be a space quartic of type

$$X_3^4 + f_4(X_0, X_1, X_2) = 0$$
,

which is of geometric Picard rank 8. Then the jump character is $(\frac{-1}{2})$. Idea of proof. $\delta(f_4)\delta(-4f_4) = (-4)^{27}\delta(f_4)^2$.

Example (A surface with with trivial jump character)

Consider the space quartic $S: X_3^4 + f_2(X_0, X_1, X_2)X_3^2 + f_4(X_0, X_1, X_2) = 0$, for

$$X_2(X_0, X_1, X_2) := X_0^2 - X_0 X_1 - X_0 X_2 - X_1 X_2$$
 and
 $X_4(X_0, X_1, X_2) := -X_0^3 X_2 + X_0 X_1^2 X_2 - X_1^4 - X_2^4$.

Then the geometric Picard rank of S is 8 and the jump character of S is trivial.

Idea of proof. The reduction modulo, e.g., 19 has geometric Picard rank 8. Moreover, $\delta(f_4) = -2^8 3^3 431^2$ and $\delta(f_2^2 - 4f_4) = -2^{60} 3^3 47^2$.

Another application to K3 surfaces: Infinitely many rational curves

Conjecture

Every K3 surface S over an algebraically closed field K contains infinitely many rational curves.

Evidence. Odd rank case was proven by Li/Liedtke (2012), based on ideas of Bogomolov, Hassett, and Tschinkel. Further sufficient conditions include that S has infinitely many automorphisms or that S is elliptic.

Another application to K3 surfaces: Infinitely many rational curves II

Theorem (Costa/Elsenhans/J. 2016)

Let S be a K3 surface over a number field K. Assume that $\operatorname{rk}\operatorname{Pic} S_{\overline{K}}$ is even,

- that $S_{\overline{K}}$ has neither real nor complex multiplication, and
- that $\Delta_{H^2}(S)\Delta_{alg}(S)$ is a non-square in K.

Then $S_{\overline{K}}$ contains infinitely many rational curves.

Another application to K3 surfaces: Infinitely many rational curves II

Theorem (Costa/Elsenhans/J. 2016)

Let S be a K3 surface over a number field K. Assume that $\operatorname{rk}\operatorname{Pic} S_{\overline{K}}$ is even,

- \bullet that $S_{\overline{K}}$ has neither real nor complex multiplication, and
- that $\Delta_{H^2}(S)\Delta_{alg}(S)$ is a non-square in K.

Then $S_{\overline{K}}$ contains infinitely many rational curves.

Idea of proof. The approach of Li/Liedtke shows that one needs infinitely jump primes \mathfrak{p} such that $S_{\mathfrak{p}}$ is not supersingular. Infinitely many jump primes are provided by the second assumption. The first one assures that only modulo a small subset of these, the reduction is supersingular.

Thank you!!

On the distribution of the Picard ranks

Banff, March 16, 2017 25 / 25

< 一型

э