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Abstract

Let B0 be a local singularity of dimension d. Then we consider the problem
of Lech, whether for every deformation (A,m) −→ (B,n) of B0 the inequality
Hd+1

A ≤ H1
B between the Hilbert functions is true, and give a positive answer

in the case, that the formal versal deformation of B0 is a base change of an
algebraic family (R,M) −→ (S, N), where R is regular and dim S = dim R + d.

So one should lift versal deformations in that way. There are obstructions
against this in certain second Harrison cohomology groups.

This research was carried out during a stay at Max-Planck-Institut für Mathematik
at Bonn. The financial support and hospitality of this institute are greatfully acknowl-
edged by the author. Personally he would like to thank B. Herzog (Stockholm) for the
introduction to that kind of problems and F. Patras for the stimulating conversation
on Harrison cohomology.

Introduction

In 1959 C. Lech [Le 59] stated the problem whether the multiplicities of local rings
(A, m) and (B, n) being base, respectively total space, of a deformation
(A, m) −→ (B, n) of a local ring B0 = B/mB satisfy the inequality

e0(A) ≤ e0(B). (1)

Note that the only condition on such a homomorphism to be a deformation is its
flatness.

A generalization of this is the analogous inequality

Hd+i
A ≤ H i

B (2)

between sum transforms of the Hilbert functions (, where d denotes the dimension of
the fiber B0). Here sum transforms are defined inductively by

Hj
A(l) :=

l∑
k=0

Hj−1
A (k) ,

where H0
A is the usual Hilbert function

H0
A(l) := dimA/m ml/ml+1 .
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The inequality between two functions H, H ′ : N −→ N is always to be understood in
its total sense, i.e. H(l) ≤ H ′(l) for all l.

In 1970 H. Hironaka [Hi 70] asked whether inequality (2) is always true with i = 1,
since that would simplify his proof of the existence of a resolution of singularities in
characteristic zero [Hi 64].

These inequalities are established in very few cases, only. The most interesting
result in that direction is due to Lech himself. It says that

H1
A ≤ H1

B

in the case, that the special fiber B0 is a zero dimensional complete intersection [Le 64].
B. Herzog generalized this to the situation that B0 corresponds to a regular point
[B0] of the Hilbert scheme [He 90]. This includes all complete intersections and all
singularities with embedding dimension less than 3 [Fo].

On the other hand, Larfeldt and Lech [LL] showed that the general problem (2) of
Hironaka is equivalent to the following statement:

For every local ring A and every coheight one prime P in A the inequality

H1
AP
≤ H0

A

is true.
This one and its immediate corollaries are usually referred as Bennett’s inequality.

Note that this problem can not be easy, since it generalizes Serre’s result [Se], that the
localization of a regular local ring by a prime ideal is again regular. It is solved in the
case A is excellent ([Be], [Si]).

We note, that there is also a completely different approach to the Lech-Hironaka
problem. One can consider singularities with tangentially flat deformations only as in
[He 91]. A generalization of that may be found in the doctoral thesis of the author [J].

In this paper we give a weak generalization of the main Theorem 6 of [He 90]. There
the Lech-Hironaka inequality is proved for base changes of deformations, i.e. flat local
homomorphisms, with regular base. We will show, that the flatness assumption can
be replaced by the weaker condition to have a fiber of the minimal possible dimension.
So our goal is to lift the formal versal deformation of some singularity in such a way,
that the base becomes regular. Of course, such a lift will be no more flat, but it is
required to have a fiber of minimal dimension.

Then we restrict to the case of zero dimensional singularities. We show that, in
this situation, the minimality condition on the dimension of the fiber is more or less
equivalent to injectivity. In the last section we show what the ”lift”-problem could
have to do with second Harrison cohomology. When one tries to lift step by step there
are obstructions against that in those cohomologies. Unfortunately, the author does
not understand the behaviour of the obstructions, when such a step was done.

We shall use the conventions and notations of commutative algebra as in [Ma].
Further all local rings are assumed to be Noetherian. An A-algebra is a homomorphism
of the ring A into some ring, a homomorphism of A-algebras is a commutative triangle.
k will always denote a fixed ground field. Note that we use ”local k-algebra” for
algebras k −→ (A, m), where (A, m) is local and k −→ A/m is an isomorphism.
In particular, ”complete local k-algebras” form just the category Ĉ of [Schl]. By
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a deformation of a local k-algebra B0 we mean a flat local homomorphism of local
k-algebras with special fiber B0.

At some point we will use the language of Schlessinger’s paper [Schl]. Note, that
we call the ”pro- representable hull” of the deformation functor, he constructs, ”formal
versal embedded deformation”. It is well known, and can easily be derived from the
universal property of the Hilbert scheme, that the completed local ring of the Hilbert
scheme at [B0] is nothing but the base of that formal versal embedded deformation of
the singularity B0.

At the end of the introduction the following principal remark: We consider only de-
formations f : (A, m) −→ (B, n) of a local k-algebra, which are itself homomorphisms
of local k-algebras, i.e. where A and B are equicharacteristic and f is residually ra-
tional. Using Cohen’s structure theory one could really generalize that, at least one
can replace ”residually rational” by ”residually separable”. We will omit the proof for
that, since it does not seem to make sense to consider the abstract situation, when
almost nothing is known in the ”geometric case”.

1 Base changes of algebraic families with regular

base

1.1 Remark. B. Herzog [He 90] proved, that Hironaka‘s inequality is true for base
changes of flat homomorphisms, i.e. deformations, with regular base. In this section
we will verify, that the flatness assumption can be replaced by the weaker condition,
that the special fiber has the minimal possible dimension.

1.2 Proposition. Let the commutative diagram

(R,M) −→ (S, N)
↓ 2 ↓

(A, m) −→ (B, n)

of local rings and local homomorphisms be cartesian, i.e. B ∼= A ⊗R S, and assume
the following conditions.

1. The special fiber of R −→ S has the minimal dimension, i.e.

dim S = dim R + dim S/MS.

2. R −→ A is residually rational, i.e. induces an isomorphism of the residue fields.
3. R is regular and contains a field.

Then
Hd+1

A ≤ H1
B ,

where d := dim B/mB (= dim S/MS).
Proof. We start with several straightforward steps.

First step. We may assume A to be an Artin local ring. Note that this implies
by Cohen‘s structure theory ([Ma], Theorem 28.3 or [EGA IV0], §19), that A is even
a finite algebra over its residue field k.
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For proving
Hd+1

A (n) ≤ H1
B(n)

for arbitrary given n the local rings A and B can be replaced by A/mn+1 and B/mn+1B,
respectively.

Second step. We may assume, that B, R and S are complete local rings.
Replace the local rings of the diagram above by their completions. Since A ⊗ N

is an n-primary ideal in B = A ⊗R S, the canonical topology on B is that as a finite
S-module. Therefore

B∧ = (A⊗R S)∧ = A⊗R∧ S∧.

Third step. In the cartesian diagram above we may replace R and S in such a
way that R −→ A becomes surjective.

Adjoin indeterminates Ti to R and S, which are mapped to some system of gener-
ators of the maximal ideal m in A and consider the resulting commutative diagram

R[[T ]] −→ S[[T ]]
↓ ↓
A −→ B ,

where T denotes {T1, . . . , Tt}.
Since A is Artin, R[[T ]] −→ A factors through Rl := R[[T ]]/(T )l for some l.

Therefore we see, using that S[[T ]]/(T )l is a free S-module,

B ∼= A⊗R S ∼= A⊗Rl
Rl ⊗R S ∼= A⊗Rl

S[[T ]]/(T )l ∼=

∼= A⊗Rl
Rl ⊗R[[T ]] S[[T ]] ∼= A⊗R[[T ]] S[[T ]],

meaning that the new commutative square is cartesian, too.
We replace R and S by R[[T ]] and S[[T ]], respectively. Then a system of generators

of m may be lifted to R. Since all rings are complete and R −→ A is residually rational,
this implies it is surjective.

Fourth step. In the cartesian diagram above we may replace S and B such that
S/MS becomes an Artin local ring.

Choose some prime ideal P in S satisfying MS ⊆ P and

dim S/P = dim S/MS (= d).

Then the special fiber of the induced homomorphism R −→ SP becomes zero dimen-
sional and the commutative diagram

R −→ SP

↓ ↓
A −→ BP

is again cartesian: BP
∼= B ⊗S SP

∼= A⊗R S ⊗S SP
∼= A⊗R SP . Further, BP is a local

ring as a factor of the local ring SP and all the homomorphisms in the diagram above
are local. That is trivial, except for A −→ BP , and there it follows from the simple
reason that m consists of nilpotent elements only, which cannot be mapped to units.
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Since B is complete, one has Bennett’s inequality (Lemma 1.3)

Hd+1
BP
≤ H1

B.

So we have to prove Hd+1
A ≤ Hd+1

BP
, for which H1

A ≤ H1
BP

would be sufficient, obviously.
Further it turns out that the dimension of the fiber of R −→ SP is minimal. Here

that means simply dim SP = dim R. But this is clear by dim S = dim R + d and
dim S/P = d, when one notes that S is complete and, therefore, catenary.

We replace S and B by SP and BP , respectively.
Fifth step. This is the key step. We will prove that B = A ⊗R S is a factor of

B′ := A⊗k S in a very specific way.
Note that B′ is Noetherian as a finitely generated S-algebra. Let n′ be a maximal

ideal in B′. Then (m) := m⊗ S ⊆ n′, since m is nilpotent, and n′/(m) is maximal in
B′/(m) = A⊗k S/m⊗ S ∼= S. Therefore,

n′ = m⊗ S + A⊗N,

which shows B′ to be local.
Now let {x1, . . . , xs} be a regular system of parameters of R. We denote by ai the

image of xi ∈ R in A and put di := 1⊗ xi − ai ⊗ 1 ∈ B′. Then, using the fact that A
is finite over k, one obtains

B ∼= A⊗R S
∼= (A[[X]]/(X1 − a1, . . . , Xs − as))⊗R S
∼= (A⊗k R/(1⊗ x1 − a1 ⊗ 1, . . . , 1⊗ xs − as ⊗ 1))⊗R S.

By construction, the two R-module structures on the left factor coincide, which implies

B ∼= A⊗k S/(1⊗ x1 − a1 ⊗ 1, . . . , 1⊗ xs − as ⊗ 1)

= B′/(d1, . . . , ds).

Here we remark, that
dim B′/(d1, . . . , ds) = dim B = 0

by our reduction steps before. On the other hand dim S = dim R, since the dimension
of the fiber of R −→ S is the minimal one and we reduced that fiber to be Artin, and,
furthermore,

dim B′ = dim A⊗k S = dim A/m⊗k S = dim S = dim R,

when we use m is nilpotent. Altogether that means, that {d1, . . . , ds} is a system of
parameters for B′.

Sixth step. Now we are in the position to complete the proof in the same way as
B. Herzog did in the flat case. Note that we give a more elementary proof here, which
avoids the technical concept of tangential flatness.

Let
Ci := B′/(d1, . . . , di).
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By the fact that {d1, . . . , ds} is a system of parameters for B′ we know

dim Ci = s− i.

Therefore we may take a chain of prime ideals

P0 ⊆ . . . ⊆ Ps

in B′ such that
i) dim B′/Pi = dim Ci = s− i,
ii) Pi+1 ⊇ (Pi, di+1).

Then by Lemma 1.3
H1

(Ci)Pi
≤ H0

(Ci)Pi+1
≤ H1

(Ci+1)Pi+1
,

hence
H1

B′
P0

≤ H1
(B′/(d1, ... ,ds))Ps

≤ H1
(B′/(d1, ... ,ds)) = H1

B

by the previous step. So it would be sufficient to show

H1
A ≤ H1

B′
P0

. (11)

For that we identify S with its canonical image in B′ := A⊗kS and put P := P0∩S.
Then the canonical homomorphism

SP −→ B′
P0

is well defined, local and factors through A ⊗k SP , a ring being local with maximal
ideal

MP := m⊗k SP + A⊗ PSP

(use that m is nilpotent). The induced homomorphism

A⊗k SP −→ (A⊗k S)P0

turns out to be local, when we note once more that m is nilpotent. But, on the
other hand, the ring on the right is obtained from the ring on the left by a further
localization. So this homomorphism is even an isomorphism. In particular,

H1
B′

P0

= H1
A⊗kSP

. (12)

But now we see directly

H1
A⊗kSP

(l) = `(A⊗k SP /M l+1
P )

= `(A⊗k SP /(m⊗ SP + A⊗ PSP )l+1)

≥ `(A⊗k SP /ml+1 ⊗ SP + A⊗ PSP )

= `(A/ml+1)

= H1
A(l).

Putting that together with (12) we obtain
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H1
A ≤ H1

B′
P0

,

being just the required inequality (11).

2

1.3 Lemma. Let (A, m) be a local ring and x ∈ m be an element. Then

H0
A ≤ H1

A/xA.

If, moreover, A is excellent (e.g. complete), then for any prime ideal P ∈ Spec(A)

Hd
AP
≤ H0

A

(d := dim A/P ).
Proof. The first statement is easily proved by the reader. Alternatively, see [Si],
Theorem 1. The second part of the Lemma is just Bennett’s inequality ([Be], Theorem
(2)) in the improved version due to Singh (see [Si], p.202). For a comment on Singh’s
proof see [He 90], Proof of Lemma 2.

2

1.4 Theorem. Let (B0, n0) be a local k-algebra of dimension d. Suppose, that the
formal versal deformation (R′, M ′) −→ (S ′, N ′) of its completion B∧

0 is a base change
of some local homomorphism (R,M) −→ (S, N) of local k-algebras

(R,M) −→ (S, N)
↓ 2 ↓

(R′, M ′) −→ (S ′, N ′) ,

where
1. The special fiber of R −→ S has minimal dimension, i.e.

dim S = dim R + d

and
2. R is regular.

Then for every deformation (A, m) −→ (B, n) of the local k-algebra B0 the inequality

Hd+1
A ≤ H1

B

is true.
Proof. First step. We may assume the local k-algebras B0, A and B to be complete.

Replace A and B by their completions. Then the induced homomorphism
A∧ −→ B∧ is again flat and its fiber is B∧/m∧B∧ = B∧

0 . Of course, there is no
effect on the Hilbert series.
Second step. A −→ B is a base change of the formal versal deformation of B0.
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Schlessinger [Schl] calls the morphism hR′ −→ DB0/k, induced by R′ −→ S ′ the
”pro-representable hull” of the deformation functor

DB0/k : {Artin local k-algebras (with residue field k)} −→ {Sets}

of B0. By [Schl], Remark (2.4), the induced morphism

h∧R′ = Homlocal k−alg(R
′, . ) −→ D∧

B0/k

between the canonical prolongations to

{complete (Noetherian) local k-algebras (with residue field k)}

is objectwise surjective.
Down the earth this means nothing but the existence of a cartesian diagram

R′ −→ S ′

↓ 2 ↓
A −→ B .

So our assumption gives another cartesian diagram

R −→ S
↓ 2 ↓
A −→ B

and the clain comes from the Proposition above.

2

2 Injectivity

2.1 Remark. By Theorem 1.4 it is our goal to lift the formal versal deformation of
some singularity in such a way, that the base becomes regular. Of course, such a lift
will no longer be flat, but it is required to have a fiber of minimal dimension.

This ”lift”-problem does not seem to be easy and we will not be able to solve it in
this paper. In order to come relatively close to it, we note, that a versal deformation
R/I −→ S ′ (, where R is regular), can, of course, always be lifted, for instance in a
trivial way to R −→ S ′. That‘s why in this section we will try to understand what it
means for lifts to have a fiber of minimal dimension.

For that we will restrict to deformations of zero dimensional singularities, i.e. to
the case d = 0. Note that this is not an essential restriction, since the general Lech-
Hironaka problem (2) can be reduced to that situation using Bennett‘s inequality for
complete local rings (Lemma 1.3, cf. fourth step of the proof of Proposition 1.2).

2.2 Fact. Let (R,M) be a local ring and

(R,M) −→ (S, N)

be a residually finite injective local homomorphism of local rings, the special fiber of
which is Artin. Then

dim S = dim R.
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2.3 Warning. May be, one would try to generalize that fact.
a) Without the assumption on the fiber to be Artin, the inequality

dim S ≥ dim R

seems to be natural, and this one implies (for an integral domain R) even

dim S ≥ dim R + dim S ⊗R Q(R) ,

where Q(R) denotes the quotient field of R, i.e. S ⊗R Q(R) is the generic fiber of
R −→ S.
But these inequalities are wrong!
Proof. Put R := k[Y, Z](Y,Z). Then the generic fiber of

R −→ R[[X]]

is twodimensional! (For R = k[Y, Z] this is shown in [Ma], §15.2, Remark 2 and the
same proof works in our situation.)

So we see there is a chain of prime ideals

P0 ⊆ P1 ⊆ P2,

lying over the zero ideal in R. Then

R ↪→ R[[X]]/P =: S

is still injective, but
dim R = 2 and dim S = 1.

Note that R ↪→ S is residually rational and R is regular. Further one can complete
R and S without any effect on the injectivity or on the dimensions.

2

b) The assumption on the homomorphism to be residually finite is necessary, too.
Consider the local homomorphism

i : R := Q[[X, Y ]] −→ S := R[[X]],

where X 7→ X and Y 7→ πX. Then i is obviously injective and its special fiber is
Artin. (It is even the field R.) But

dim R = 2 and dim S = 1.

2.4 Proposition. Let the commutative diagram

(R,M) −→ (S, N)
↓ 2 ↓

(A, m) −→ (B, n)
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of local rings and local homomorphisms be cartesian and assume the following state-
ments to be true.

1. dim B/mB (= dim S/MS) = 0.
2. R ↪→ S is injective and residually finite.
3. R −→ A is residually rational.
4. R is regular and contains a field.

Then
H1

A ≤ H1
B .

2.5 Theorem. Let (B0, n0) be a local k-algebra of dimension 0. Suppose, that the
formal versal deformation (R′, M ′) −→ (S ′, N ′) of its completion B∧

0 is a base change
of some local homomorphism (R,M) −→ (S, N) of local k-algebras

(R,M) −→ (S, N)
↓ 2 ↓

(R′, M ′) −→ (S ′, N ′) ,

where
1. R ↪→ S is injective

and
2. R is regular.

Then for every deformation (A, m) −→ (B, n) of the local k-algebra B0 the inequality

H1
A ≤ H1

B

is true.

2.6 Proof of the Theorem. By Theorem 1.4 we only have to show

dim S = dim R.

But this comes directly from the Fact.

2

2.7 Proof of the Proposition. This is a direct corollary of Proposition 1.2 and the
Fact.

2

2.8 Proof of the Fact. First step. We may assume R to be complete.
Replace R and S by their completions. Then

R∧ −→ S∧

is, of course, still injective and residually finite. Its fiber

S∧/M∧S∧ = (S/MS)∧ = S/MS

is Artin. There is no effect on the dimensions.
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Second step. S is a finite R-module.
In the sense of M -adic topology

a) R is complete and separated
and

b) S is separated (, since it is even separated in the N -adic topology).
Further

c) S/MS is a finite module over R/M (, since it is an Artin ring and the homo-
morphism was residually finite).
Now the claim is implied by the Lemma below.

Third step. Since S is finite over R, it is an integral extension by injectivity. But

dim S = dim R

for integral extensions is standard [Ma].

2

2.9 Lemma. Let A be a ring, I be an ideal in A and M be an A-module. Assume,
that, in the I-adic topology,

a) A is complete
and

b) M is separated.
Assume further the

c) A/I-module M/IM to be finite.
Then M is a finite A-module.
Proof. Choose elements m1, . . . , mr ∈ M , the residue classes of which generate
M/IM . These elements generate a submodule M ′ ⊆M with

M ′ + IM = M.

Iterating we obtain for every k

M ′ + IkM = M. (21)

Therefore M ′ is dense in M , in the sense of the I-adic topology on M . Our goal is to
show M ′ = M , which would give the claim.

For that we observe
IkM ′ = IkM ∩M ′. (22)

”⊆” trivial
”⊇” Let x ∈ IkM ∩ M ′. By (21) we get x ∈ IkM ′ + I2kM ∩ M ′, i.e. there is

x1 ∈ IkM ′ such that
x ∈ x1 + I2kM ∩M ′.

Inductively we obtain a sequence {xi}i∈N with xi ∈ I ikM ′ and

x ∈ x1 + x2 + . . . + xl + I(l+1)kM ∩M ′.
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Now M ′ is I-adically complete as a finite module over A. Therefore the infinite series∑∞
i=0 xi, giving rise to a Cauchy sequence, converges in M ′. Let

x′ := x1 + x2 + . . . ∈ IkM ′ .

be its sum. Then

x− x′ ∈
∞⋂
l=1

IklM = 0

and therefore x ∈ IkM ′. (22) is proved.
So M ′ is complete in the topology induced by that on M . Combining this with

density we see M = M ′.

2

3 Second Harrison cohomology

3.1 Generalities

3.1.1 Remark. In this section we go on considering the case d = 0 only. So we have
a homomorphism

R/I −→ S ,

where R is regular, and want to lift it to an injection.

R ↪→ S ′

↓ 2 ↓
R/I −→ S

For that we have to understand the extensions of S.
Our idea is to lift step by step. Therefore we are interested in the most simple, so

called singular extensions of rings.

3.1.2 Let S be a local k-algebra. A singular extension of S by the S-module M is a
k-algebra S ′ being isomorphic to S ⊕M as a k-vector space, where

1. S ′ −→ S is a homomorphism of rings,
2. (a, 0) · (0, y) = (0, ay) for all a ∈ S and y ∈M

and
3. M2 = 0.

A morphism of singular extensions of S by M is a commutative diagram

0 −→ M −→ S ′ −→ S −→ 0
‖ ↓ ‖

0 −→ M −→ S ′′ −→ S −→ 0 ,

where S ′ −→ S ′′ is a homomorphism of k-algebras. Such a morphism is automatically
an isomorphism.

3.1.3 Remark. A singular extension S ′ of a local k-algebra S will be local again,
since M is nilpotent and, therefore, contained in any prime ideal.
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3.1.4 Remark. The multiplication in a singular extension of S by an S-module M
is of the type

(a, x) · (b, y) = (ab, ay + bx + f(a, b)) , (31)

where f : S × S −→M is a k-bilinear form.
Of course, not every k-bilinear form f induces a ring structure that way. But one

can easily write down conditions, necessary and sufficient for that.
First one observes we have an abelian group structure for addition and (31) guar-

antees distributivity.
Associativity. Explicit computations give

[(a, x) · (b, y)] · (c, z) = (abc , abz + acy + bcx + cf(a, b) + f(ab, c))

(a, x) · [(b, y) · (c, z)] = (abc , abz + acy + bcx + af(b, c) + f(a, bc)) .

So the condition on f , necessary and sufficient for associativity, is

af(b, c)− f(ab, c) + f(a, bc)− f(a, b)c = 0 .

Such k-bilinear forms are usually called Hochschild 2-cocycles.
Commutativity. Obviously, the symmetry of f

f(a, b) = f(b, a)

is necessary and sufficient for commutativity of the ring defined by (31).

3.1.5 Remark. Different 2-cocycles f1, f2 can induce isomorphic singular extensions.

0 −→ M −→ S ⊕f1 M −→ S −→ 0
‖ ↓ ‖

0 −→ M −→ S ⊕f2 M −→ S −→ 0

The vertical homomorphism sends

(a, x) 7→ (a, h(a) + x) ,

where h : S −→M is a k-linear map. For this is a homomorphism of rings we get the
following diagram

(a, x) · (b, y) = (ab, ay + bx + f1(a, b))

>
↓

>
↓

>
↓

(ab, ay + bx + h(ab) + f1(a, b))

(a, h(a) + x) · (b, h(b) + x) =
‖!

(ab, ay + bx + ah(b) + h(a)b + f2(a, b)) .

This gives
f1(a, b) = f2(a, b) + ah(b)− h(ab) + h(a)b ,

i.e. the 2-cocycle f can just be changed by Hochschild 2-coboundaries in order to
obtain isomorphic ring structures.

Note that Hochschild 2-coboundaries are automatically symmetric.
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3.1.6 The one. Up to now we did not care about a neutral element for multiplication
in the extensions defined by (31).

In order to make (1, 0) into the one we would need

( f(1, . ) ) = f( . , 1) = 0 .

But the cocycle condition, applied for b = c = 1 gives already

f(a, 1) = a · f(1, 1)

and f can be changed by a coboundary, defined by h with h(1) = −f(1, 1).
Therefore extensions defined by (31) automatically have a one. Note that the

k-linear map
k −→ S ⊕f M , 1 7→ 1

is a homomorphism of rings, giving S ⊕f M the structure of a k-algebra.
So we have summarized the result, that singular extensions of the k-algebra S by

the S-module M are classified by

”symmetric Hochschild 2− cocyles” / ”Hochschild 2− coboundaries” ,

i.e. by the second Harrison cohomology Har2
k(S, M).

3.1.7 Remark. All that about singular extensions of algebras and second Harrison
cohomology can be found, for example, in [EGA IV0, §18] in a very explicit way.
Note that they use the name second symmetric Hochschild cohomology, denoted by
H2

k(S, M)s, for what we call second Harrison cohomology.
There are a number of other interesting tractises on that. See [CE] for a very

solid introduction to various homology theories, [Ge] for Hochschild and Harrison
cohomology in general and connections to deformation theory of algebras and [An] for
a more abstract point of view on cohomology of commutative algebras.

3.2 The special case M = k

3.2.1 Remark. Here we deal with the easiest case of singular extensions. We con-
sider ”small” extensions by M = S/N (= k). In that situation one can describe the
cohomology group Har2

k(S, k) explicitly and, therefore, give a necessary and sufficient
criterion for injective (flat) local homomorphisms to be liftable to another injection by
such a ”small step”.

3.2.2 Fact. Let R = k[[X1, . . . , Xr]] be a complete regular local k-algebra. Then
there are no nontrivial singular extensions of R by the R-module k.

Har2
k(R, k) = 0

Proof. Let R′ −→ R be some singular extension of R by k. Then R′ is automatically
complete as the following 5-lemma situation shows.

0 −→ k −→ R′ −→ R −→ 0
↓ ∼= ↓ ‖

0 −→ kR′∧ −→ R′∧ −→ R∧ −→ 0
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Now choose preimages X ′
1, . . . , X ′

r ∈ R′ of X1, . . . , Xr and define a local homomor-
phism of local k-algebras

R = k[[X1, . . . , Xr]] −→ R′ , Xi 7→ X ′
i .

Obviously this is a section and the extension must have been trivial.

2

3.2.3 Remark. Let (R,M) = k[[X1, . . . , Xr]] be a complete regular local k-algebra
and I ⊆M some ideal. Then there is a canonical k-linear map

(I/MI)∗ −→ Har2
k(R/I, k) .

Construction. Consider h ∈ (I/MI)∗ as a k-linear map R −→ k vanishing on MI

and outside I. Then the k-bilinear form f̃h defined by

f̃h(x, y) := −xh(y) + h(xy)− h(x)y ,

where x denotes the residue class of x in R/M , is a 2-coboundary on R. By
Har2

k(R, k) = 0 it is even a symmetric 2-cocycle.

We claim, that f̃h vanishes on I ×R (and R× I.)
Indeed, let x ∈ I and y ∈M first. Then we have x = 0, y = 0 and xy ∈MI, implying

f̃h(x, y) = −xh(y) + h(xy)− h(x)y = 0 .

In the second place, let x ∈ I and y ∈ k ⊆ R. Then x = 0 and h(xy) = h(x)y give

f̃h(x, y) = −xh(y) + h(xy)− h(x)y = 0 ,

too.
So f̃h induces a 2-cocycle fh on R/I × R/I, i.e. a cohomology class [fh] in

Har2
k(R/I, k).

3.2.4 Proposition. Let (R,M) = k[[X1, . . . , Xr]] be a complete regular local
k-algebra and I ⊆ M2 some ideal. Then the k-linear map, constructed above, is even
an isomorphism.

Har2
k(R/I, k)

∼=←− (I/MI)∗

Proof. Injectivity. We have

fh(x, y) = −xh(y) + h(xy)− h(x)y

with h ∈ (I/MI)∗. Assume fh is a 2-coboundary, i.e.

fh(x, y) = −xh′(y) + h′(xy)− h′(x)y ,

where h′ ∈ (R/I)∗. For x, y ∈ M only the middle summands can be nonzero, i.e.
h = h′ on M2, in particular on I. But h′ vanishes on I. Hence h must vanish on I,
too, and h = 0.
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Surjectivity. Let [f ] ∈ Har2
k(R/I, k) be a cohomology class and

f : R/I ×R/I −→ k be a corresponding 2-cocycle

f ∈ Z2
sym(R/I, k) .

This one induces a 2-cocycle f̃ : R × R −→ k on R. By Har2
k(R, k) = 0 that must be

even a 2-coboundary;

f̃(x, y) = −xh̃(y) + h̃(xy)− h̃(x)y

for some h̃ ∈ R∗.
We have necessarily h̃|MI = 0, since f̃ vanishes for x ∈ M and y ∈ I. So

h̃ ∈ (R/MI)∗.
Further h′ ∈ (R/I)∗ generates the zero class in Har2

k(R/I, k). So one can change
the k-linear map h̃ : R/MI −→ k in such a way, that it vanishes outside I/MI.

h ∈ (I/MI)∗

2

3.2.5 Remark. This result is not surprising when one has Fact 3.2.2. It means,
there is a trivial extension of R/I, corresponding to the zero class, being of type

R/I[[T ]]/(T, MmodI · T ) −→ R/I ,

and the other extensions are restrictions of I ”by length one” to some ideal J with
MI ⊆ J ⊆ I.

3.2.6 Remark. Let R = k[[X1, . . . , Xr]] be a complete regular local k-algebra and

g : R
p−→ R/I

g′

↪→ S

be some homomorphism. Then we are interested in lifts

(g, h) : R −→ S ⊕f k ,

where, of course, h(I) is supposed to be nonzero in order to make the kernel properly
smaller than I.

Note that
R/ ker (g, h) −→ S ⊕f k

is really a lift of R/I
g′−→ S in the sense of sections 1 and 2, since h(I) 6= 0 implies

that the extension by k is killed by base change to R/I.

3.2.7 Proposition. There exists a lift, as it was described in the Remark above, if
and only if the canonical map

Har2
k(S, k) −→ Har2

k(R/I, k)
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is nonzero.
Proof. Investigating the conditions, necessary and sufficient for (g, h) is a homomor-
phism of rings, we obtain the following diagram

x · y = xy

>
↓

>
↓

>
↓

(g(xy), h(xy))

(g(x), h(x)) · (g(y), h(y)) =
‖!

(g(xy), xh(y) + h(x)y + f(g(x), g(y))) ,

using we are in residually rational situation. So the condition for (g, h) respects the
multiplicative structures is

f(g(x), g(y)) = −xh(y) + h(xy)− h(x)y . (32)

From 3.1.6 we know that we can restrict to 2-cocycles, where

f(1, . ) = 0 .

Then (1, 0) is the neutral element for multiplication in S ⊕f M . So the condition on
(g, h), to respect the one, is simply

h(1) = 0 .

But (32), applied to x = y = 1 gives just that relation.
So (32) is the only condition on (g, h) to be a homomorphism of local k-algebras. It

means that there has to be a cohomology class [f ] ∈ Har2
k(S, k), such that

g′∗(f) ∈ Har2
k(R/I, k) is induced by some h ∈ R∗ (, where h(I) 6= 0). But by Propo-

sition 3.2.4 every cohomology class in Har2
k(R/I, k) comes from such an h ∈ (I/MI)∗.

So we simply need
0 6= h ∈ (I/MI)∗ ∼= Har2

k(R/I, k)

belonging to the image of g′∗.
That is just the assertion.

2

3.2.8 Remark. Let R and T be complete regular local k-algebras and

g̃ : R −→ T

be some local homomorphism. Further consider some ideal J ⊆ T , let I := J ∩ R be
its restriction to R and let

g : R/I ↪→ T/J

be the canonical injection. Then, in order to lift g, we need

(I/MI −→ J/NJ) 6= 0 ,

i.e.
(I =) J ∩R 6= NJ ∩R .

Then one has to try to lift again and hopes to end ”at infinity” at the base R. Un-
fortunately, the author does not understand the behaviour of that condition under
lifts. He would suggest other people to tackle this problem. May be one can prove
substancially new results on the Lech-Hironaka conjecture.
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géométrie algébrique, IV: Les schémas de Hilbert, Seminaire Bourbaki,
Exp.195, 1959/60
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