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Abstract. For families of K3 surfaces, we establish a sufficient criterion for real
or complex multiplication. Our criterion is arithmetic in nature. It may show,
at first, that the generic fibre of the family has a nontrivial endomorphism field.
Moreover, the endomorphism field does not shrink under specialisation. As an ap-
plication, we present two explicit families of K3 surfaces having real multiplication
by Q(

√
2) and Q(

√
5), respectively.

1. Introduction

Complex multiplication is a phenomenon that has been intensively studied, first
and foremost for complex elliptic curves, cf. [Si, Chapter II] or [Cox, Chapter 3]. Ac-
cording to its very definition, it is a purely geometric property. Nevertheless, it has
arithmetic consequences and much of the interest in complex multiplication stems
from these. The generalisation to higher-dimensional abelian varieties is straight-
forward, except for the fact that, besides complex multiplication, the similar phe-
nomena of real and quaternionic multiplication may occur. Abelian varieties are,
however, not the limit.

For instance, let X be a projective complex K3 surface. In this situation, the
occurrence of real and complex multiplication phenomena has been observed by
Yu.G. Zarhin [Za]. They are certainly deeper for K3 surfaces than for abelian
varieties, because they do not concern the complex manifold directly, but merely its
cohomology.

More concretely, the cohomology Q-vector space H2(X,Q) is of dimension 22.
On the other hand, the rank of the Picard group Pic X may vary between 1 and 20.
Put P := c1(Pic X)⊗ZQ ⊂ H2(X,Q) and T := P⊥, these subspaces being called the
algebraic and transcendental parts of H2(X,Q), respectively. Then T is not just a
Q-vector space, but a pure Q-Hodge structure [De71, Section 2.2]. The endomor-
phism algebra EndHodge(T ) is generically just Q, but may as well be a totally real
field E ⫌ Q or a CM-field [Za, Theorems 1.6.a) and 1.5.1].

For an analysis of real and complex multiplications from the analytic point of
view, we refer the reader to [vG], for an interesting application of real multiplication
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to [Ch14]. On the other hand, at least as far as real multiplication is concerned, the
only explicit example surfaces known seem to be the ones presented by the authors
in [EJ14]. In that article, a few 1-parameter families were given, as well as some
isolated examples, which conjecturally have RM. For one of these families, RM
by Q(

√
2) was proven, at least for countably many of its members.

Terminology. i) If Q ⫋ E = EndHodge(T ) is a totally real field then we say that
X has real multiplication (RM) by E. If E is a CM-field then we say that X has
complex multiplication (CM) by E.

ii) In either case, we call E = EndHodge(T ) the endomorphism field of X (and T ).

iii) If it happens that Q ⊆ E ′ ⊆ E = EndHodge(T ) then X (and T ) are said to be
acted upon by E ′.

The main result–A sufficient criterion for RM or CM. The following criterion
is the main result of this article. It is a relative version of [EJ14, Lemma 6.1].

Theorem 1.1 (Sufficient criterion for RM or CM in families). Consider a proper
and smooth morphism q : X → B of irreducible schemes of finite type over Z[1

l
],

every fibre of which is a K3 surface. Suppose that B is a normal scheme and has a
Q-rational point.

a) Assume that there exists a number field K that is Galois over Q and a conjugacy
class c of elements in Gal(K/Q) with the property below: For every prime number p
such that Frobp ∈ c and every Fp-rational point τ ∈ B(Fp), the special fibre Xτ has
point count

#Xτ (Fp) ≡ 1 (mod p) . (1)

Then the generic fibre Xη has real or complex multiplication.

b) Assume that the generic fibre Xη has real or complex multiplication by some
endomorphism field E. Then, for every complex point z ∈ B(C), the K3 surface
Xz(C) is acted upon by E.

Remarks 1.2. i) (Cyclotomic case) Put K := Q(ζD), for an arbitrary positive inte-
ger D. Then Gal(K/Q) ∼= (Z/DZ)∗, which is an abelian group. Hence, the conju-
gacy classes of elements are singletons. Moreover, the condition Frobp ∈ c simply
means that p ≡ a (mod D), for a certain integer a prime to D.

ii) Even under a congruence condition of the type described in i), the strongest and
most unlikely looking of the assumptions above is, of course, formula (1) concerning
the point count. Note, however, that real multiplication tends to cause exactly such
a behaviour [EJ14, Corollary 4.13.i)]. In Examples 5.1 and 1.5, we present explicit
families of K3 surfaces, for which (1) is established by elementary arguments.

Remark 1.3. In order to apply the criterion above, one further needs methods to
determine the endomorphism field E of a particular K3 surface, under the assump-
tion that E ⫌ Q is already known. For the convenience of the reader, in Section 6,
we add some information on how to handle the case of a quadratic field. I.e., how to
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prove that [E : Q] = 2 and how to determine which quadratic field exactly occurs.
The method described has essentially been known before, cf. [EJ14].

Remark 1.4. We prove Theorem 1.1.a) in Section 3, as Theorem 3.5, and Theo-
rem 1.1.b) in Section 4. In fact, for part b), the assumptions may be somewhat
weakened. Cf. Corollary 4.7 for an exact formulation.

The link to the arithmetic. Theorem 1.1.a) is arithmetic in nature, taking as its
main assumption condition (1) on the numbers of points on the reductions modulo p,
for infinitely many prime numbers p. The link between RM and CM, i.e. Hodge
structures, and arithmetic works as follows.

Let X be a K3 surface over a field k ⊂ C that is finitely generated over Q.
Under the canonical isomorphism ι : H2

ét(Xk,Ql(1)) → H2(X(C),Q)⊗QQl(1) be-
tween étale and complex cohomology [SGA4, Exposé 11, Théorème 4.4.iii)], the
algebraic classes and the cup product pairing are respected. Thus, T ⊗QQl(1), for
T ⊂ H2(Z(C),Q) the transcendental part, gets identified with T ⊂ H2

ét(Xk,Ql(1)),
the transcendental part of étale cohomology. As a consequence of this, by transport
of structure, one has an operation

E = EndHodge(T ) ↪→ End(T ) (2)

of E = EndHodge(T ) on T .
It is well-known [Za, Ta90, Ta95, An] that the neutral component of the algebraic

monodromy group of T is given by MG0
T ,k,l = (CGO(T )(E))0. Cf. Example 2.3.v).

I.e., except for the case of geometric Picard rank 20, in which GO0(T ) is abelian
and CM is automatic [Hu, Remark 3.3.10], one has MG0

T ,k,l ⫋ GO0(T ) if and only
if E ⫌ Q.

Further results. We reverse this result in Theorem 4.1 and prove

CEnd(T )(MG0
T ,k,l) = E⊗QQl .

Thus, the endomorphism field E is determined by the algebraic monodromy group,
at least up to arithmetic equivalence [Pe]. This fixes the degree of E and in many
situations E itself, for example when E is Galois over Q or when [E :Q] < 7 [BdS].
It turns out (cf. Corollary 4.4) that there is another situation, in which E is inde-
pendent of k ↪→ C, namely when the base field k is primary over Q, i.e. does not
contain any proper algebraic extension of Q.

More terminology. Let k be a field that is finitely generated over Q and X a K3
surface over k. Assume that k is primary over Q or that rk Pic Xk > 15.

i) We say that X has real or complex multiplication if X(C) has. (This terminology
is used in Theorem 1.1.a) for the generic fibre Xη.)

ii) Similarly, we shall fell free to speak of the endomorphism field of X, instead
of X(C).

Applications. As an application, in Section 5, we return to the family from [EJ14]
and prove that actually every member is acted upon by Q(

√
2). Moreover, we

present a new family, all members of which are acted upon by Q(
√

5).
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Example 1.5 (An explicit family of K3 surfaces with RM byQ(
√

5)). Let q : X → B,
for B := SpecQ[t, 1

(t−1)(t4−t3+t2−t+1)
] ⊂ A1

Q, be the family of K3 surfaces that is fibre-
by-fibre the minimal desingularisation of the double cover of P2, given by

w2 = y(x − 2(t−1)y − tz) (3)
(x4 + x3y − x3z + x2y2 − 2x2yz + x2z2 + xy3 − 3xy2z − 2xyz2 − xz3 + y4

+ y3z + y2z2 + yz3 + z4) .

i) Then the generic fibre Xη of q is of geometric Picard rank 16.

ii) The endomorphism field of Xη is Q(
√

5).

iii) For every θ ∈ B(C), the transcendental part T ⊂ H2(Xθ(C),Q) of the cohomol-
ogy of the fibre Xθ is acted upon by Q(

√
5).

iv) Let the complex point θ ∈ B(C) be of the kind that the fibre Xθ has Picard
rank 16. Then Xθ has real multiplication by Q(

√
5).

Proof. We prove these results in Section 6. □

The Tate conjecture for K3 surfaces. Our arguments make use of the Tate
conjecture, in situations where it is known to be true. More concretely, what we use
is the following.

Facts 1.6 (Known cases of the Tate conjecture). Let k be field that is

a) finitely generated over Q or

b) a finite field

and X a K3 surface over k. Then the subspace H2
ét(Xk,Ql(1))Gal(k/k) of invariants

coincides with c1(Pic X)⊗ZQl ⊂ H2
ét(Xk,Ql(1)).

Proof. a) This is due to Y. André [An, Section 6.2]. More recent developments are
described in [Mo, Proposition 9.2].

b) In this situation, the result is known due to the combined work of several people,
most notably F. Charles [Ch13], M. Lieblich, D. Maulik, and A. Snowden [LMS],
K. Madapusi Pera [MP], as well as W. Kim and K. Madapusi Pera [KM]. □

Conventions and Notation. We follow standard conventions and use standard
notation from Algebra and Algebraic Geometry. More specifically,

i) For a field k, we denote by k a separable closure. For a point t : Spec k → X, we
write t : Spec k → Spec k → X for the resulting geometric point.

ii) We usually denote the generic point on a connected scheme by η.

iii) We say that a proper scheme X over a number field k has good reduction at a
prime ideal p of k, if there exists a proper model X over the integer ring Ok ⊂ k
that is smooth above p.

iv) When B,X, . . . is a scheme of finite type over SpecZ, we write B, X etc. for its
generic fibre. E.g., B := B ×SpecZ SpecQ.
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v) For a K3 surface X over a field k ⊂ C that is finitely generated over Q, the
canonical comparison isomorphism [SGA4, Exposé 11, Théorème 4.4.iii)] induces an
isomorphism T ∼= T⊗QQl(1), for T ⊂ H2(X(C),Q) and T ⊂ H2

ét(Xk,Ql(1)) the
transcendental parts. We identify the two Ql-vector spaces and consider T as a
subset of T .

Except for Corollary 4.2, we fix a prime number l throughout the article.

vi) For an algebraic group G, we denote by G0 its neutral component with respect
to the Zariski topology. Similarly for the group of the Ql-rational points on an
algebraic group defined over Ql.

vii) We let On ⊂ An2

k be the orthogonal group and SOn ⊂ On the special orthogonal
group. The base field k, which is suppressed in the notation, is of characteristic 6=2
throughout the article. Usually, we have k = Ql.

The group of theQl-rational points on On is On(Ql) = {A ∈ Mn×n(Ql) | AAt = En}.
viii) We denote by GOn the linear algebraic group Gm·On. In characteristic different
from 2, GOn is irreducible for n odd and has two components for n even. In any
case, one has GO0

n = Gm ·SOn.

When T is a finite-dimensional Ql-vector space equipped with a non-degenerate
symmetric bilinear form, we use the notation GO(T ) for the group of all orthogonal
similitudes of T .

ix) When A is an algebra and G,H ⊆ A are either subalgebras or subgroups of the
multiplicative group A∗ ⊂ A then CH(G) := {h ∈ H | ∀g ∈ G : hg = gh} denotes
the centraliser of G in H.

Computations. All computations are done with magma [BCP] on one core of an
AMD Phenom II X4 955 processor running at 3.2GHz.

2. Algebraic monodromy groups

Algebraic monodromy groups are the main tool that is used in the present article.
The purpose of this section is primarily to recall the relevant facts and to fix notation.

Let B be an arbitrary connected scheme, on which a geometric point s is fixed
as the base point. As is well-known [SGA5, Exposé VI, Lemme 1.2.4.2], associated
with anyQl-sheaf Q on B that is twisted-constant with respect to the étale topology
and of finite rank, one has a continuous representation

%Q
s : πét

1 (B, s) −→ GL(Qs) (4)

of the étale fundamental group of B.

Definition 2.1. The Zariski closure of the image of %Q
s is called the algebraic mon-

odromy group MGQ,B,l of Q. This is the set of all Ql-rational points on an algebraic
group defined over Ql. The algebraic group is possibly disconnected.
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Remark 2.2. Let s′ be another geometric point on B. One may then choose an étale
path γ ∈ πét

1 (B, s, s′), which yields an isomorphism iγ : Qs → Qs′ . The diagram

πét
1 (B, s)

ϱQ
s //

σ 7→γσγ−1

��

GL(Qs)

M 7→iγMi−1
γ

��
πét

1 (B, s′)
ϱQ

s′ // GL(Qs′)

then commutes. I.e., γ induces an isomorphism between GL(Qs) and GL(Qs′) that
maps the two instances of MGQ,B,l onto each other.

Examples 2.3. i) Let B = Spec k, for k a field. Then (4) specialises to a represen-
tation of Gal(k/k) = πét

1 (Spec k, Spec k). The algebraic monodromy group MGQ,k,l

of Q is the Zariski closure of the image of Gal(k/k) in GL(Qk).

ii) When B is an arbitrary scheme of residue characteristics different from l and
q : X → B a smooth and proper morphism then the proper and smooth base change
theorems [SGA4, Exposé XVI, Corollaire 2.2] imply that the higher direct image
sheaves Riq∗Ql(j) are twisted-constantQl-sheaves, for all i, j ∈ N. One has the alge-
braic monodromy group MGRiq∗Ql(j),B,l ⊆ GL((Riq∗Ql(j))s) = GL(H i

ét(Xs,Ql(j))).

iii) Suppose that the fibres of q are of dimension i, for an even integer i. Then the
stalks of Riq∗Ql(i/2) at the geometric point s are equipped with the symmetric
pairing, induced by cup product and Poincaré duality. As a consequence of this,

MGRiq∗Ql(i/2),B,l ⊆ GO((Riq∗Ql(i/2))s) = GO(H i
ét(Xs,Ql(i/2))) .

iv) Assume, in addition, that there is given a decomposition Riq∗Ql(i/2) = P ⊕ T
into two twisted-constant subsheaves, whereas the restriction of the cup product
pairing to Ps is non-degenerate. Then the same is true for Ts and the algebraic
monodromy group MGT ,B,l is contained in GO(Ts).

v) (Zarhin, Tankeev, André) Consider the situation that B = Spec k, for k a field
that is finitely generated over Q, X is a K3 surface over k, and T ⊂ H2

ét(Xk,Ql(1))
is the transcendental part.

Then the neutral component of the algebraic monodromy group of T is equal to
the neutral component of the centraliser of E in GO(T ),

MG0
T ,k,l = (CGO(T )(E))0 . (5)

Here, the endomorphism field E = EndHodge(T ) is considered as being contained in
End(T ) via the operation (2).

Indeed, (5) follows from Yu.G. Zarhin’s explicit description of the Mumford-Tate
group in the case of a complex K3 surface [Za, Theorem 2.2.1], together with the
Mumford-Tate conjecture, cf. [Ch14, Theorem 13]. The Mumford-Tate conjecture
was proven for K3 surfaces over number fields by S.G. Tankeev [Ta90, Ta95] and
over arbitrary finitely generated extensions of Q by Y. André [An, Théorème 8.2].
Cf. [Com, Theorem 1.1] for recent developments.
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2.4 (Base change). Let i : B′ → B be a morphism of connected schemes and s
any geometric point on B′. Then i induces an isomorphism (i∗Q)s

∼= Qi(s) and a
homomorphism i# : πét

1 (B′, s) → πét
1 (B, i(s)), via which one has a natural inclusion

MGi∗Q,B′,l ↪→ MGQ,B,l

of subgroups of GL((i∗Q)s) ∼= GL(Qi(s)).

i) This applies, of course, when s : Spec k → B is a point,

MGQ|s,k,l ↪→ MGQ,B,l .

Note here that, in view of Remark 2.2, one may assume the base point on B to be
chosen as an extension of s.

ii) In the particular case that B is normal and locally Noetherian and that η ∈ B is
the generic point, the natural inclusion is actually a bijection,

MGQ|η ,k(η),l = MGQ,B,l .

Indeed, the homomorphism i# is then surjective, according to [SGA1, Exposé V,
Proposition 8.2].

3. A criterion for RM or CM in families

Let B be a connected scheme of finite type over Z, q an arbitrary prime power, and
τ : SpecFq → B an arbitrary closed point, defined over Fq. Then, by functoriality,
there is the natural homomorphism

τ# : Gal(Fq/Fq) = πét
1 (SpecFq, SpecFq) → πét

1 (B, τ) ,

so τ defines a unique element Fτ ∈ πét
1 (B, τ) being the image of the canonical gen-

erator Frob ∈ Gal(Fq/Fq). As B is connected, an étale path γ ∈ πét
1 (B, τ , η) may

be chosen. This yields an isomorphism

πét
1 (B, τ) −→ πét

1 (B, η), σ 7→ γσγ−1 ,

under which Fτ is sent to the Frobenius element Frobτ ∈ πét
1 (B, η). The Frobenius

element Frobτ is unique only up to conjugation, as one may choose various étale
paths.

Remark 3.1. In the particular case that B := SpecZ[ 1
D

], for some integer D 6= 0,
one has the Frobenius element Frobp ∈ πét

1 (SpecZ[ 1
D

], η), for any prime number p ∤D.
It causes an automorphism of every Galois étale covering of SpecZ[ 1

D
] and, in partic-

ular, an element in Gal(K/Q), as long as K is a number field that is normal over Q
and ramified only at primes dividing D. This is the classical Frobenius element from
Algebraic Number Theory.

Our argumentation in this section essentially relies on the Cebotarev density the-
orem in the extended version, due to J.-P. Serre [Serr]. This is the following result.

Proposition 3.2 (J.-P. Serre). Let B be an irreducible scheme of finite type over Z
and U ⊂ πét

1 (B, η) a normal subgroup of finite index.
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a) Then the Frobenius elements Frobτ ∈ πét
1 (B, η) of the closed points τ ∈ B take

every conjugacy class of elements of πét
1 (B, .)/U .

b) Suppose, in addition, that B is flat over Z. Then the Frobenius elements Frobτ

of the closed points τ ∈ B defined over a prime field already take every conjugacy
class of elements of πét

1 (B, .)/U .

Proof. a) directly follows from [Serr, Theorem 7]. In fact, J.-P. Serre shows for
every conjugacy class that the suitable closed points are of positive Dirichlet density.

b) Thus, to establish b), it suffices to show that the closed points defined over non-
prime fields form a set of Dirichlet density zero. For this, let us write n := dim B.
Then the special fibre over Fp is of dimension (n − 1). Hence, according to the
Lang–Weil estimates [LW, Theorem 1], there is some constant C ∈ R such that
#B(Fq) ≤ Cqn−1, for every prime power q. Therefore,∑

p prime
k≥2,τ∈B(F

pk )

1

N(τ)n
≤ C

∑
p prime

k≥2

(pk)n−1

(pk)n
= C

∑
p prime

k≥2

1

pk
< ∞ ,

which implies the claim, cf. [Serr, formula (19)]. □
Theorem 3.3 (Strict inclusion for the algebraic monodromy group). Let D 6= 0 be
an integer and q : X → B a proper and smooth morphism of irreducible schemes of
finite type over Z[ 1

lD
], every fibre of which is a K3 surface. Suppose that B has a

Q-rational point.

Let, moreover, T ⊂ R2q∗Ql(1) be a twisted-constant sheaf of rank ≥ 3 of the kind
that

• there is a decomposition R2q∗Ql(1) = (P⊗ZQl) ⊕ T , for P a locally constant
Z-sheaf,

• the restriction of the cup product pairing to Tη is non-degenerate.

Finally, assume that there exists a number field K of discriminant D that is Galois
over Q and a conjugacy class c of elements in Gal(K/Q) with the property be-
low: For every prime number p such that Frobp ∈ c and every Fp-rational point
τ ∈ B(Fp), the special fibre Xτ has point count

#Xτ (Fp) ≡ 1 (mod p) . (6)

Then the strict inclusion MG0
T ,B,l ⫋ GO0(Tη) holds.

Corollary 3.4 (Algebraic monodromy group of the generic fibre). Let q : X → B
and T ⊂ R2q∗Ql(1) be as in Theorem 3.3. Then

MG0
Tη,k(η),l

⫋ GO0(Tη) .

Proof. This follows directly from Theorem 3.3, together with 2.4.i). □
Theorem 3.5 (Sufficient criterion for the generic fibre to have RM or CM with an
unspecified endomorphism field). Let q : X → B be a proper and smooth morphism
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of irreducible schemes of finite type over Z[1
l
], every fibre of which is a K3 surface.

Suppose that B is a normal scheme and has a Q-rational point.

Assume that there exists a number field K that is Galois over Q and a conjugacy
class c of elements in Gal(K/Q) with the property below: For every prime number p
such that Frobp ∈ c and every Fp-rational point τ ∈ B(Fp), the special fibre Xτ has
point count

#Xτ (Fp) ≡ 1 (mod p) .

Then the K3 surface Xη(C) = (Xη ×Spec k(η) SpecC)(C) has real or complex multi-
plication, for every embedding k(η) ↪→ C.

Proof. Without restriction, q is a morphism of Z[ 1
lD

]-schemes, for D the discrimi-
nant of the field extension K/Q. Indeed,

q×SpecZ[ 1
l
]SpecZ[ 1

lD
] : X×SpecZ[ 1

l
]SpecZ[ 1

lD
] −→ B×SpecZ[ 1

l
]SpecZ[ 1

lD
]

still fulfils all the assumptions made.
Put R := R2q∗Ql(1) and Pη := c1(Pic Xη) ⊂ H2

ét(Xη,Ql(1)) = Rη. Then R is a
twisted-constant Ql-sheaf on B, due to the smooth and proper base change theo-
rems [SGA4, Exposé XVI, Corollaire 2.2]. Moreover, Pη is clearly Gal(k(η)/k(η))-
invariant and stabilised by an open subgroup of finite index, as every invertible sheaf
is defined over a finite extension of k(η). Therefore, Lemma 3.6 applies and shows
that Pη extends to a locally constant Z-sheaf P on B.

Finally, write T := (P⊗ZQl)
⊥. If rk T ≥ 3 then all assumptions of Theorem 3.3

are satisfied. Indeed, the cup product pairing on P is non-degenerate and this
implies the same for T . In view of formula (5), the assertion is then a direct conse-
quence of Corollary 3.4. Otherwise, one has rk T = 2 and hence Xη is of geometric
Picard rank 20. In this case, Xη(C) is known to have CM [Hu, Remark 3.3.10]. □

Lemma 3.6. Let A be a normal scheme that is connected and locally Noetherian
and let R be a twisted-constant Ql-sheaf on A. Moreover, let S ↪→ S⊗ZQl ⊆ Rη be
a free Z-module of finite rank that is invariant under the Gal(k(η)/k(η))-operation
and stabilised by an open subgroup of finite index in Gal(k(η)/k(η)).

Then S extends to the whole of A as a locally constant Z-sheaf S . Moreover, one
has S ⊗ZQl ⊆ R.

Proof. The assumptions made on A are enough to imply that the étale funda-
mental group πét

1 (A, .) is a quotient of Gal(k(η)/k(η)) [SGA1, Exposé V, Proposi-
tion 8.2]. Write πét

1 (A, .) = Gal(k(η)/k(η))/H. The equivalence of categories be-
tween twisted-constant Ql-sheaves on A and Ql-vector spaces being continuously
acted upon by πét

1 (A, .) [SGA5, Exposé VI, Lemme 1.2.4.2] therefore shows that Rη

is actually a Gal(k(η)/k(η))/H-module. In particular, H operates trivially on S.
Thus, S is acted upon by Gal(k(η)/k(η))/H = πét

1 (A, .). The assumption implies
that S is, furthermore, stabilised by an open subgroup K ⊂ πét

1 (A, .) of finite index.
Consequently, there exists an étale covering Ã → A, which we may assume to be
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Galois, on which S defines a constant Z-sheaf S̃ , together with an operation of the
finite group Gal(Ã/A) = πét

1 (A, .)/K.
Since every orbit of a finite group is finite, S̃ is represented [SGA4, Exposé VII,

Section 2.a)] by an infinite disjoint union A of trivial, finite étale coverings, i.e.
such of type Ã t · · · t Ã, each of which is acted upon by πét

1 (A, .)/K. According to
[SGA1, Exposé IX, Proposition 4.1], A descends to an infinite disjoint union of finite
étale coverings of A. This union, finally, represents a sheaf S of sets on A.

The sheaf S is locally constant, since it is trivialised by the étale covering Ã → A.
As the group structure descends, too, the proof is complete. □

Proof of Theorem 3.3. First step. For an arbitrary Fp-rational point τ ∈ B(Fp),
for p of the kind that Frobp ∈ c, one has Tr(%T

η (Frobτ )) ∈ [−22, 22] ∩ Z.
The Lefschetz trace formula [SGA5, Exposé XII, 6.3 and Exemple 7.3] yields that

#Xτ (Fp) = p2 + Tr(Frob: H2
ét(Xτ ,Ql(1)) → H2

ét(Xτ ,Ql(1)))p + 1

= p2 + Tr(Fτ : (R2q∗Ql(1))τ → (R2q∗Ql(1))τ )p + 1 .

Note the factor p that is a result of the Tate twist. Consequently, Assumption (6)
means nothing but

Tr
(
Fτ : (R2q∗Ql(1))τ → (R2q∗Ql(1))τ

)
∈ Z .

But, via any étale path γ ∈ πét
1 (B, τ , η),

Tr(%
R2q∗Ql(1)
η (Frobτ )) = Tr(Frobτ : (R2q∗Ql(1))η → (R2q∗Ql(1))η)

= Tr(Fτ : (R2q∗Ql(1))τ → (R2q∗Ql(1))τ ) .

On the other hand, Tr(%P⊗ZQl
η (Frobτ )) = Tr(%P

η (Frobτ )) ∈ Z. Note here that Frobτ

operates already on the Z-sheaf P. Consequently, one has Tr(%T
η (Frobτ )) ∈ Z too.

The argument above also shows that Tr(%T
η (Frobτ )) is the same as the sum of the

eigenvalues of Frob, operating on Tτ ⊂ (R2q∗Ql(1))τ = H2
ét(Xτ ,Ql(1)). Since these

are all of absolute value 1, according to the Weil conjectures, and the vector space
to the right is of dimension 22, the claim follows.

Note that, for K3 surfaces, the Weil conjectures were established by I. I. Pjatets-
kij-Shapiro and I. R. Shafarevich [PSS, Teorema 3], as well as P. Deligne [De72],
before the general case was treated [De74, Théorème 8.1].

Second step. A finite-index subgroup of πét
1 (B, η).

The homomorphism pr# : πét
1 (B, η) → πét

1 (SpecZ[ 1
lD

], SpecQ), induced by the struc-
tural morphism pr: B → SpecZ[ 1

lD
], is surjective. Indeed, for t : SpecQ → B any

Q-rational point, it is sufficient to show that pr#◦t# = (pr◦t)# is surjective. But as
pr◦t : SpecQ→ SpecZ[ 1

lD
] is just the embedding of the generic point, this is true,

due to [SGA1, Exposé V, Proposition 8.2].
Furthermore, there is the homomorphism

χ : πét
1 (SpecZ[ 1

lD
], SpecQ) → Gal(K/Q) ,
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induced by the operation on the [K :Q]-fold étale covering

W := Spec OK [ 1
lD

] → SpecZ[ 1
lD

] .

The homomorphism χ is epic, too, as W is a connected scheme. Put χK := χ◦pr#,

U := ker χK and U (c) := χ−1
K (c) .

Then U ⊂ πét
1 (B, η) is an open subgroup of index [K :Q] and U (c) ⊂ πét

1 (B, η) is a
non-empty union of cosets of U .

Third step. For every σ ∈ U (c), one has Tr(%T
η (σ)) ∈ [−22, 22] ∩ Z.

Assume the contrary. Then Tr(%T
η (σ)) 6∈ {−22, . . . , 22} ⊂ Ql, for one particular

such element σ.
In order to analyse this assumption further, let us consider a torsion-free Zl-sheaf

T (Zl) underlying T . Such a sheaf must exist for very general reasons [SGA5, Ex-
posé 6, Définition 1.4.3]. Consequently, there is a continuous representation

%T (Zl)

η : πét
1 (B, η) → GL(T (Zl)

η )

underlying %T
η . In particular, we have Tr(%T (Zl)

η (σ)) = Tr(%T
η (σ)) and may conclude

Tr(%T (Zl)

η (σ)) 6∈ {−22, . . . , 22} ⊂ Zl. Thus, Tr(%T (Zl)

η (σ)) has a positive l-adic dis-
tance from the finite set {−22, . . . , 22}, which means that there exists some e ∈ N
of the kind that

Tr(%e(σ)) 6∈ {−22, . . . , 22} ⊂ Z/leZ , (7)

for %e : πét
1 (B, η) → GL(T (Zl)

η /leT (Zl)
η ) the quotient representation.

We now apply Proposition 3.2.b) to the product representation

%e × χK : πét
1 (B, .) → GL(T (Zl)

η /leT (Zl)
η ) × Gal(K/Q) .

Note that B is certainly flat over Z, since it is irreducible and has aQ-rational point.
Proposition 3.2.b) yields a prime number p and a closed point τ : SpecFp → B
having the property that

Frobτ ≡ σ (mod ker(%e×χK)) . (8)

Here, Frobτ is to be understood as a suitable representative up to conjugation.
Formula (8) shows, in particular, Frobτ ≡ σ (mod ker χK), which implies that

Frobp ∈ c. Moreover, the congruence modulo ker %e yields

Tr(%e(σ)) = Tr(%e(Frobτ )) .

However, Tr(%e(Frobτ )) =
(
Tr(%T (Zl)

η (Frobτ )) mod le
)
∈ {−22, . . . , 22} ⊂ Z/leZ, ac-

cording to the first step. This is in contradiction with (7), and the claim is therefore
established.

Fourth step. Conclusion.
To complete the argument, we first observe that the set GO0(Tη) ∼= GO0

rk T (Ql),
equipped with the Zariski topology, is irreducible as a topological space. Indeed,
GO0(Tη) is Zariski dense in GO0(Tη ⊗Ql

Ql), due to [Ro, Corollary in Section 3] or
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[Che, Corollary 2 of Theorem 1], and GO0(Tη ⊗Ql
Ql)

∼= GO0
rk T (Ql) is known to be

irreducible.
Consequently, GO(Tη) has at most two components. I.e.,

GO(Tη) =

N⋃̇
i=1

xi ·GO0(Tη) ,

for N = 1 or 2. To be more precise, one has N = 1 when rk T is odd and N = 2
for rk T even.

Next, let us note that the trace morphism

Tr: xi ·GO0(Tη) −→ A1
Ql

is dominant. Indeed, diag( λ
rk T

, . . . , λ
rk T

) ∈ GO0
rk T (Ql) has trace λ, for an arbitrary

λ ∈ Ql. Similarly, when rk T ≥ 3 is even,

diag(− λ
rk T −2

, + λ
rk T −2

, . . . , + λ
rk T −2

) ∈ GOrk T (Ql)\GO0
rk T (Ql)

has trace λ.
As [−22, 22] ∩ Z ⫋ A1

Ql
is Zariski closed, the result of the previous step implies

that %T
η (U (c)) ⊂ GO(Tη) cannot be Zariski dense in any of the components. I.e.,

%T
η (U (c)) ∩ xi ·GO0(Tη) ⫋ xi ·GO0(Tη) ,

for i = 1, . . . , N . Consequently, %T
η (U) ∩ xi ·GO0(Tη) ⫋ xi ·GO0(Tη) too, since

%T
η (U (c)) is a nonempty union of cosets of %T

η (U). Another application of the same
argument shows that

x·%T
η (U) ∩ GO0(Tη) ⫋ GO0(Tη) ,

for every x ∈ GO(Tη).
Thus, writing πét

1 (B, η) =
⋃̇#Gal(K/Q)

i=1 σiU as a union of cosets, one finds that

MGT ,B,l =

#Gal(K/Q)⋃
i=1

%T
η (σiU) =

#Gal(K/Q)⋃
i=1

%T
η (σi)·%T

η (U) .

Therefore,

MGT ,B,l ∩GO0(Tη) =

#Gal(K/Q)⋃
i=1

(
%T

η (σi)·%T
η (U) ∩ GO0(Tη)

)
is the union of finitely many sets, each of which is Zariski closed and properly con-
tained in GO0(Tη). Since GO0(Tη) is an irreducible topological space, this implies
MGT ,B,l ∩GO0(Tη) ⫋ GO0(Tη), which completes the proof. □
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4. The endomorphism field under specialisation

It turns out that formula (5) from Example 2.3.v) may be reversed.

Theorem 4.1 (Étale cohomological description of the endomorphism field). Let k
be a field that is finitely generated over Q, X a K3 surface defined over k, and
T ⊂ H2

ét(Xk,Ql(1)) the transcendental part. Then

CEnd(T )(MG0
T ,k,l) = E⊗QQl ,

for E the endomorphism field of X(C) = (X×Spec k SpecC)(C). Here, k is arbi-
trarily embedded into C.

Corollary 4.2 (Independence of E of the embedding into C–elementary case).
In the situation of Theorem 4.1, let i1, i2 : k ↪→ C be two embeddings and denote by
E1, E2 the corresponding endomorphism fields.

a) Then E1 and E2 are arithmetically equivalent.

b) In particular, [E1 :Q] = [E2 :Q]. Furthermore, E1 and E2 have the same normal
closure. If [E1 :Q] < 7 then E1

∼= E2.

Proof. a) The isomorphy E1⊗QQl
∼= E2⊗QQl, for every prime number l, implies

that E1 and E2 have the same Dedekind zeta function. This is what is called arith-
metic equivalence [Pe].

b) The two consequences of arithmetic equivalence are shown in [Pe, Theorem 1]
and the final statement is [BdS, Theorem 1]. □
Corollary 4.3. In the situation of Theorem 4.1, choose, in addition, an embedding
k ↪→ C. Then

CEnd(T )(MG0
T ,k,l) ∩ EndQ(T ) = E .

Proof. “⊇”: Clearly, on one hand, one has E = EndHodge(T ) ⊆ EndQ(T ) and, on
the other, E ⊂ E⊗QQl = CEnd(T )(MG0

T ,k,l).

“⊆”: Let us put E ′ := CEnd(T )(MG0
T ,k,l) ∩ EndQ(T ). Then E ′⊗QQl is contained

in EndQ(T )⊗QQl = End(T ). Note here that Ql(1) is free of rank 1 over Ql, and
that we use the identification T ∼= T⊗QQl(1). Moreover, E ′⊗QQl commutes with
MG0

T ,k,l, simply because E ′ does so. Therefore,

E ′⊗QQl ⊆ CEnd(T )(MG0
T ,k,l) = E⊗QQl ,

in view of the Theorem. As E, E ′ ⊆ EndQ(T ) and Ql is faithfully flat over Q, this
yields that E ′ ⊆ E. □

Recall that an extension field k of Q is called primary, if it does not contain any
proper algebraic extension of Q [EGA IV, §4.3].

Corollary 4.4 (Independence of E of the embedding into C–primary case). Let k
be a field that is finitely generated and primary over Q and X a K3 surface over k.
Then the endomorphism field of X(C) = (X ×Spec k SpecC)(C) is independent of
the embedding k ↪→ C chosen.
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Proof. Take an integral scheme B of finite type over Q with function field k.
Then, as k is primary, [EGA IV, Proposition 4.5.9] shows that B is geometrically irre-
ducible. Moreover, according to H. Hironaka [Hi], one may assume that B is non-
singular.

The usual spreading out argument provides a morphism q : X → B of Q-schemes
of finite type with generic fibre X. Restricting B to an open subscheme, if necessary,
one may assume that q is proper and smooth and that every fibre is a K3 surface.

Next, consider two embeddings i1, i2 : k = k(η) ↪→ C. These yield two complex
points ηc

1, η
c
2 : SpecC→ B on B, and hence on BC := B ×SpecQ SpecC, as well as

on the complex manifold B(C) = BC(C). As B(C) is connected, we may choose a
path w ∈ π1(B(C), ηc

1, η
c
2).

The higher direct image sheaf R2q(C)∗Q is locally free on B(C) of rank 22.
Thus, the path w induces an isomorphism iw between the stalks (R2q(C)∗Q)ηc

1
and

(R2q(C)∗Q)ηc
2
, which are, according to Grauert’s Theorem [Gr, Satz 5], canonically

isomorphic to H2(Xηc
1
(C),Q) and H2(Xηc

2
(C),Q), respectively.

On the other hand, as usual, w induces an étale path on BC, and, via the natural
projection, an element w̃ ∈ πét

1 (B, η). By [SGA1, Exposé V, Proposition 8.2], this
fundamental group is a quotient of Gal(k/k). Thus, w̃ operates as an automorphism
of k and hence preserves the algebraic classes in H2

ét(Xη,Ql(1)) = H2
ét(Xk,Ql(1)).

Consequently, one also has that iw̃(T ) = T . I.e., the isomorphism

iw : H2(Xηc
1
(C),Q) → H2(Xηc

2
(C),Q)

maps Tηc
1
⊗QQl(1) onto Tηc

2
⊗QQl(1). As Ql(1) is faithfully flat over Q, this implies

iw(Tηc
1
) = Tηc

2
.

Conjugation by iw hence provides an isomorphism

cw : EndQ(Tηc
1
) → EndQ(Tηc

2
) , M 7→ iw◦M ◦i−1

w ,

which clearly induces the isomorphism cw̃ : End(T ) → End(T ), M 7→ iw̃◦M ◦i−1
w̃ .

Moreover, as noticed in Remark 2.2, cw̃ maps the algebraic monodromy group
MGT ,k,l, and therefore also the identity component MG0

T ,k,l, onto itself. Conse-
quently,

cw

(
CEnd(T )(MG0

T ,k,l) ∩ EndQ(Tηc
1
)
)
⊆ CEnd(T )(MG0

T ,k,l) ∩ EndQ(Tηc
2
) .

Corollary 4.3 shows that this means nothing but cw(E1) ⊆ E2. As cw is injective
and one has [E1 :Q] = [E2 :Q], due to Corollary 4.2.b), the assertion follows. □

In order to draw more conclusions from Theorem 4.1, we need a lemma.

Lemma 4.5. Let k be a field that is finitely generated over Q, X a K3 surface
over k, and T ′ ⊆ H2

ét(Xk,Ql(1)) a subvector space on which the cup product pairing
is non-degenerate and which contains the transcendental part T . Let R ⊂ T ′ be
the orthogonal complement of T in T ′.

a) Then MG0
T ′,k,l = MG0

T ,k,l, the operation of MG0
T ′,k,l on R being trivial.

b) The centraliser CEnd(T ′)(MG0
T ′,k,l) maps R to itself.
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Proof. a) Being perpendicular to T , the direct summand R consists of alge-
braic classes. These are defined over a finite extension field of k, and therefore
pointwise fixed under an open subgroup of finite index in MGT ′,k,l. In other words,
MG0

T ′,k,l operates as the identity map on R. This yields MG0
T ′,k,l = MG0

T ,k,l, since
the operation of Galois preserves orthogonality.

b) On the other hand, no non-zero element of T is fixed under MG0
T ′,k,l. Indeed, such

an element x ∈ T would be fixed under Gal(k/k′), for k′ a certain finite extension
field of k, and hence algebraic, according to the Tate conjecture (cf. Fact 1.6.a)),
a contradiction. As elements commuting with MG0

T ′,k,l cannot interchange fixed
points with non-fixed points, we see that CEnd(T ′)(MG0

T ′,k,l) maps R to itself. □
Corollary 4.6 (The endomorphism field under specialisation). Let q : X → B be
a proper and smooth morphism of geometrically connected schemes of finite type
over Q, every fibre of which is a K3 surface.

a) Then the endomorphism field E of the generic fibre Xη is independent of the
embedding k(η) ↪→ C.

b) Let s ∈ B be a point. Choose arbitrary embeddings k(η) ↪→ C and k(s) ↪→ C and
denote by ηc, sc ∈ B(C) the complex points corresponding to η and s, respectively.
Let, moreover w ∈ π1(B(C), ηc, sc) be a path.

i) Then w induces an isomorphism iw : H2(Xηc(C),Q) → H2(Xsc(C),Q), which
maps the transcendental part T (Xηc ) ⊂ H2(Xηc(C),Q) to some Tsc ⊇ T (Xsc ).

ii) Thus, by transport of structure, E operates on Tsc, too. Under this operation,
T (Xsc ) is mapped to itself.

iii) For the endomorphism field E(Xsc ) of Xs(C), one has E(Xsc ) ⊇ E. Thereby, the
operation of E ⊆ E(Xsc ) coincides with that obtained by transport of structure.

Proof. a) As B is geometrically connected, k(η) is clearly primary over Q. Thus,
Corollary 4.4 implies the assertion.

b.i) The higher direct image sheaf R2q(C)∗Q is locally free on B(C) of rank 22.
Thus, w induces an isomorphism iw : (R2q(C)∗Q)ηc → (R2q(C)∗Q)sc . Note that
these stalks are canonically isomorphic to H2(Xηc(C),Q) and H2(Xsc(C),Q), re-
spectively, due to [Gr, Satz 5].

Moreover, algebraic classes remain algebraic under specialisation, i.e.

iw(P (Xηc )) ⊆ P (Xsc ) , (9)

in the situation of a smooth family. Indeed, they are representable by Weil divisors
and one may just take the Zariski closure of a representing Weil divisor. The claim
follows immediately from (9) by taking orthogonal complements on both sides.

ii) The assertion descends under base change by a finite morphism p : B′ → B.
Thus, we may assume without restriction that B is a normal scheme [Bo, Chapitre V,
§1, Corollaire 1 du Proposition 18].

Let us switch to étale cohomology. The algebraic part Pη ⊂ H2
ét(Xη,Ql(1)) ex-

tends to a locally constant sheaf P on the whole of B, by virtue of of Lemma 3.6.
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Consequently, the transcendental part Tη ⊂ H2
ét(Xη,Ql(1)) extends to a twisted-

constant sheaf T . Moreover, the comparison theorem between étale and complex
cohomology [SGA4, Exposé 11, Théorème 4.4.iii)] shows that the commutative dia-
gram of the given data

H2(Xηc(C),Q)
iw // H2(Xsc(C),Q)

T (Xηc ) iw //
?�
OO

Tsc

?�

OO

T (Xsc )
?�
OO

goes over under tensoring with Ql(1) into

H2
ét(Xη,Ql(1)) // H2

ét(Xs,Ql(1))

Tη
//

?�
OO

Ts

?�
OO

T (Xs) .
?�
OO

On the other hand, we have MG0
Ts,k(s),l ⊆ MG0

T ,B,l = MG0
Tη ,k(η),l, due to 2.4.i)

and ii). Here, in view of Remark 2.2, the underlying identification may be supposed
to be induced by w. The inclusion yields

CEnd(Ts)(MG0
Ts,k(s),l) ⊇ CEnd(Tη)(MG0

Tη ,k(η),l) = E⊗QQl . (10)

Now write Ts = T (Xs) ⊕ R, with a direct summand R that is perpendicular
to T (Xs). Then, according to Lemma 4.5, CEnd(Ts)(MG0

Ts,k(s),l) maps R to itself.
Since E⊗QQl acts via self-adjoint endomorphisms [Za, Theorem 1.5.1], this shows
that E⊗QQl maps T (Xs) to itself, either.

Translating this back to complex cohomology, one finds that E ⊆ End(Tsc) has the
property that E ⊂ E⊗QQl ⊆ End(Tsc⊗QQl(1)) maps T (Xsc )⊗QQl(1) into itself.
As Ql(1) is faithfully flat over Q, this is enough to enforce the claim.

iii) By (10), the operation of E ⊂ E⊗QQl on Ts commutes with MG0
Ts,k(s),l. More-

over, according to Lemma 4.5.a), MG0
Ts,k(s),l maps T (Xs) ⊆ Ts to itself, while E⊗QQl

does the same, as shown in b). Restricting the endomorphisms to T (Xs), we find
that E ⊂ E⊗QQl ⊆ End(T (Xs)) commutes with MG0

T (Xs),k(s),l
. In other words,

E ⊂ E⊗QQl ⊆ CEnd(T (Xs))

(
MG0

T (Xs),k(s),l

)
.

Since, according to b), E maps T (Xsc ) to itself, this yields

E ⊆ CEnd(T (Xs))

(
MG0

T (Xs),k(s),l

)
∩ EndQ(T (Xsc )) = E(Xsc ) ,

as claimed. □

Corollary 4.7 (Complex fibres). Let q : X → B be a proper and smooth morphism
of geometrically connected schemes of finite type over Q, every fibre of which is a
K3 surface. Suppose that the generic fibre Xη has real or complex multiplication by
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an endomorphism field E ⫌ Q. Then, for every complex point θ ∈ B(C), the fibre
Xθ(C) is acted upon by E.

Proof. We suppose that dim B ≥ 1, as otherwise there is nothing to prove.
Take an open neighbourhood U 3 θ that is connected and simply connected. Then
R2(q|q−1(U))∗Q = (Q22)U is a constant sheaf.

Moreover, the subset Ualg := B(Q) ∩ U of algebraic points is dense in U with
respect to the complex topology. Ualg is the same as the set of points of type sc,
for s ∈ B a closed point. For each z ∈ Ualg, the fibre Xz(C) is acted upon by E, as
shown in Corollary 4.6.

In order to make this more precise, let us take an embedding k(η) ↪→ C and denote
by ηc ∈ B(C) the corresponding complex point. In addition, we choose one particu-
lar point z0 ∈ Ualg and a path w ∈ π1(B(C), ηc, z0). For every other point z ∈ Ualg,
we choose a path wz ∈ π1(U, z0, z). Let us denote the element of π1(B(C), z0, z),
induced by wz, again by wz. Then Corollary 4.6 applies to wz◦w ∈ π1(B(C), ηc, z).

It shows that the fibre Xz(C) is acted upon by E in the following manner. One has
iwz◦w(T (Xηc )) ⊇ T (Xz) and the operation of E on iwz◦w(T (Xηc )), induced by that
on T (Xηc ), defines the action on T (Xz). Thus, the actions of E on all iwz◦w(T (Xηc )),
for z ∈ Ualg, are compatible among each other, via transport of structure under wz.
But the latter is the obvious one on the constant sheaf R2(q|q−1(U))∗Q.

The operation of E splits iw(T (Xηc ))⊗QC into r = [E :Q] eigenspaces V1, . . . , Vr.
The same decomposition applies to every z ∈ Ualg,

iw◦wz(T
(Xηc ))⊗QC =

r⊕
i=1

((Vi)U)z .

As E = EndHodge(T
(Xz)), this means that H2,0(Xz(C),C) ⊆ ((Vi)U)z, for a certain i.

In other words, the one-dimensional vector space

H2,0(Xz(C),C) ∈ P(H2(Xz(C),C)) ∼= P(H2(Xz0(C),C)) ,

represents a point lying on the union of the r projective subspaces P(V1), . . . ,P(Vr).
On the other hand, the mapping Π: U → P(H2(Xz0(C),C)), z 7→H2,0(Xz(C),C),

is holomorphic [BHPV, Theorem IV.4.2]. Our argument will only need continuity.
Indeed, we have Π(Ualg) ⊆

⋃r
i=1 P(Vi). As the right hand side is a closed subset

and Π is continuous, this implies that Π(U) ⊆
⋃r

i=1 P(Vi). But this means that
Xz(C) is acted upon by E, for any z ∈ U , and in particular for z = θ. □

In order to prove Theorem 4.1, we need a few auxiliary results.

Sublemma 4.8. One has spanQl
SOn(Ql) = Mn×n(Ql), for every natural number

n 6= 2.

Proof. Put S := spanQl
SOn(Ql). Then clearly S ⊆ Mn×n(Ql). Moreover, S is not

just a Ql-vector space, but a representation of SOn(Ql)×SOn(Ql), via

(SOn(Ql)×SOn(Ql)) × S −→ S , ((M1,M2), s) 7→ M1sM
−1
2 .
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Thus it suffices to show that Mn×n(Ql) is irreducible as an SOn(Ql)×SOn(Ql)-repre-
sentation. But Mn×n(Ql)

∼= Qn

l ⊗(Q
n

l )∗ and Q
n

l is irreducible as a SOn(Ql)-module,
due to [BtD, Chapter VI, (5.4.v)], for n ≥ 3, and trivially, for n = 1. □

Lemma 4.9. Let T be a finite-dimensional Ql-vector space equipped with a non-
degenerate symmetric form that is acted upon by a totally real or CM field E via
self-adjoint linear maps. In the case that E is totally real, suppose that T is free
as an E⊗QQl-module of rank 6=2. Then

spanQl
(CO(T ⊗Ql

Ql)
(E))0 = CEnd(T ⊗Ql

Ql)
(E) .

.
Proof. First case: E is totally real.
Then T ⊗Ql

Ql is split under the operation of E into r = [E : Q] simultaneous
eigenspaces V1, . . . , Vr ⊂ T ⊗Ql

Ql, which are mutually perpendicular, due to the
self-adjointness assumption. Hence,

CEnd(T ⊗Ql
Ql)

(E) = {f : T⊗Ql
Ql→T⊗Ql

Ql | f Ql-linear, f(Vi) ⊆ Vi for i = 1, . . . , r}

and (CO(T ⊗Ql
Ql)

(E))0 is given analogously, with the additional assumption that
all restrictions f |Vi

: Vi → Vi be orthogonal maps of determinant 1. Since
dim Vi = rkE⊗QQl

(T ⊗Ql
Ql) = rkE⊗QQl

T 6= 2, Sublemma 4.8 implies the claim.

Second case: E is a CM field.
Here, T ⊗Ql

Ql is split under the operation of E into 2s = [E : Q] simultaneous
eigenspaces V1, V 1, . . . , Vs, V s ⊂ T ⊗Ql

Ql. These are isotropic and mutually per-
pendicular, with the only exceptions that Vi 6⊥ V i, for i = 1, . . . , s. Indeed, if some
primitive element e ∈ E acts with eigenvalues λi and λj on Vi and Vj, respectively,
then one finds

λi〈vi, vj〉 = 〈evi, vj〉 = 〈vi, evj〉 = λj〈vi, vj〉 ,

which yields 〈vi, vj〉 = 0, as soon as λi 6= λj.
Hence,

(CO(T ⊗Ql
Ql)

(E))0

= {f : T ⊗Ql
Ql→T ⊗Ql

Ql | f Ql-linear, f(Vi) ⊆ Vi, f(V i) ⊆ V i

and f |Vi⊕V i
∈ SO(Vi⊕V i) for i = 1, . . . , r}

and CEnd(T ⊗Ql
Ql)

(E) is given in the same way, dropping the second condition.
But all matrices of type (A 0

0 (At)−1), for A ∈ GLdim Vi
(Ql), represent orthogonal

maps of determinant 1, as a direct calculation shows. The assertion immediately
follows from this. □

Corollary 4.10. In the situation of Lemma 4.9, one has

spanQl
(CGO(T ⊗Ql

Ql)
(E))0 = CEnd(T ⊗Ql

Ql)
(E) . □
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Proposition 4.11. Let T be a finite-dimensional Ql-vector space equipped with a
non-degenerate symmetric form that is acted upon by a totally real or CM field E
via self-adjoint linear maps. In the case that E is totally real, suppose that T is
free as an E⊗QQl-module of rank 6=2. Then

spanQl
(CGO(T )(E))0 = CEnd(T )(E) .

Proof. The inclusion “⊆” is obvious. In order to prove “⊇”, assume the contrary.
Then

(CGO(T )(E))0 ⊆ spanQl
(CGO(T )(E))0 ⊆ CEnd(T )(E)∩V (λ) ⊆ CEnd(T⊗Ql

Ql)
(E)∩V (λ) ,

for a certain Ql-linear form λ on the Ql-vector space CEnd(T )(E). For the Zariski
closure, this shows

(CGO(T )(E))0 ⊆ CEnd(T ⊗Ql
Ql)

(E) ∩ V (λ) ⫋ CEnd(T ⊗Ql
Ql)

(E) .

On the other hand, (CGO(T ⊗Ql
Ql)

(E))0 is the set of all Ql-rational points on a
connected linear algebraic group that is defined over Ql, while (CGO(T )(E))0 is the
set of all Ql-rational points. Therefore, it is known [Ro, Che] that (CGO(T )(E))0 is
Zariski dense in (CGO(T ⊗Ql

Ql)
(E))0. Hence,

(CGO(T ⊗Ql
Ql)

(E))0 ⊆ CEnd(T ⊗Ql
Ql)

(E) ∩ V (λ) ⫋ CEnd(T ⊗Ql
Ql)

(E) ,

implying spanQl
(CGO(T ⊗Ql

Ql)
(E))0 ⊆ CEnd(T ⊗Ql

Ql)
(E) ∩ V (λ) ⫋ CEnd(T ⊗Ql

Ql)
(E) ,

too. Thus, we arrived at a contradiction with Corollary 4.10. □
Proof of Theorem 4.1. By (5), CEnd(T )(MG0

T ,k,l) = CEnd(T )((CGO(T )(E))0). But
every endomorphism of T that commutes with a certain set, commutes with its
Ql-span. I.e.,

CEnd(T )(MG0
T ,k,l) = CEnd(T )(spanQl

(CGO(T )(E))0) .

Moreover, E can only be a totally real or a CM field by [Za, Theorems 1.6.a) and
1.5.1], T = T⊗QQl(1) is free over E⊗QQl, and in the totally real case dimE T = 2
is not possible [vG, Lemma 3.2]. Thus, Proposition 4.11 yields that

CEnd(T )(MG0
T ,k,l) = CEnd(T )(spanQl

(CGO(T )(E))0) = CEnd(T )(CEnd(T )(E)) .

Moreover, the elements of CEnd(T )(E) actually commute with E⊗QQl ⊃ E, which
is still contained in End(T ). I.e., CEnd(T )(E) = CEnd(T )(E⊗QQl). Finally, the
classical double centraliser theorem [Is, Corollary 13.18] applies and shows that

CEnd(T )(MG0
T ,k,l) = CEnd(T )(CEnd(T )(E⊗QQl)) = E⊗QQl . □

5. An explicit family

The example below gives an illustration on how to apply Theorem 1.1. The family
considered has been treated before [EJ14], so most of its properties needed in the
proof can simply be cited.
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Example 5.1 (An explicit family of K3 surfaces with RM by Q(
√

2)). Let q : X→B,
for B :=SpecQ[t, 1

t(t2−2)(t2+2)(t2−4t+2)(t2+4t+2)
]⊂A1

Q, be the family of K3 surfaces that
is fibre-by-fibre the minimal desingularisation of the double cover of P2, given by

w2 = [(1
8
t2− 1

2
t+ 1

4
)y2 + (t2−2t+2)yz + (t2−4t+2)z2]

[(1
8
t2+ 1

2
t+ 1

4
)x2 + (t2+2t+2)xz + (t2+4t+2)z2][2x2 + (t2+2)xy + t2y2] .

Then

i) the generic fibre Xη of q is of geometric Picard rank 16.

ii) The endomorphism field of Xη is Q(
√

2).

iii) For every θ ∈ B(C), the transcendental part T ⊂ H2(Xθ(C),Q) of the cohomol-
ogy of the fibre Xθ(C) is acted upon by Q(

√
2).

iv) Let the complex point θ ∈ B(C) be of the kind that the fibre Xθ(C) has Picard
rank 16. Then Xθ(C) has real multiplication by Q(

√
2).

Proof. For t0 ∈ B, the ramification locus of the double cover underlying Xt0 is
a union of six lines, all of which are defined over Q(

√
2, t0). Moreover, a direct

calculation shows that no three of these lines have a point in common, except for
t0 = 0, ±

√
2, ±

√
−2, and ±2±

√
2, which are exactly the points excluded from B.

Thus, q is indeed a well-defined family of K3 surfaces.

i) Certainly, Pic Xη contains the (6
2
) = 15 classes of the exceptional curves, obtained

by blowing up the intersection points of the ramification locus, and the pull-back of
the class of the general line on P2. Hence, rk Pic Xη ≥ 16. On the other hand, for
t0 ≡ 1 (mod 17·23), one has rk Pic Xt0 = 16 [EJ14, Theorem 6.6]. As the geometric
Picard rank does not increase under generisation, the claim is established.

ii) Spreading out, one finds a morphism q : X → B of schemes of finite type over Z,
where B ⊂ A1

Z[ 1
l
] is an open subscheme. Restricting to a further open subscheme,

one may assume that every fibre is a K3 surface.
Let us put D := 8 and a := 3 or 5 and consider an arbitrary Fp-rational point

τ ∈ B(Fp), for p ≡ a (mod 8) any prime number. Then one has
√

2 6∈ Fp. From this,
one directly deduces that Frobenius operates on the six lines of the ramification locus
by a permutation of type (12)(34)(5)(6). Therefore, the induced operation on the
fifteen pairs fixes only three of them, {1, 2}, {3, 4}, and {5, 6}, while the other twelve
form six 2-cycles.

On the other hand, write X ′
τ for the double cover of P2 underlying Xτ . Then, since

p ≡ 3, 5 (mod 8), it is known [EJ14, Theorem 6.3] that #X ′
τ (Fp) = p2 + p + 1.

Furthermore, the lines E12, . . . , E56 are blown down, exactly three of which contain
Fp-rational points. Consequently,

#Xτ (Fp) = #X ′
τ (Fp) + 3p = p2 + 4p + 1 ≡ 1 (mod p) .

In other words, Theorem 1.1.a) applies and shows that the generic fibre Xη has
indeed real or complex multiplication. Write E for the endomorphism field of Xη.

Moreover, for t0 ≡ 1 (mod 17·23), the special fibre Xt0 has real multiplication by
Q(

√
2), according to [EJ14, Theorem 6.6]. Thus, Corollary 4.6 yields E ⊆ Q(

√
2).
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Together with the fact that E ⫌ Q, this shows that Xη has real multiplication
exactly by Q(

√
2).

iii) This is just an application of Theorem 1.1.b).

iii) Here, the transcendental part T ⊂ H2(Xθ(C),Q) is of dimension 6. By Theorem
1.1.b), once again, about its endomorphism field Eθ we know that Eθ ⊇ Q(

√
2).

Assume that equality does not hold. Then 2 | [Eθ :Q] | 6 and 2 6= [Eθ :Q], which
together leave [Eθ :Q] = 6 as the only option. In this case, real multiplication is
impossible, due to [Za, Remark 1.5.3.c)]. Thus, Eθ must be a CM field of degree 6.
Its totally real subfield is hence cubic and contains Q(

√
2), a contradiction. □

6. A second explicit family

In order to specify the endomorphism field E ⫌ Q, whose existence follows from
Theorem 1.1.a), a few particular assumptions are necessary. We will use the result
below for d = 2.

Proposition 6.1. Let d and n be positive integers, k a number field, X a K3 surface
over k, and p1 and p2 be two prime ideals of k at which X has good reduction.
Suppose that

• rk Pic Xk ≥ n, and

• rk Pic XFp1
= rk Pic XFp2

= n + d, whereas disc Pic XFp1
/ disc Pic XFp2

6∈ (Q∗)2.

I.e., that the Picard lattices are incompatible in that sense that the quotient of their
discriminants is a non-square in Q∗.

a) (Degree bound for the endomorphism field) Then, for the degree of the endomor-
phism field E, the inequality [E :Q] ≤ d is true.

b) (Van Luijk’s method) One has n ≤ rk Pic Xk ≤ n + d − [E :Q].

Proof. a) Applying van Luijk’s method (cf. [vL, Remark 3.2]) in the most naive
way, one sees that rk Pic Xk ≤ n + d − 1. Therefore,

1 = (n + d) − (n + d − 1) ≤ rk Pic XFp1
− rk Pic Xk ≤ (n + d) − n = d . (11)

Lemma 6.2 below shows that this yields [E :Q] ≤ d.

b) Again according to Lemma 6.2, one has that [E :Q] | (rk Pic XFp1
− rk Pic Xk).

Thus, inequality (11) shows that the difference between the two ranks is at least
[E :Q]. This is exactly the asserted inequality to the right. The inequality to the
left is part of the assumptions. □
Lemma 6.2. Let k be a number field, X a K3 surface over k, and p be a prime
ideal of k at which X has good reduction. Suppose that X has real or complex
multiplication by an endomorphism field E. Then

[E :Q] | (rk Pic XFp
− rk Pic Xk) .

Proof. Let Pp ⊆ H2
ét(Xk,Ql(1)) be the vector space of those classes that are al-

gebraic after specialisation to H2
ét(XFp

,Ql(1)), and put Tp := (Pp)
⊥. In particular,
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Tp ⊆ T , as algebraic classes remain algebraic under specialisation. To specify this
inclusion more precisely, let us write down an orthogonal decomposition

T = Tp ⊕ S . (12)

I.e., S consists of the classes in T that become algebraic after specialisation to XFp
.

As all these are defined over a finite extension Fpm of Fp, for a certain m ∈ N, the
power (Frobp)

m operates on S with only eigenvalue 1.
On the other hand, there is some n ∈ N such that the operation of (Frobp)

n on
T ⊂ H2

ét(XFp
,Ql(1)) commutes with that of E, cf. [EJ14, Corollary 4.2]. The further

power (Frobp)
nm operates on S again with only eigenvalue 1. However, the Tate

conjecture in the variant of Fact 1.6.b) implies that eigenvalue 1 does not occur
on Tp. Since E and (Frobp)

nn′
commute, this enforces that E maps S to itself.

Finally, by Sublemma 6.3, the splitting (12) descends to T ⊂ H2(X(C),Q),

T = Tp ⊕ S .

Moreover, the operation of E on T must map S to itself, as this is true after tensoring
with Ql(1), and Ql(1) is faithfully flat over Q. In other words, S is not just a
Q-vector space, but an E-vector space. Consequently,

[E :Q] | dimQ S = rk Pic XFp
− rk Pic Xk ,

as claimed. □
Sublemma 6.3. Let k be a number field, X a K3 surface over k, and p be a
prime ideal of k at which X has good reduction. Denote by Pp ⊆ H2

ét(Xk,Ql(1))
the vector space of the classes being algebraic after specialisation to H2

ét(XFp
,Ql(1)).

Then there is some subvector space Pp ⊂ H2(X(C),Q) such that, under the com-
parison isomorphism [SGA4, Exposé 11, Théorème 4.4.iii)], Pp = Pp⊗QQl(1).

Proof. For A any Ql-vector space, the Chern class homomorphism, combined with
the specialisation and comparison isomorphisms, yields an injection

c
(A)
1 : Pic XFp

⊗ZA −→ H2
ét(XFp

, A) ∼= H2
ét(Xk, A) ∼= H2(X(C),Q)⊗QA ,

which is natural in A. In particular, the difference kernels of the vertical arrows of
the commutative diagram

Pic XFp
⊗ZQl(1)⊗QQl(1)

c
(Ql(1)⊗QQl(1))

1 // H2(X(C),Q)⊗QQl(1)⊗QQl(1)

Pic XFp
⊗ZQl(1)

id⊗1⊗id
OO
id⊗id⊗1

OO
c
(Ql(1))
1 // H2(X(C),Q)⊗QQl(1)

id⊗1⊗id
OO
id⊗id⊗1

OO

are connected by a descent homomorphism

cp : Pic XFp
⊗ZQ −→ H2(X(C),Q) .

Its image im c =: Pp is the desired subvector space. □
Notation. Let X be a K3 surface over a number field k and p a prime ideal of k,
at which X has good reduction.
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i) We denote by χT
pn the characteristic polynomial of (Frobp)

n ∈ Gal(k/k) on the
transcendental part T ⊂ H2

ét(Xk,Ql(1)).

ii) We factorise χT
pn ∈ Q[Z] completely in the form χT

pn(Z) = χtr
pn(Z) ·

∏d
i=1(Z − ζei

ki
),

for k1, . . . , kd ∈ N. I.e. in such a way that χtr
pn ∈ Q[Z] does not have any further

zeroes being roots of unity.

Remarks 6.4. i) The power (Frobp)
n of the Frobenius element is uniquely determined

up to conjugation, so χT
pn is well-defined. By [SGA4, Exposé XVI, Corollaire 2.2],

it coincides with the characteristic polynomial of Frob on the corresponding part
of H2

ét(XFp
,Ql(1)). In particular, χT

pn is, in fact, a polynomial with coefficients in Q
[De74, Théorème 1.6].

By definition, one has deg χT
pn = 22 − rk Pic Xk.

ii) According to the Tate conjecture (Fact 1.6.b)), χtr
pn is the characteristic polyno-

mial of Frobn on the transcendental part of H2
ét(XFp

,Ql(1)). Let us note, in partic-
ular, that deg χtr

pn = 22 − rk Pic XFp
.

iii) Consequently, one has that d = rk Pic XFp
− rk Pic Xk.

In order to decide which quadratic number field exactly is the endomorphism field,
the following result is useful.

Proposition 6.5. Let p be a prime of good reduction of the K3 surface X over
a number field k, having real or complex multiplication by a field E containing the
quadratic number field Q(

√
δ). Then at least one of the following two statements

is true.

i) The polynomial χtr
p ∈ Q[Z] is the norm of a polynomial from Q(

√
δ)[Z].

ii) For some n ∈ N, the polynomial χtr
pn is a square in Q[Z].

Proof. This is essentially [EJ14, Theorem 4.9]. Note that the proof given in [EJ14]
works over an arbitrary number field. □
Notation. Let q : X → B be the family from Example 1.5 and q′ : X ′ → B the
underlying family of double covers of P2.

i) Spread out in the obvious way, i.e. put B := SpecZ[T, 1
(T−1)(T 4−T 3+T 2−T+1)

]⊂A1
Z

and let X ′ be the double cover of P2
B given by the same equation as (3). We denote

the family of schemes thus obtained by q′ : X ′ → B.

ii) Let X be the blow-up of X ′ in the 15 codimension-2 subschemes being the Zariski
closures of the 15 singular points on the generic fibre X ′

η. For the resulting family,
let us write q : X → B.

Proof for Example 1.5. For t0 ∈ B, the ramification locus of the double cover
underlying Xt0 is a union of six lines, all of which are defined over Q(ζ5, t0). In-
deed, the quartic occurring in (3) is the norm form of the linear form x− ζ5y + ζ2

5z
defined over Q(ζ5).

Moreover, no three of the five lines in the ramification locus that do not de-
pend of t have a point in common, the ten points of intersection being (1 :

√
5−1
2

:1),
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(1 :ζ5+ζ3
5 :ζ4

5 ), (1 :0 :−ζ5), and their conjugates. A direct calculation shows that the
sixth line passes through one of these points if and only of t0 = 1 or t0 is a proper
tenth root of unity. As these are exactly the points excluded from B, q is indeed a
family of K3 surfaces.

i) Having spread out as described, one has the morphism q : X → B of schemes of
finite type over Z. Restricting to a suitable open subscheme, one may assume that
B ⊆ A1

Z[ 1
l
] and that every fibre is a K3 surface.

Furthermore, since Pic Xη, contains the span of the (6
2
) = 15 classes of the ex-

ceptional curves, obtained by blowing up the intersection points of the ramification
locus, and the pull-back of the class of the general line on P2, one certainly has
rk Pic Xη ≥ 16.

In order to apply Theorem 1.1, let us put D := 5 and a := 2 or 3 and consider
an arbitrary Fp-rational point τ ∈ B(Fp), for p ≡ a (mod 5) any prime number.
Then

√
5 6∈ Fp. Therefore, Frobenius operates on the six lines of the ramification

locus by a permutation of type (1)(2)(3456). Hence, the induced operation on the
fifteen pairs fixes only one of them, {1, 2}, while the other twelve form two 4-cycles
and two 2-cycles.

On the other hand, Lemma 6.7 below shows that #X ′
τ (Fp) = p2 + p + 1. As the

lines E12, . . . , E56 are blown down, exactly one of which contains Fp-rational points,
this yields

#Xτ (Fp) = #X ′
τ (Fp) + p = p2 + 2p + 1 .

In other words, Theorem 1.1.a) applies and shows that Xη has indeed real or com-
plex multiplication. Write E for the endomorphism field of Xη. Clearly, [E :Q] ≥ 2.

Next, consider the closed point t0 := 15 ∈ B. Then rk Pic Xt0 ≥ rk Pic Xη ≥ 16,
as the geometric Picard rank cannot drop under specialisation. Moreover, by
Corollary 4.6, for the endomorphism field, one has Et0 ⊇ E and, in particular,
[Et0 :Q] ≥ 2. On the other hand, Xt0 has two reductions of geometric Picard rank 18
with incompatible discriminants, cf. Lemma 6.6. Thus, Proposition 6.1 applies to Xt0

with n = 16 and d = 2. It yields that rk Pic Xt0 = 16 and that [Et0 :Q] = 2.
As η is a generisation of t0, one finds that rk Pic Xη ≤ 16. As we saw the other

inequality above, the proof of i) is complete.

ii) Recall the facts that [E :Q] ≥ 2, [Et0 :Q] = 2, and E ⊆ Et0 , which were all
found during the proof of i). Together, they immediately show that [E :Q] = 2.
Consequently, Et0 = E, so it is enough to verify that Et0 = Q(

√
5).

As Et0 is known to be a quadratic number field, this follows from Proposition 6.5.
Indeed,

χtr
19 = Z4 − 14

19
Z3 + 34

19
Z2 − 14

19
Z + 1 = (Z2 − 7+5

√
5

19
Z + 1)(Z2 − 7−5

√
5

19
Z + 1)

splits over Q(
√

5) and over no other quadratic field. In fact, Gal(χtr
19) = D4, which

has only one intransitive subgroup of index two. Observe, moreover, that the
splitting field of χtr

19 does not contain any roots of unity, except for (−1). Thus, if
χtr

19n were a perfect square for some n ∈ N then this would happen for n = 2,
already, which is not the case.
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iii) According to Corollary 4.7, this is a direct consequence of ii).

iv) This is exactly the same argument as in Example 5.1.iv). □

Lemma 6.6. a) Put τ1 := (0 mod 3) ∈ B ⊂ A1
Z. Then the special fibre Xτ1

of q is
a K3 surface over F3 of geometric Picard rank 18. The discriminant of the Picard
lattice is (−1) ∈ Q∗/(Q∗)2 and one has χtr

3 (Z) = Z4 − 4
3
Z2 + 1.

b) Put τ2 := (15 mod 19) ∈ B ⊂ A1
Z. Then the special fibre Xτ2

of q is a K3 sur-
face over F19 of geometric Picard rank 18. The discriminant of the Picard lattice
is (−11) ∈ Q∗/(Q∗)2 and one has χtr

19(Z) = Z4 − 14
19

Z3 + 34
19

Z2 − 14
19

Z + 1.

Proof. One first has to check that the family q has good reduction at these two
closed points. For this, let us note the following.

The five lines in the ramification locus that are independent of t are distinct
in every characteristic 6= 5. Their ten points of intersection are distinct in every
characteristic 6=2, 5. Moreover, the sixth ramification line is distinct from the others,
for every value of t, in every characteristic 6=5. Thus, if p 6= 2, 5, a 6≡ 1 (mod p), and
a5 6≡ −1 (mod p) then q has good reduction at (a mod p) ∈ B ⊂ A1

Z. This criterion
applies to τ1 = (0 mod 3), as well as to τ2 = (15 mod 19).

In order to determine the characteristic polynomials and geometric Picard ranks,
one has to count the points on Xτ1

and Xτ2
that are defined over the prime field and

some of its extensions. We applied routine methods for this, using magma. For some
background, the reader might consult [EJ16]. Finally, the discriminants are easily
calculated, using the Artin–Tate formula [Mi, Theorem 6.1]. □

Lemma 6.7. For every prime number p ≡ 2, 3 (mod 5) and every Fp-rational point
τ ∈ B(Fp), the special fibre X ′

τ of q′ has point count

#X ′
τ (Fp) = p2 + p + 1 .

Proof. Write P̃2
Fp

for the blow-up of P2
Fp

in (2 : (−1) : 2) and put X̃ := X ′ ×P2
B

P̃2
Fp

.
Since (2 : (−1) : 2) is, independently of the value of τ , a point on the ramification
locus, the assertion is equivalent to #X̃τ (Fp) = p2 + 2p + 1.

Furthermore, P̃2
Fp

is fibred into the lines through (2 : (−1) : 2). We parametrise
the fibration by (v0 :v1) ∈ P1 and let l(v0:v1) be the line parametrised by

u 7→ ((−2u+v0) : (u+v1) : (−2u)) . (13)

Note here that the line l(v0:v1) is indeed independent of the choice of representatives
for (v0 :v1). Moreover, all these lines have (2 :(−1) :2) as their point at infinity.

Correspondingly, X̃τ is fibred into genus-2-curves Cτ,(v0:v1). It is clearly sufficient
to show that #Cτ,(v0:v1)(Fp) = p+1, for every τ ∈ B(Fp) and every (v0 :v1) ∈ P1(Fp).

A direct calculation, which is easily performed in any computer algebra system,
shows that these curves are given by

Cτ,(v0:v1) : w2 = 25(v0+(−2t+2)v1)·P(v0,v1)(u) , (14)
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for

P(v0,v1)(u) := u5+(−v0+v1)u
4 (15)

+(3
5
v2

0− 6
5
v0v1− 2

5
v2

1)u
3+(−1

5
v3

0+ 3
5
v2

0v1− 2
5
v3

1)u
2

+ ( 1
25

v4
0− 4

25
v3

0v1+
1
25

v2
0v

2
1+ 6

25
v0v

3
1+ 1

25
v4

1)u

+ 1
25

v4
0v1+

1
25

v3
0v

2
1+ 1

25
v2

0v
3
1+ 1

25
v0v

4
1+ 1

25
v5

1 .

One just has to plug the parametrisation (13) into formula (3). Note here that (13)
only parametrises an affine open part of the line l(v0:v1). Thus, equation (14) de-
scribes only a double cover of an affine line, which is the usual way to write down a
hyperelliptic curve.

In (14), the coefficient (v0+(−2t+2)v1) might be zero. Then the curve is a double
line and #Cτ,(v0:v1)(Fp) = p + 1 is obviously true. Otherwise, Cτ,(v0:v1) is a, possibly
trivial, quadratic twist of the curve C(v0:v1), given by

C(v0:v1) : w2 = P(v0,v1)(u) .

Therefore, it suffices to show that #C(v0:v1)(Fp) = p + 1.
For this, let us note that P(v0,v1) is a permutation polynomial, according to Sub-

lemma 6.8. Thus the number of Fp-rational points on C(v0:v1) is the same as that on
the curve, given by w2 = u, which is isomorphic to the projective line. □

Sublemma 6.8. Let p ≡ 2, 3 (mod 5) be a prime number. Then, for arbitrary
v0, v1 ∈ Fp, the quintic polynomial P(v0,v1) ∈ Fp[u], defined in (15), is a permutation
polynomial. I.e., it induces a bijection of Fp onto itself.

Proof. Define P̃ ∈ Fp[u] by P̃ (u) := P(v0,v1)(u + v0−v1

5
) − C, for C := P(v0,v1)(

v0−v1

5
).

This is a normalised form of P , cf. [LN, the remarks before Theorem 7.11]. It is
clearly sufficient to show that P̃ is a permutation polynomial.

For this, a direct calculation shows that

P̃ (u) = u5 + (1
5
v2

0− 2
5
v0v1− 4

5
v2

1)u
3 + ( 1

125
v4

0− 4
125

v3
0v1− 4

125
v2

0v
2
1+ 16

125
v0v

3
1+ 16

125
v4

1)u

= u5 − 5αu3 + 5α2u ,

when putting α := − 1
25

v2
0+

2
25

v0v1+
4
25

v2
1. This means that P̃ coincides with the Dick-

son polynomial g5(u, α), which is known [LN, Theorem 7.16] to be a permutation
polynomial, for every prime number p ≡ 2, 3 (mod 5). The proof is therefore com-
plete. □
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[An] André, Y.: Pour une théorie inconditionnelle des motifs, Publ. Math. IHES 83 (1996),
5–49

[BHPV] Barth, W., Hulek, K., Peters, C., and van de Ven, A.: Compact complex surfaces, Second
edition, Ergebnisse der Mathematik und ihrer Grenzgebiete 4, Springer, Berlin 2004

[BCP] Bosma, W., Cannon, J., and Playoust, C.: The Magma algebra system I. The user
language, J. Symbolic Comput. 24 (1997), 235–265



EXPLICIT FAMILIES OF K3 SURFACES HAVING REAL MULTIPLICATION 27

[BdS] Bosma, W. and de Smit, B.: On arithmetically equivalent number fields of small degree,
in: Algorithmic number theory (Sydney 2002), Lecture Notes in Comput. Sci. 2369,
Springer, Berlin 2002, 67–79
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schémas (EGA IV), Publ. Math. IHES 20 (1964), 24 (1965), 28 (1966), 32 (1967)
[EJ14] Elsenhans, A.-S. and Jahnel, J.: Examples of K3 surfaces with real multiplication, in:

Proceedings of the ANTS XI conference (Gyeongju 2014), LMS Journal of Computation
and Mathematics 17 (2014), 14–35

[EJ16] Elsenhans, A.-S. and Jahnel, J.: Point counting on K3 surfaces and an application con-
cerning real and complex multiplication, in: Algorithmic number theory (Kaiserslautern
2016), LMS Journal of Computation and Mathematics 19 (2016), 12–28

[vG] van Geemen, B.: Real multiplication on K3 surfaces and Kuga-Satake varieties, Michigan
Math. J. 56 (2008), 375–399

[Gr] Grauert, H.: Ein Theorem der analytischen Garbentheorie und die Modulräume kom-
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