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Abstract

We study the Mordell-Weil group MW(V) for cubic surfacesV over finite fields that are not necessarily
irreducible and smooth. We construct a surjective map from MW(V) to a group that can by computed ex-
plicitly. For #MW(V), this yields a lower bound, which is (often but) not always trivial. To distinguish
cases, we follow the classification of cubic surfaces, originally due to Schläfli and Cayley.

On the other hand, we describe an algorithm that a priori gives an upper bound for MW(V). We report
on our experiments for “randomly” chosen surfaces of the various types, showing that in all but one case
lower and upper bounds agree.

Finally, we give two applications to the number field case. First, we prove that the number of generators
of MW(V) is unbounded. A second application explains why, for many reduction types, the Brauer-Manin
obstruction may not distinguish points reducing to the smooth part.
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1. Introduction

The quasi group of a cubic surface.

1.1. –––– According to Yu. I. Manin [Ma1], a cubic surfaceV carries a structure of aquasi group. For us,
this shall simply mean the collinearity relation.

Definition. Let V be a cubic surface over a finite fieldK. Then by thequasi groupassociated toV, we mean
the following ternary relation onVreg(K).

[P1 ,P2 ,P3] :⇐⇒ P1 ,P2 ,P3 ∈ Vreg(K), intersection points ofV with a line l, l not contained inV .

Here, as usual, intersection points are taken with multiplicities.

1.2. Definition. –––– Let (Γ, [ ]) be a quasi group and (G,+) be an abelian group. By a homomorphism
g: Γ→ G, we mean a mapping satisfying the following condition.

There exists an elementh ∈ G such that for all triples (P1 ,P2 ,P3) ∈ Γ3 fulfilling [ P1 ,P2 ,P3],

g(P1) + g(P2) + g(P3) = h .
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1.3. Lemma-Definition. –––– The category of all homomorphisms from a quasi groupΓ to abelian groups
has an initial object. The corresponding abelian group isΓ := ZΓ/N, for N the subgroup generated by
1·P1 + 1·P2 + 1·P3 − 1·P′1 − 1·P′2 − 1·P′3 for all [P1 ,P2 ,P3 ] and [P′1 ,P

′
2 ,P

′
3].

The groupΓ carries a surjective augmentation homomorphism s: Γ → Z. We will call kers the abelian
group associatedwith Γ. �

1.4. Definitions. –––– Let V be a cubic surface over a fieldK.

i) We will call the abelian group associated with the quasi group Vreg(K) the Mordell-Weil groupof V.
It will be denoted by MW(V).

ii) Two pointsP1 ,P2 ∈ Vreg(K) will be said to beequivalentif [ P1] − [P2] = 0 ∈ MW(V).

1.5. Remark. –––– This definition coincides with the one used by Yu. I. Manin in [Ma2], but not with the
one suggested in [Ma1]. The difference is whether three points on a line lying entirely on thesurface cause
a relation or not. If there is noK-rational line contained inV then the two definitions agree. In general, the
Mordell-Weil group considered in this article canonicallysurjects to the one from [Ma1].

1.6. Example. –––– Let V be theCayley cubicgiven by the equation

x0 x1 x2 + x0 x1 x3 + x0 x2 x3 + x1 x2 x3 = 0

in P3 over a fieldK. Then for a non-singular pointP = (x0 : x1 : x2 : x3) ∈ V(K), either no coordinate
vanishes or exactly two of them. Accordingly, definec: V(K) → K∗ by

c(P) :=


x0 x1 x2 x3 if xi , 0, i = 1, . . . , 4 ,
−
∏

i : xi ,0
xi otherwise.

Further, letl be a line inP3 not contained inV and denote byP1, P2, andP3 the intersection points withV,
taken with multiplicity. SupposeP1, P2 , andP3 to be non-singular andK-rational.

Thenc(P1)c(P2)c(P3) is a square inK.

Proof. This observation is easily checked by calculations inmaple, treating the possible cases separately.
Let us present the generic case of a line through three pointswith all coordinates different from zero.
We parametrize the line byt 7→ (a0 + tb0 : a1 + tb1 : a2 + tb2 : a3 + tb3) for ai, bi ∈ K. The product
c(P1)c(P2)c(P3) then evaluates to

1
(b0b1b2 + b0b1b3 + b0b2b3 + b1b2b3)4

∏

0≤i< j≤3

(aib j − a jbi)2 . �

The mapc therefore induces a homomorphism of groups

c: MW(V) −→ K∗/(K∗ )2 .

Further, this homomorphism is a surjection. Indeed, to get the square class ofx ∈ K∗ , take the point
(1 : (−x) : 0 : 0)∈ V(K). If the base field is not of characteristic two and notF3 then the points

((−2x) : (−2x) : (x+ 1) : x(x + 1)) ∈ V(K)

for x , 0,−1 have non-zero coordinates and yield every square class.

2



For instance, whenV is the Cayley cubic overQ, the group MW(V) has a surjection toQ∗/(Q∗)2.
In particular, is not finitely generated.

On the other hand, for the Cayley cubic over a finite fieldFq of odd characteristic, we have a surjection
MW(V) ։ F∗q/(F∗q )2

= Z/2Z. There are (at least) two different kinds of smooth points onV. Two points
P1 ,P2 ∈ Vreg(Fq) may be equivalent only ifc(P1)c(P2) is a square.

The purpose of this article is to investigate this phenomenon more systematically. It seems natural to ask
whetherc is a bijection and whether it may be somehow generalized to anarbitrary cubic surface overFq.

The results.

1.7. –––– In this article, forV a cubic surface over a finite fieldFq, we will compare MW(V) with a
group more tractable from the theoretical point of view. ForV geometrically irreducible and not a cone,
this will be A0(Vreg), the degree-0 part of Suslin’s homology grouph0(Vreg). We will establish a canonical
homomorphism

πV : MW(V) −→ A0(Vreg) ,

which we will prove to be surjective forq > 23. Further, we will show that A0(Vreg) = Z/2Z whenV is
of types 4A1, A3 + 2A1, or A5 + A1, A0(Vreg) = Z/3Z whenV is of type 3A2 and some extra condition is
fulfilled, and A0(Vreg) = 0, otherwise. In the case of a reducible cubic surface or a cone, we will describe a
surjective map from MW(V) in an elementary manner.

Finally, we will report experimental evidence for MW(V) and A0(Vreg) being actually isomorphic as
long as the base field is not too small.

1.8. Plan of the article. –––– We will start section 2 by recalling the classification of cubic surfaces. Af-
ter this, we will consider two degenerate cases at first, the situation of a cone and the reducible case. In the
cone case, there is the surjection to the Mordell-Weil groupof the underlying curve. In the reducible case,
there is a surjection MW(V) ։ Zk−1 that simply distinguishes thek components. Furthermore, in Ex-
ample 2.3.2, we will present one reducible type where not allpoints on one component are equivalent.
The argument is similar to that for the standard Cayley cubic, cf. Example 1.6.

Then, in section 3, we will construct the homomorphismπV : MW(V) → A0(Vreg). After this, we will
establish the isomorphisms

A0(Vreg) � πt,geo
1 (Vreg)ab

� [(Pic(VregFq
)prime top ⊗Z µ∨∞)Gal(Fq/Fq)]∨ .

The remaining cases of the classification of cubic surfaces are then dealt with as follows. For cubic ruled
surfaces, we observe thatπt,geo

1 (Vreg) = 0. Finally, for each of the remaining cases of the classification of
cubic surfaces, we will compute the torsion of the geometricPicard group.

At the end of the main body of the article, we will describe ourexperiments comparing MW(V)
and A0(Vreg) in a large sample of examples. An appendix is devoted to efficient algorithms for the compu-
tation of MW(V) for concrete cubic surfaces. Although our algorithms a priori yield only an upper bound
for MW(V), it turned out in practice that the bounds are sharp.

2. Elementary cases

2.1. The classification of cubic surfaces

2.1.1. Proposition (L. Schläfli and A. Cayley). —– Over an algebraically closed field of characteris-
tic ,2, let V be an integral cubic surface. Then exactly one of the following is true.
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I) V is a normal cubic surface. Then it is either

i) in one of the 21 classes of surfaces with finitely many double points, listed in [Do, Table 9.1]. This in-
cludes the case of a smooth cubic surface.

ii) Or the cone over a smooth cubic curve C.

II) V is a non-normal, irreducible cubic surface. Then it is either

i) a cubic ruled surface. There are two types of those, ordinaryand Cayley’s cubic ruled surfaces.

ii) Or the cone over a singular cubic curve. This might be a cubic with a self-intersection or a cusp.

Proof. This classification was given by L. Schläfli in [Schl], back in 1858. An independent presentation
was given by A. Cayley [Ca]. There is a modern proof due to I. Dolgachev [Do, Section 9.2]. For nor-
mal cubic surfaces, Dolgachev’s proof actually works in arbitrary characteristic. Further, the list after [Do,
Lemma 9.2.5] shows that each type may be realized over the prime field. The reader should also con-
sult [BW] where, for many of the types, the dimension of the moduli stack is discussed. �

2.1.2. –––– In the situation of a finite base field, the classification of geometrically integral cubic surfaces
is actually a little finer.

I.i) Among these types, 2A1 , 3A1 , 2A2, A2 + 2A1 , 4A1 , 2A2 + A1, A3 + 2A1, and 3A2 have symmetries.
Hence, the Frobenius may permute the singular points. For example, the type 4A1 breaks into five subtypes
according to the possible operations. All in all, when allowing singularities that are defined over extensions
of the ground field, the number of types rises from 21 to 34.

II.i) An ordinary cubic ruled surface may have its normal form xz2
+yw2

= 0 only over a quadratic extension.
This causes a third type of cubic ruled surfaces over a finite field.

II.ii) In the case of the cone over a cubic curve with self-intersection, there are two variants as to whether
the two tangent directions at the point of intersection are defined over the ground field or not.

2.1.3. Remark (Reducible cubic surfaces). —– We will restrict ourselves to reduced cubic surfaces.
In other words, the following types of reducible surfaces are allowed.

i) A reducible cubic surface might consist of a quadric and a plane. There are four cases where the quadric
is nondegenerate. In fact, the quadric may split over the ground field or not and the plane may be tangent
or not. There are four more cases when the quadric is a cone. The intersection with the plane might be a
conic, two lines, a double line, or a point.

ii) Finally, the surface might be reducible into three planes. There are two cases as to whether their inter-
section is a point or a line. Observe that it is possible that the decomposition into three planes is defined
only after a finite field extension.

2.2. Cones

2.2.1. –––– LetC ⊂ P2 be a reduced cubic curve over a fieldK. Then in a manner analogous to the surface
case, there are a quasi group structure onC and theMordell-Weil groupMW(C). This group is known in
every case.

i) It may happen thatC is reducible and allK-rational smooth points are contained in one component being
a line. Then the quasi group structure is empty and MW(C) = ker(sum:Z[C(K)] → Z). This degenerate
case automatically occurs wheneverC contains a line defined over a proper extension ofK. Otherwise,

ii) MW( C) = J(C)(K) for C smooth. Here,J(C) denotes the Jacobian ofC.

iii) MW( C) = K+ if C is a cubic curve with a cusp.
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iv) If C is a cubic curve with a node then MW(C) = K∗ in the case that the two tangent directions at
the node are defined overK. If the tangent directions are defined over the quadratic extensionF/K then
MW(C) = ker(N: F∗ → K∗ ).

v) WhenC is reducible into a line and a conic then MW(C) = ker(N: F∗ → K∗ ) ⊕Z, MW(C) = K+ ⊕Z or
MW(C) = K∗ ⊕ Z depending on whether, overK, there are no, one, or two points of intersection.

vi) WhenC is reducible into three components then MW(C) = K+ ⊕ Z2 or MW(C) = K∗ ⊕ Z2 depending
on whether the three points of intersection coincide or not.

Proof. Parts ii), iii), and iv) are standard, cf. [Sil, Propositions III.2.2 and III.2.5]. The other assertions are
elementary, but have to be checked, one by one.

For example, let us explain the subcase of vi), where there are three points of intersection. The summandZ2
� ker(sum:Z3 → Z) collects the three augmentation maps. The summandK∗ appears as the collinear-

ity of three points on a triangle is characterized multiplicatively, according to Menelaus’ Theorem [VY,
Theorem 22]. �

2.2.2. Lemma (Cones). —– For V a cone over a cubic curve C, we have a canonical surjection
MW(V)→ MW(C).

Proof. Denote byπ : Vreg → Creg the canonical projection. IfP1 ,P2 ,P3 ∈ Vreg are collinear then
π(P1), π(P2), π(P3) ∈ Creg are collinear, too. Thus,π induces a homomorphismπ∗ : MW(V) → MW(C),
which is clearly surjective. �

2.3. Reducible cubic surfaces

2.3.1. –––– Let V be a reducible cubic surface over a fieldK. Then there are two essentially different cases.

i) There are two irreducible components, a planeE and a quadric, but the quadric consists of two planes
defined over a quadratic extension. Then only the planeE containsK-rational smooth points. We have an
empty quasi group structure and MW(V) = ker(sum:Z[E(K)] → Z).

ii) Otherwise, whenV decomposes intok = 2, 3 components, there is a canonical surjection
MW(V) ։ ker(sum:Zk → Z) � Zk−1.

There is one very interesting situation where this surjection is systematically non-bijective. Consider the
following example.

2.3.2. Example. ––––Over a finite fieldFq of characteristic, 2, let V be a reducible cubic surface con-
sisting of a nondegenerate quadratic coneQ and a planeE. Suppose thatE does not meet the vertex ofQ.
Then there is a canonical surjection

MW(V) ։ Z ⊕ Z/2Z .
Proof. The homomorphism toZ is that from 2.3.1.ii). It remains to construct the homomorphism toZ/2Z.

For this, we fix coordinates such that the cusp is in (1 : 0 : 0 : 0)and the planeE is given byx = 0.
Further, we assume without restriction that the plane “y = 0” is tangent to the coneQ. Then the cone is
given by, say,yz+ Lw2

= 0 for L , 0. The whole cubic surface has the equation

x(yz+ Lw2) = 0 .

On the planeE, we define the homomorphismπ : MW(V) → Z/2Z simply asχ2
(
L(yz+ Lw2)

)
for χ2 the

quadratic character onF∗q . On the cone “yz+ Lw2
= 0”, we takeχ2(xy), respectivelyχ2(−Lxz) wheny = 0.

We have to show that this definition is indeed compatible withthe quasi group structure. For this, let
P1 = (x : y : z : w) ∈ Q(Fq), P2 = (x′ : y′ : z′ : w′) ∈ Q(Fq), andP3 = (0 : y′′ : z′′ : w′′) ∈ E(Fq) be
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three collinear points. Then we clearly have (0 :y′′ : z′′ : w′′) = (0 : (x′y− xy′ ) : (x′z− xz′ ) : (x′w− xw′ )).
Furthermore,

(xy)(x′y′)L(y′′z′′ + Lw′′2) = Lxx′yy′[(x′y− xy′ )(x′z− xz′ ) + L(x′w− xw′ )2]

= −Lxx′yy′[xx′ (yz′ + y′z+ 2Lww′ )]

= −Lx2 x′2(−Ly2w′2 − Ly′2w2
+ 2Lyy′ww′)

= L2 x2 x′2(yw′ − y′w)2

is a square. Hence, wheny, y′ , 0, we see thatπ(P1) + π(P2) + π(P3) = 0. The remaining cases are
treated analogously. �

3. Irreducible cubic surfaces not being cones

When a cubic surfaceV is irreducible, but geometrically reducible, then it consists of three planes acted
upon transitively by the Galois group. In this case,Vreg(K) = ∅ and, therefore, MW(V) = 0. Thus, we may
restrict ourselves to the geometrically irreducible case.

3.1. Suslin’s singular homology grouph0

3.1.1. –––– For a scheme of finite type over a fieldK, the singular homology groupsh∗(S) were introduced
by A. Suslin [SV]. We will only needh0(S), for which there is the following elementary description.

3.1.2. Proposition. –––– Let S be an integral scheme of finite type over a field K. Then

h0(S) = Z0(S)/Rat′0(S) .

Here, Z0(S) is the group of0-cycles, i.e., the free abelian group over all closed pointsof S. Rat′0(S) is
generated by all0-cycles of the following kind.

Let C ⊂ S be an irreducible curve, C′ its normalization, andC the corresponding smooth, proper model.
Then take all the cyclesdiv( f) where f . 0 is a rational function on C which, after pull-back toC, is
constantly1 onC\C′ .
Proof. See [Schm, Theorem 5.1]. �

3.1.3. Notation. –––– i) h0(S) is equipped with a natural map deg:h0(S) → Z. We will denote its kernel
by A0(S).

ii) Let i : S1 → S2 be an arbitrary morphism of quasi-projective varieties over K. Then there
is the induced homomorphismi∗ : h0(S1) −→ h0(S2), [P] 7→ [i(P)]. This immediately yields a
mapi∗ : A0(S1) −→ A0(S2).

3.1.4. Remark. –––– When S is proper,h0(S) coincides with the Chow group of zero cycles onS.
Then A0(S) is nothing but the subgroup of zero cycles of degree zero.

3.1.5. Lemma. –––– Let V be a geometrically irreducible cubic surface overFq. Then there is a canoni-
cal homomorphism

πV : MW(V) −→ A0(Vreg) .

Proof. To each combinationa1[P1 ] + . . . + ak[Pk ] for P1 , . . . ,Pk ∈ Vreg(K) anda1 + . . . + ak = 0, the
homomorphismi∗ assigns the corresponding cycle. We take this as a definitionfor πV. To show thatπV is
well-defined, we have to verify the following.
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Assume thatX1 ,X2 ,X3 are collinear andX′1 ,X
′
2 ,X

′
3 are collinear, too. Suppose that the connecting lines

are not contained inV. Then

[X1] + [X2] + [X3] − [X′1] − [X′2] − [X′3] = 0 ∈ A0(Vreg) .

For this, consider the pencil of planes throughX1 ,X2 ,X3. Generically, the intersection withV is a curve,
smooth atX1, X2 andX3. The only possible exceptions are the tangent planes. We claim that the generic
intersection curve is irreducible, too. Indeed, the contrary would mean that all intersection curves contained
a line. Suppose, this is a line throughX1 . ThenV contains a pencil of lines throughX1 , which impliesV
contains a plane throughX1. Hence,V is reducible, a contradiction.

Thus, take a plane throughX1 ,X2 ,X3, generating an irreducible intersection curveC that is smooth in
X1, X2 andX3. Further, take a plane throughX′1 ,X

′
2 ,X

′
3 generating an irreducible intersection curveC′ that

is smooth inX′1, X′2 andX′3 and meetsC only in smooth pointsX′′1 ,X
′′
2 ,X

′′
3 . The sublemma below, applied

to C andC′ , immediately yields the assertion. �

3.1.6. Sublemma. ––––Let C be an irreducible cubic curve. Assume that P1 ,P2 ,P3 ∈ Creg as well as
Q1 ,Q2 ,Q3 ∈ Creg are triples of collinear points such that{P1 ,P2 ,P3} ∩ {Q1 ,Q2 ,Q3} = ∅.
Then there is a rational function f on C having simple zeroes at P1 ,P2 ,P3, simple poles at Q1 ,Q2 ,Q3, no
other zeroes or poles, and the value1 at the possible singular point.

Proof. According to J. Plücker, an irreducible cubic curve may have at most one singular point. We may
therefore putf := K · l1/l2 for forms l1 and l2 defining the lines. By assumption, these do not meet the
singular point. If necessary, we choose the constantK such that the value at the singularity is normalized
to 1. �

Surjectivity.

3.1.7. Corollary. –––– Let V be a geometrically irreducible cubic surface overFq, not being a cone. If

πV : MW(V) −→ A0(Vreg)

is not surjective then Vreg has a nontrivial finite covering which is trivial over everyFq-rational point.

Proof. Under the assumption, the image of the canonical mapVreg(Fq) → h0(Vreg) generates a subgroup
which is not dense. Hence, there arel > 1 and a surjective, continuous homomorphismα : h0(Vreg)→ Z/lZ
sending the whole image ofVreg(Fq) to zero.

The same is true for the compositionα◦ι′Vreg : πt
1(V

reg)→ Z/lZ. But this simply means that thel-sheeted
covering ofVreg defined byα◦ι′Vreg has exactlyl Fq-rational points above everyx ∈ Vreg(Fq). �

Suppose,πV were not surjective. Then according to the lemma, we have a nontrivial coveringW such
that #W(Fq) = l ·#Vreg(Fq). The Weil conjectures, proven by P. Deligne, assure that this may be possible
only for very small values ofq.

3.1.8. Proposition. –––– Let V be a geometrically irreducible cubic surface over the finite fieldFq, not
being a cone. Then the canonical homomorphism

πV : MW(V) −→ A0(Vreg)

is surjective for q> 23.

Proof. Assume the contrary. Then according to Corollary 3.1.7, we have a twofold coveringπ : V′ → V
ramified at the 1≤ s ≤ 4 singularities such that, over every smoothFq-rational point ofV, there
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are two of V′. Being a geometrically irreducible cubic surface,V has at leastq2 − 5q + 1 points.
Hence, #Vreg(Fq) ≥ q2 − 5q− 3.

On the other hand,χtop(V) = 9 − 2s, as Vreg is P2, blown up in six points, withs A-, D-, or E-
configurations of lines deleted. Therefore,χtop(V′) ≤ 18− 3s ≤ 15. Indeed,V′ consists of the two sheets
aboveVreg and≤ spoints of ramification.

We claim #V′(Fq) ≤ q2
+ 13q + 1. For this, first observe thatV′ is simply connected as, otherwise,

Vreg had more coverings than the twofold one. Letk be the number of blow-ups necessary in order to
desingularizeV′. Then dimH2

ét(V,Ql) ≤ k+13 and one has the naive estimate #V(Fq) ≤ q2
+ (k+13)q+1.

The claim follows.
Consequently, 2(q2 − 5q− 3) ≤ 2·#Vreg(Fq) ≤ #(V′)reg(Fq) ≤ q2

+ 13q+ 1, which impliesq ≤ 23, im-
mediately. �

3.2. Computing h0. The tame fundamental group

3.2.1. –––– Let S be a smooth surface over the finite fieldFq for q = pr and letS ⊇ S be a smooth com-
pactification. Then thetame fundamental groupπt

1(S) of S classifies all finite coverings ofS which are
tamely ramified atS\S.

The groupπt
1(S) is independent of the choice of the compactificationS. πt

1(S) is a quotient ofπét
1 (S).

By the purity of the branch locus [SGA1, Exp. X, Théorème 3.1], one has

πt
1(S)ab

tors � (πét
1 (S)ab)prime top ⊕ (πét

1 (S)ab)p-power .

Again, this decomposition is independent of the choice ofS.
The structural morphismS→ SpecFq induces a surjectionπt

1(S) → π1(SpecFq) the kernel of which we
will denote byπt,geo

1 (S). Note thatπt,geo
1 (S) differs fromπt

1(SFq
). The point is that the analogue of the natural

short exact sequence [SGA1, Exp. IX, Théorème 6.1] is onlyright exact for the tame fundamental group.

3.2.2. Theorem (Schmidt, Spieß). —– Let S be a surface over a finite fieldFq which is smooth and geo-
metrically irreducible, but not necessarily proper.

i) ThenA0(S) is a finite abelian group.

ii) There is a canonical isomorphismιS : A0(S) −→ πt,geo
1 (S)ab.

Proof. See [SchS, Theorem 0.1]. �

3.2.3. Remarks. ––––a) Concretely,ιS is given as follows.

i) For a pointx: SpecFq′ → S, consider the induced homomorphism

πét
1 (x) : Ẑ = πét

1 (SpecFq′) −→ πét
1 (S) ։ πt

1(S) ։ πt
1(S)ab .

Send [x] to πét
1 (x)(1). This defines a homomorphismι′S : h0(S) → πt

1(S)ab.

ii) The degree map deg:h0(S) → Z is compatible with the homomorphismπt
1(S)ab→ πét

1 (SpecFq) = Ẑ
induced by the structural morphism.

iii) The homomorphismιS is exactly the restriction ofι′S to ker(deg).

b) The mapι′S defines an isomorphism̂h0(S) → πt
1(S)ab.

3.2.4. Lemma. –––– Let V be a cubic ruled surface defined over the finite fieldFq. Thenπt,geo
1 (Vreg) = 0.

Proof. It will suffice to showπt
1(VregFq

) = 0. In the present situation, a smooth compactification ofVregFq
is given by a projective plane, blown up in one point. The preimage of the singular locus is a (double) line
through the point blown up. Consequently,VregFq

is a ruled surface overA1. This yieldsπt
1(VregFq

) = 0. �
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The Picard group.

3.2.5. Proposition. –––– Let V be a geometrically irreducible cubic surface overFq, q = pr , that is not
a cone. Suppose V is normal, i.e., of one of the types I.i). Then

π
t,geo
1 (Vreg)ab

= [(Pic(VregFq
)prime top ⊗Z µ∨∞)Gal(Fq/Fq)]∨ .

Here,∨ denotes the Pontryagin dual, given by the functorHom(·,Q/Z).

Proof. First step. p-torsion.

We know a smooth compactificationV of Vreg, explicitly. VFq
is isomorphic toP2 blown-up in six points.

In particular, we haveπét
1 (VFq

) = 0. This suffices forπt
1(VFq

)ab
p-power = 0 andπt,geo

1 (V)ab
p-power = 0.

Second step.The Pontryagin dual.

Let us compute the Pontryagin dual (πt,geo
1 (Vreg)ab)∨. For l prime top, we have

Hom(πt,geo
1 (Vreg)ab, 1

l Z/Z) = Hom(πt
1(V

reg)ab, 1
l Z/Z)/Hom(π1(SpecFq), 1

l Z/Z)

= Hom(π1(Vreg)ab, 1
l Z/Z)/Hom(π1(SpecFq), 1

l Z/Z)

= H1
ét(V

reg, 1
l Z/Z)/H1(Gal(Fq/Fq), 1

l Z/Z) .

According to the Hochschild-Serre spectral sequence

Hp(Gal(Fq/Fq),H
q
ét(V

regFq
, 1

l Z/Z)) =⇒ Hp+q
ét (Vreg, 1

l Z/Z) ,

the latter quotient is nothing butH1
ét(V

regFq
, 1

l Z/Z)Gal(Fq/Fq).

Third step.The torsion part of the Picard group.

We haveΓ(VregFq
,Gm) = F∗q . In fact, theA-, D-, andE-configurations do not contain any principal divi-

sor. This immediately yieldsH1
ét(V

regFq
, µl) = Pic(VregFq

)l for any l prime to p. On VregFq
, the étale sheaves

µl and 1
l Z/Z coincide up to the Galois operation. We therefore have

Hom(πt,geo
1 (Vreg)ab, 1

l Z/Z) = (H1
ét(V

regFq
, µl) ⊗Z µ∨l )Gal(Fq/Fq)

= (Pic(VregFq
)l ⊗Z µ∨l )Gal(Fq/Fq) .

Summing this up over alll, we see that

(πt,geo
1 (Vreg)ab)∨ = (Pic(VregFq

)prime top ⊗Z µ∨∞)Gal(Fq/Fq) ,

which is equivalent to the assertion. �

3.2.6. Corollary. –––– Let V be a cubic surface over a finite fieldFq.

a) If V is geometrically ruled thenA0(Vreg) = 0.

b) If V is geometrically of one of the types I.i) thenA0(Vreg) � [(Pic(VregFq
)prime top ⊗Z µ∨∞)Gal(Fq/Fq)]∨.

Proof. a) summarizes Theorem 3.2.2.ii) and Lemma 3.2.4, while b) follows from Theorem 3.2.2.ii) together
with Proposition 3.2.5. �

Thus, in order to compute A0(Vreg), we only need to know Pic(Vreg)tors for each of the 21 types of cubic
surfaces summarized in I.i).
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The 21 types of normal cubic surfaces not being cones.

3.2.7. Lemma. –––– Let V be a normal, proper surface over an algebraically closed field andṼ its desin-
gularization. Then

Pic(Vreg) = Pic(̃V)/〈E1 , . . . ,Ek〉 ,

where E1 , . . . ,Ek denote the irreducible components of the preimages of the singularities oñV.

Proof. As Ṽ is non-singular, the restriction homomorphism Pic(Ṽ) → Pic(Vreg) is surjective. Its kernel
consists of these invertible sheaves that allow a trivialization onVreg. �

3.2.8. Theorem. ––––Let V be an irreducible cubic surface overFq, not being a cone. Suppose that V is
normal, i.e., of one of the 21 types I.i).

Then the Picard groupPic(Vreg) is torsion-free for 17 of the 21 types. For the four remainingtypes, the
torsion is given in the table below.

type singularities Pic(Vreg)tors

XVI 4A1 Z/2Z
XVIII A3 + 2A1 Z/2Z
XIX A5 + A1 Z/2Z
XXI 3A2 Z/3Z

Proof. We distinguish the cases systematically. Each time, we apply Lemma 3.2.7.

One has Pic(̃V) � Z7. The signature is (1,−1,−1,−1,−1,−1,−1). I.e., we have torsion-freeness in the case
of a smooth cubic surface.

Otherwise, theA-, D-, or E-configuration of (−2)-curves generates a sublattice of Pic(Ṽ). The quotient has
torsion if and only if this sublattice can be refined inZ7 without enlarging the rank. This immediately shows
torsion-freeness in the casesAn for n , 3 andE6 as the lattice discriminants are square-free.

For the other cases, the constructions described after [Do,Lemma 9.2.5] yield explicit generators for sub-
lattices ofZ7. We summarize them in the following table.

2A1
(2,−1,−1,−1,−1,−1,−1)
(0, 0, 0, 0, 0, 1,−1)

A3

(0, 0, 0, 0, 0, 1,−1)
(0, 0, 0, 0, 1,−1, 0)
(0, 0, 0, 1,−1, 0, 0)

A2 + A1

A1 : (2,−1,−1,−1,−1,−1,−1)
A2 : (0, 0, 0, 0, 0, 1,−1)
A2 : (0, 0, 0, 0, 1,−1, 0)

3A1

(2,−1,−1,−1,−1,−1,−1)
(0, 0, 0, 0, 0, 1,−1)
(0, 0, 0, 1,−1, 0, 0)

2A2

1. A2 : (0, 0, 0, 0, 0, 1,−1)
1. A2 : (0, 0, 0, 0, 1,−1, 0)
2. A2 : (0, 0, 1,−1, 0, 0, 0)
2. A2 : (0, 1,−1, 0, 0, 0, 0)

A3 + A1

A1 : (2,−1,−1,−1,−1,−1,−1)
A3 : (0, 0, 0, 0, 0, 1,−1)
A3 : (0, 0, 0, 0, 1,−1, 0)
A3 : (0, 0, 0, 1,−1, 0, 0)

D4

(1,−1,−1,−1, 0, 0, 0)
(0, 1, 0, 0,−1, 0, 0)
(0, 0, 1, 0, 0,−1, 0)
(0, 0, 0, 1, 0, 0,−1)

A2 + 2A1

1. A1 : (2,−1,−1,−1,−1,−1,−1)
2. A1 : (0, 0, 0, 0, 0, 1,−1)

A2 : (0, 0, 0, 1,−1, 0, 0)
A2 : (0, 0, 1,−1, 0, 0, 0)
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A4 + A1

A1 : (2,−1,−1,−1,−1,−1,−1)
A4 : (0, 0, 0, 0, 0, 1,−1)
A4 : (0, 0, 0, 0, 1,−1, 0)
A4 : (0, 0, 0, 1,−1, 0, 0)
A4 : (0, 0, 1,−1, 0, 0, 0)

D5

(1,−1,−1, 0, 0, 0,−1)
(0, 1,−1, 0, 0, 0, 0)
(0, 0, 1,−1, 0, 0, 0)
(0, 0, 0, 1,−1, 0, 0)
(0, 0, 0, 0, 1,−1, 0)

4A1

(2,−1,−1,−1,−1,−1,−1)
(0, 0, 0, 0, 0, 1,−1)
(0, 0, 0, 1,−1, 0, 0)
(0, 1,−1, 0, 0, 0, 0)

2A2 + A1

A1 : (2,−1,−1,−1,−1,−1,−1)
1. A2 : (0, 0, 0, 0, 0, 1,−1)
1. A2 : (0, 0, 0, 0, 1,−1, 0)
2. A2 : (0, 0, 1,−1, 0, 0, 0)
2. A2 : (0, 1,−1, 0, 0, 0, 0)

A3 + 2A1

1. A1 : (2,−1,−1,−1,−1,−1,−1)
2. A1 : (0, 0, 0, 0, 0, 1,−1)

A3 : (0, 0, 0, 1,−1, 0, 0)
A3 : (0, 0, 1,−1, 0, 0, 0)
A3 : (0, 1,−1, 0, 0, 0, 0)

A5 + A1

A1 : (2,−1,−1,−1,−1,−1,−1)
A5 : (0, 0, 0, 0, 0, 1,−1)
A5 : (0, 0, 0, 0, 1,−1, 0)
A5 : (0, 0, 0, 1,−1, 0, 0)
A5 : (0, 0, 1,−1, 0, 0, 0)
A5 : (0, 1,−1, 0, 0, 0, 0)

3A2

1. A2 : (1,−1,−1,−1, 0, 0, 0) =: v1

1. A2 : (1, 0, 0, 0,−1,−1,−1) =: v2

2. A2 : (0, 1,−1, 0, 0, 0, 0) =: v3

2. A2 : (0, 0, 1,−1, 0, 0, 0) =: v4

3. A2 : (0, 0, 0, 0, 1,−1, 0) =: v5

3. A2 : (0, 0, 0, 0, 0, 1,−1) =: v6

Table 1: Sublattices inZ7 generated by theA-, D-, andE-configurations

The assertions now follow from mechanical calculations.

In the cases where torsion-freeness is claimed, one may easily extend the basis of the sublattice given to a
basis ofZ7. For example, consider the typesAn + A1. Then we have subsets of the lattice base consisting
of 2e1 − e2 − · · · − e7, ei − ei+1 for i = 3, . . . , 6, e1, ande7.

In the cases 4A1, A3 + 2A1 , and A5 + A1 , the lattices may indeed be extended by the vec-
tor (1, 0,−1, 0,−1, 0,−1) without changing the ranks. The lattices obtained in thisway are then maximal.

In the case 3A2, the vector (v1 + v3 − v4) − (v2 + v5 − v6) = −3e3 + 3e6 is obviously 3-divisible. The refined
lattice has discriminant 3 and is, therefore, not refinable any further. �

3.2.9. Corollary. –––– Let V be a cubic surface overFq that is geometrically of type3A2. If q ≡ 1
(mod 3)andFrobacts on the singular points by an even permutation or q≡ 2 (mod 3)andFrobacts by
an odd permutation thenA0(Vreg) � Z/3Z. Otherwise,A0(Vreg) = 0.

Proof. If 3 |q then Corollary 3.2.6.ii) immediately shows A0(Vreg) = 0. Otherwise, Pic(VregFq
)prime top � Z/3Z

by Theorem 3.2.8. Further, Table 1 shows that permuting the second and third singularities changes−e3+e6

into e3 − e6. Thus, Frob operates on Pic(VregFq
)prime top via the sign of the permutation of the three singular

points. On the other hand, onµ∨3 , Frob acts as 1 or (−1) according to whetherµ3 ⊆ Fq or not. Butµ3 ⊆ Fq

is equivalent toq ≡ 1 (mod 3). The assertion follows. �

3.2.10. Theorem. ––––Let V be a cubic surface over a finite fieldFq. Suppose that V is geometrically
ruled or of one of the 21 types in I.i).
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a)Let V be geometrically of type4A1, A3 + 2A1, or A5 + A1 . If charFq , 2 thenA0(Vreg) = Z/2Z.

b) Let V is geometrically of type3A2. If q ≡ 1 (mod 3)and Frobacts on the singular points by an even
permutation or q≡ 2 (mod 3)andFrobacts by an odd permutation thenA0(Vreg) � Z/3Z.

c) Otherwise,A0(Vreg) � 0.

Proof. For the geometrically ruled case, see Corollary 3.2.6.i). Otherwise, we use Corollary 3.2.6.ii).
This proves, in particular, A0(V) � 0 for the 17 types where Pic(VregFq

) is torsion-free.
If V is of type 4A1, A3+2A1 , orA5+A1 then Corollary 3.2.6.ii) immediately shows A0(Vreg) = Z/2Z un-

less the characteristic of the base field is two. Indeed, the Galois operation onZ/2Z is automatically trivial.
When charFq = 2, the same formula yields A0(Vreg) = 0. The type 3A2 was dealt with above. �

4. Experiments

4.1. Description of the sample. ––––We let p run through the prime numbers form 5 through 101.
For each of the primes, we followed the classification of cubic surfaces as described in 2.1.2 and 2.1.3.
Recall that, as the base field is finite, there are 34 types of surfaces with finitely many double points.

For each type, equations for the corresponding surfaces aresuggested in [Do, Section 9.2]. We selected
coefficients by help of a random number generator and worked with ten examples per type. For those types
which clearly have no moduli [BW], we took only one example. We avoided the surfaces decomposing
into three planes over a proper extension ofFp as, for these, MW(V) is known to degenerate. All in all, we
worked with 330 cubic surfaces per prime.

4.2. The results. –––– For each surface in the sample, we run Algorithm A.3 to determine the partition
of Vreg(Fp) into equivalence classes. A priori, the algorithm might produce a partition that is too fine.
It turned out, however, that it could find the exact equivalence relation in each case.

Recall that in each case, according to the theory described in sections 2 and 3, we have a lower bound
for MW(V). More precisely, we know an abelian group, MW(V) naturally maps to. On the other hand,
Algorithm A.3 provides an upper bound. I.e., another abelian group mapping onto MW(V).

Astonishingly, both turned out to be the same with only one exception. The partition of the points found
allowed us to determine MW(V) for every surface in the sample.

Case I.i)Among the normal cubic surfaces having only double points, we always found MW(V) = 0 except
for the cases 4A1, A3 + 2A1, A5 + A1, and 3A2. In the first three of these cases, we have MW(V) = Z/2Z.

Finally, in the case 3A2 , we indeed found that MW(V) = Z/3Z for p ≡ 1 (mod 3) and Frob acting on
the singular points by an even permutation and forp ≡ 2 (mod 3) and Frob acting by an odd permutation.
Otherwise, MW(V) = 0.

Cases I.ii) and II.ii)Ignoring the exception described in Example 4.3 below, for the cones, MW(V) was
always equal to the Mordell-Weil group of the underlying curve.

Case II.i)The cubic ruled surfaces always fulfilled MW(V) = 0.

Two components.When V consisted of a non-degenerate quadric and a plane, we alwaysfound that
MW(V) = Z, two points being equivalent if and only if they belonged to the same component. When the
quadric was a cone and the plane did not meet the cusp, it turned out that MW(V) = Z⊕Z/2Z, the surjection
described in Example 2.3.2 being bijective.

A cubic surface consisting of a cone and a plane through the cusp is a cone over a reducible cubic curve.
Here, MW(V) was always isomorphic to the Mordell-Weil group of the curve.
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Three components.A cubic surface consisting of three planes meeting in a pointis the cone over a triangle.
MW(V) was always equal to the Mordell-Weil group of the triangle.

Finally, three planes meeting in a line form a cone in may ways. Hence, two distinct points are never
equivalent to each other. We have MW(V) � (K+ )2 ⊕ Z2.

4.3. Example. –––– Consider the coneC over the elliptic curve given byy2
= x3
+2x overF5. This elliptic

curve has only twoF5-rational points,P = (0, 0) andQ, the point at infinity. Correspondingly,Creg has ten
points,P1 , . . . ,P5 ,Q1 , . . . ,Q5. The lines define the relations [Pi ,Pi ,Qj ] and [Qj ,Qj ,Qj ] for i, j = 1, . . . , 5.
Consequently, MW(C) � (Z/2Z)5, generated by all (Pi − Qj ), subject to the relations (Qi − Qj ) = 0.

Here, the construction of MW(V) degenerates as, onCreg, there are too fewF5-rational points. This ef-
fect clearly becomes worse forp = 2 or 3. This is one of the reasons why these primes were excluded from
the experiments.

4.4. Remark. –––– The case of a cubic surface consisting of three planes with a line in common is the
easiest from the theoretical point of view. For Algorithm A.3, it is, however, the most complicated one.
No simplification occurs as no equivalent points may be found. The running time is dominated by steps iv)
and v), which are otherwise negligible. Forp > 70, we excluded this case from the experiments.

4.5. Remark. –––– We run an implementation of Algorithm A.3 inmagma. On a Quad-Core AMD Opteron
Processor 2356, the average CPU time per surface was 1.5 seconds forp = 5, 11 seconds forp = 37,
38 seconds forp = 71, and 1:55 minutes forp = 101.

Some observations.

The facts presented in this subsection were obtained after having seen the results of the experiments to
compute Mordell-Weil groups. Lemma 4.7.i) is important forthe application given in Proposition 5.2.
Although we have no applications for the other results, we think that they are nevertheless of interest.

4.6. Definition. –––– Let V be a cubic surface over the finite fieldFq and suppose there is a surjection
π : MW(V) ։ Z/2Z. Then, with respect toπ, Vreg(Fq) decomposes into exactly two equivalence classes.
We will call the equivalence classoddthat occurs an even number of times on each line, the other classeven.

4.7. Lemma. –––– Let V be a cubic surface over the finite fieldFq. Fix a surjectionπ : MW(V) ։ Z/nZ.
Suppose that, in every equivalence class of Vreg(Fq) according toπ, there is a point not contained in any of
the lines lying on V.

i) Suppose n= 2. Assume further that not all points of Vreg(Fq) are contained in a plane. Then for the two
equivalence classes M0 ,M1 of Vreg(Fq), we have the relation#M+ − #M− = q.

ii) Suppose n= 3. Then the three equivalence classes M0 ,M1 ,M2 of Vreg(Fq) are of the same size.

Proof. i) Fix a pointX ∈ M− not contained in a line lying onV. By assumption, there is someX′ ∈ Vreg(Fq)
outside the plane tangent atX. The lineg connectingX andX′ meetsV in two distinct pointsX,Y ∈ M−
and inZ ∈ M+ . (We have eitherY = X′ or Z = X′ .)

Now, we intersectV with the pencil of planes containingg. We assert that each of the (q + 1)
curvesCt arising contains as many points fromM+ as fromM− . This immediately implies the assertion.
Indeed, equinumerosity occurs as soon as we count the pointsX, Y, andZ multiply.

To verify the assertion, letCt be any of the intersection curves. We first observe thatX ∈ Ct is a
smooth point. In fact, we do not intersectV with the tangent plane atX since that does not containg. Ct may
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be reducible. However,X is, by assumption, not contained in a line. Therefore, for every P ∈ Ct (Fq), there
is a uniqueP′ ∈ Ct (Fq) such thatX, P, andP′ are collinear. AsP and P′ are in different classes, the
assertion follows.

ii) Here, there are two cases.

First case.If X ∈ Mi , Y ∈ Mj , andZ ∈ Mk are the three points of intersection of a line withV theni+ j+k ≡ 0
(mod 3).

We choose a pointX ∈ M0 which is not contained in any of the lines onV. Then for everyP ∈ M1, there is
a uniqueP′ ∈ M2 such thatX, P, andP′ are collinear. As this assignment is invertible, one has #M1 = #M2.
Analogously, a starting pointX ∈ M1 yields the equality #M2 = #M0.

Second case.If X ∈ Mi , Y ∈ Mj , andZ ∈ Mk are the three points of intersection of a line withV
theni + j + k . 0 (mod 3).

We may assume without restriction thati+ j+k ≡ 1 (mod 3). Choose a pointX ∈ M0 which is not contained
in any of the lines onV. The tangent planeTX contains, besidesX, only points fromM1. Further, there are
exactlyq+ 1 of them, as, by the assumption of this case, there is no line tangent atX of order three. On the
other hand, outsideTX , the setsM0 andM1 are equinumerous since the lines throughX cause a bijection.
Consequently, #M1 = #M0 + q.

Analogously, we obtain #M2 = #M1 + q and #M0 = #M2 + q when starting with a pointX ∈ M1 or
X ∈ M2, respectively. Thus, the second case is contradictory. �

4.8. Corollary. –––– Let V be a cubic surface over the finite fieldFq having at most finitely many dou-
ble points. Suppose q> 101. Fix a surjectionπ : MW(V) ։ Z/2Z. Then every point x∈ Vreg(Fq) lying on
a line contained in V is even.

Proof. Suppose, to the contrary, thatx is odd. Being a smooth point on an irreducible cubic surface,x lies
on n ≤ 3 linesl1, . . . , ln contained inV. As x is odd, outsidel1, . . . , ln there are the same numbers of odd
and even points.

V is geometrically irreducible. Hence, #Vreg(Fq) ≥ q2 − 5q− 3. Since a plane cubic curve has at most
3q+ 1 points, not all points ofVreg(Fq) are contained in a plane. Further, by the argument above, there are
at leastq

2−8q−4
2 even andq2−8q−4

2 odd points. As the number of points on lines is≤ 27(q+ 1) andq > 101,
points of both kinds occur outside the lines.

Therefore, by Lemma 4.7.i), #M0 −#M1 = q. The same must apply for the numbers lying on then lines.
But n lines with a point in common containnq+ 1 points, which is an even number forn = 1, 3. Hence, we
necessarily haven = 2. In particular, all points lying on exactly one line are even.

As the number of lines is bounded by 27, the two lines contain at most 2·25+ 1 = 51 points that lie
on more than one line. Thus, at least 2q − 50 points are even and most 51 points are odd. This implies
2q− 101= (2q− 50)− 51≤ q, a contradiction. �

4.9. Lemma (Connection to the Hessian). —–
Let V, given by F(X0 , . . . ,X3) = 0, be a cubic surface over the finite fieldFq of characteristic, 2. Sup-
pose, there is a surjectionMW(V) ։ Z/2Z. Then the following is true.

If P ∈ Vreg(Fq) is a odd point not lying on a line contained in V then the Hessian

det
∂2F
∂Xi ∂Xj

(P)

is a non-square inFq.
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Proof. Consider the tangent planeTP atP. The intersectionCP := V∩TP is a cubic curve with a singularity
at P. Thus, in affine coordinates and locally nearP, the equation ofCP is of the formQ(x, y) +G(x, y) = 0
for a quadratic formQ and a cubic formG.

By assumption, there is no line inTP meetingP with multiplicity 3. This means, in particular, that
P ∈ CP is a double point, not a triple point. Further, the two tangent directions atP are not defined overFq.
In other words, the binary quadratic formQ does not represent zero overFq. This exactly means that minus
the discriminant ofQ is a non-square inFq. It is a direct calculation to show that (− discQ) coincides, up
to square factors, with the Hessian ofF at P. �

5. Applications

The Mordell-Weil problem.

5.1. –––– The Mordell-Weil group is related to the famousMordell-Weil problem[Ma2]. This may be
formulated as to determine the minimal number of generatorsof MW(V), most notably in the case thatV is
a cubic surface over a number field.

In the main part this article, we analyzed the Mordell-Weil group for cubic surfaces over finite fields.
Of particular interest are the types for which MW(V) , 0. The point is that there is the following application
to the number field case.

5.2. Proposition. –––– Let V be a cubic surface overQ and p1 , . . . , pt be primes satisfying the follow-
ing conditions.

i) For every i, the reductionVpi has at most finitely many double points. Further, pi > 101.

ii) For each i, there is a surjectionπpi : MW(Vpi ) ։ Z/2Z.

iii) No singularity ofVpi lifts to a smoothQ-rational point onV .

Then the specialization maps induce a natural homomorphism

π : MW(V ) −→ (Z/2Z)t .

If V has weak approximation thenπ is a surjection. Then at least t elements are necessary in order to
generateMW(V ).

Proof. We fix i ∈ {1, . . . , t} and will construct the corresponding homomorphismπi : MW(V ) → Z/2Z.
By assumption i), eachX ∈ V (Q) specializes to a pointXi ∈ V

reg
pi

(Fpi ). Thus,πi is supposed to send [X]
to πpi ([Xi ]), a condition that determinesπi uniquely.

To show thatπi is a well-defined homomorphism, we need

πpi ([X
(1)
i ]) + πpi ([X

(2)
i ]) + πpi ([X

(3)
i ]) − πpi ([X

′(1)
i ]) − πpi ([X

′(2)
i ]) − πpi ([X

′(3)
i ]) = 0

for X1 ,X2 ,X3 the intersection points ofV with a line l andX′1 ,X
′
2 ,X

′
3 the intersection points with another

line l′. If both l andl′ specialize to lines, not contained inVpi , then this assertion follows from the definition
of MW(Vpi ) and the fact thatπpi is a homomorphism of groups. On the other hand, ifl specializes to a line
λ contained inVpi then [X1], [X2], [X3 ] ∈ λ are even by virtue of Corollary 4.8.

The final assertions are evident. �

5.3. Theorem. –––– For every t> 0, there exists a smooth cubic surfaceV overQ such that at least t
elements are necessary in order to generateMW(V ).
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Proof. We chooset distinct prime numbersp1 , . . . , pt such thatpi ≡ 2, 3 (mod 5) andpi > 101 for everyi.
The first assumption impliesFpi (ζ5) = Fp4

i
. Further, the four lines inP2Fpi

defined by

x+ ζk5y+ ζ2k
5 z= 0 , k = 1, . . . , 4 ,

are in general position. Indeed, intersecting three of the four lines leads to the homogeneous system of
linear equations, the coefficient matrix of which is a non-trivial Vandermonde. The six intersection points
are (xp : yp : zp), (x′p : y′p : z′p) and conjugates forxp , yp, zp ∈ Fpi (ζ5) andx′p , y

′
p, z
′
p ∈ Fpi (

√
5).

Further, choose sixF11-rational points (x(1)
11 : y(1)

11 : z(1)
11), . . . , (x(6)

11 : y(6)
11 : z(6)

11) in general position onP2.
This is possible, for instance (1 : 0 : 1), (0 : 1 : 1), (3 : 4 : 1), (4 : 3 : 1), (10 : 0 : 1), and (0 : 0 : 1) will do.
Indeed, the first five points lie on the irreducible quadric, given byx2

+ y2− z2
= 0, and no line through two

of these five points meets the last.
Choosex, y, z ∈ Z[ζ5] andx′ , y′, z′ ∈ Z[

√
5] such that, for everyi,

x ≡ xp (mod pi ), . . . , z′ ≡ z′p (mod pi ) .

Further, make sure that under the homomorphismsZ[ζ5] → F11, (x : y : z) defines four of the sixF11-ratio-
nal points chosen and that, under the homomorphismsZ[

√
5]→ F11, (x′ : y′ : z′) defines the other two.

The points (x : y : z), (x′ : y′ : z′) and their conjugates define a subschemeB of P2Q of length six.
Blow upP2Q in B and obtain a schemeV overQ. The schemeB defines six points onP2Q. These points are
in general position as their reduction modulo 11 already is.Therefore,V is a smooth cubic surface. As itsQ-rational points are in bijection with those onP2, V has weak approximation.

At any of the primespi , . . . , pt , the reduction ofV is a singular cubic surface. Its resolution of singu-
larities is a weak Del-Pezzo surface obtained from blowing up P2Fpi

in the subscheme of length six defined
by (xp : yp : zp) and (x′p : y′p : z′p). Hence,Vpi is a cubic surface with finitely many double points.

By [Do, list after Lemma 9.2.5],Vpi is of type 4A1. The four singularities correspond to the four lines
through three blow-up points. Hence, none of them is defined over Fpi . In particular, they do not lift
to Q-rational points. Thus, assumptions i) through iii) of Proposition 5.2 are thus fulfilled. The proof
is complete. �

5.4. Remarks. –––– i) Conjecturally, MW(V ) is finitely generated for every smooth cubic surfaceV over
a number field. Recall from Example 1.6 that the same is wrong in the singular case.

ii) Recently, S. Siksek [Sik] announced that he can prove MW(V) = 0 for a certain class of smooth cu-
bic surfaces. Observe, however, that he works with the definition of the Mordell-Weil group as suggested
by [Ma1], cf. Remark 1.5.

Brauer equivalence.

5.5. –––– There is another application, which is related to the so-called Brauer-Manin obstruction. This is
a method, invented by Yu. I. Manin [Ma1, Chapter VI], to explain the failure of the Hasse principle or weak
approximation in certain cases. It is based on the consideration of a non-trivial Brauer classα ∈ Br(V ) and
the correspondingp-adic evaluation maps

evα,p : V (Qp) −→ Br(Qp) = Q/Z, x 7→ α|x .

Proposition. Let p, 2, 3 be a prime number and F∈ Zp[X0 ,X1 ,X2 ,X3 ] a cubic form defining a smooth
cubic surfaceV overQp. Suppose that all x∈ V (Qp) specialize toV reg

p and thatMW(Vp) = 0.

Thenevα,p is constant for everyα ∈ Br(V ).
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Proof. It is known that evα,p(P) depends only on the reduction ofP modulo p [Br, Theorem 1]. Fur-
ther, MW(Vp) is the quotient of zero cycles modulo the relation generated by rational equivalence on cu-
bic curves. Hence, an application of Lichtenbaum duality [Li, Corollary 1] proves that evα,p is induced by
a group homomorphism MW(Vp)→ Q/Z. As MW(Vp) = 0, the assertion follows. �

5.6. Remark. –––– In [EJ], we studied explicit examples of cubic surfaces for which the Brauer-Manin ob-
struction works. I.e., such that there are a Brauer classα and certain primesp leading to non-constantp-adic
evaluation maps evα,p. It was noticeable in the experiments that the reduction types at the relevant primes
were distributed in an unusual way. Reducible reductions and reductions to the Cayley cubic occurred fre-
quently. This observation was actually the starting point of our investigations on the Mordell-Weil group.

As our theory gives only lower bounds for MW(Vp), Proposition 5.5 does not have immediate conse-
quences for a large number of cases. Nevertheless, one is ledto conjecture that evα,p may distinguish points
specializing toV reg

p only when there is reducible reduction, reduction to a cone,or reduction to one of the
types 4A1, A3 + 2A1 , A5 + A1, or 3A2 .

5.7. Remark (Comparison with other concepts of equivalence.). —–
Equivalence with respect to MW(V) clearly implies rational equivalence, cf. Proposition 3.1.2. For this
reason, it implies Brauer equivalence. We do not know whether it implies R-equivalence [Ma1, Defini-
tion 14.1].

On the other hand,R-equivalence certainly does not imply equivalence with respect to MW(V). An ob-
vious counterexample is provided by the cone over an elliptic curve with only oneK-rational point.
Here, MW(V) = ker(sum:Z[V(K)] → Z), no two points being equivalent although any two are
R-equivalent. Example 2.3.2 provides another case that is more interesting.

A. Algorithms

A.1. Algorithm ( Two equivalent points). —– i) Using a random number generator, choose four distinct
pointsX11,X12,X21, X22 ∈ Vreg(Fq).

ii) Determine four pointsX13,X23,X31,X32 ∈ Vreg(Fq) such that the relations [X11,X12,X13], [X21,X22,X23],
[X11,X21,X31], and [X12,X22,X32] are fulfilled. If this turns out to be impossible as (X11,X12), (X21,X22),
(X11,X21), or (X12,X22) are lying on a line contained inV then output FAIL and terminate prematurely.

iii) Determine pointsX33 andX′33 such that [X13,X23,X33] and [X31,X32,X′33]. If this turns out to be impossi-
ble as (X13,X23) or (X31,X32) are lying on a line contained inV then output FAIL and terminate prematurely.

iv) Output “X33 andX′33 are equivalent.”

A.2. Algorithm ( A point being equivalent to a givenX0 ∈ Vreg(Fq)). —–

i) Execute Algorithm A.1 in order to find two mutually equivalent pointsX1 andX2.

ii) Determine a pointX′1 such that [X1 ,X0 ,X′1]. If this turns out to be impossible as (X1 ,X0) are lying on a
line completely contained inV then output FAIL and terminate prematurely.

iii) Now, determine a pointX′0 such that [X′1 ,X2 ,X′0]. If this turns out to be impossible as (X′1 ,X2) are lying
on a line completely contained inV then output FAIL and terminate prematurely.

iv) Output “X′0 is equivalent toX0.”

A.3. Algorithm ( Partition of the points). —–

i) Choose a natural numberN.

ii) DecomposeVreg(Fq) into a setM = {N1 , . . . ,Nm} = {{X1}, . . . , {Xm}} of singletons.
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iii) Execute Algorithm A.1,Nq2 times. When two equivalent pointsX1 ∈ Mk andX2 ∈ Ml for k , l are
found, uniteMk with Ml and reducemby 1.

iv) List the singletons still contained inM, i.e., the points that were never met in step iii). For each element
in the list obtained, execute Algorithm A.2N times. When two equivalent pointsX1 ∈ Mk andX2 ∈ Ml for
k , l are found, uniteMk with Ml and reducem by 1.

v) If sets of size less thanq remain inM then choose a single element from each of these sets. For eachele-
ment in the list obtained, execute Algorithm A.2N times. When two equivalent pointsX1 ∈ Mk andX2 ∈ Ml

for k , l are found, uniteMk with Ml and reducem by 1.

vi) Output the partition ofVreg(Fq) found.

A.4. Remarks. –––– i) Algorithm A.3 finds a partition which is possibly too fine incomparison with the
actual partition into equivalence classes.

ii) In practice, the valueN = 7 seems to work perfectly, forp = 5 as well as for the biggest primes for
which such an algorithm seems reasonable.
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