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1. Introduction

The goal of this paper is to establish an asymptotic formula for the density of del Pezzo 
surfaces of degree four in a certain family of Birch Swinnerton-Dyer type, which violate 
the Hasse principle due to a Brauer–Manin obstruction. More precisely, let D ∈ Z be 
some fixed non-zero integer, which is not a perfect square, and A, B ∈ Z. Let S(D;A,B)

be the surface in P4 given by the system of quadrics

t0t1 = t22 −Dt23,

(t0 + At1)(t0 + Bt1) = t22 −Dt24. (1)

If A and B are chosen in such a way such that A �= B, AB �= 0 and A2−2AB+B2−2A −
2B+1 �= 0, then S(D;A,B) is a smooth del Pezzo surface of degree four. We are interested 
in the frequency of failures of the Hasse principle for surfaces of the form S(D;A,B). In 
order to formulate a reasonable counting question, we need to introduce some height 
function, according to which we order the del Pezzo surfaces in the family above. For a 
fixed non-zero integer D, we use a naive height given by

H(S(D;A,B)) := max{|A|, |B|}.

Let RD(N) be the number of integers |A|, |B| ≤ N such that S(D;A,B) is smooth and fails 
the Hasse principle. We can hence characterise a tuple (A, B) with |A|, |B| ≤ N , which 
is counted by RD(N), by the property that S(D;A,B) is smooth, S(D;A,B)(Qp) �= ∅ for all 
primes p including the infinite prime, and such that S(D;A,B)(Q) = ∅. It is conjectured 
that all failures of the Hasse principle for del Pezzo surfaces in general can be explained 
by some Brauer–Manin obstruction. Hence we introduce the counting function RBr

D (N)
to be the number of all surfaces S(D;A,B) in the family (1) of height at most N with the 
property that there is a Brauer–Manin obstruction to the Hasse principle for S(D;A,B). 
Moreover, we let Rloc

D (N) be the number of |A|, |B| ≤ N such that S(D;A,B)(Qp) �= ∅ for 
all primes p, including the infinite prime. In particular, we have

RBr
D (N) ≤ RD(N) ≤ Rloc

D (N).

Our first main theorem gives an asymptotic expansion for RBr
D (N).

Theorem 1.1. Let D > 1 be some positive squarefree integer, which satisfies D ≡ 1
modulo 8. For any integer P ≥ 0, there are real constants Ck, independent of P , such 
that

RBr
D (N) = 4N2

(log 2N)1/4
2P∑
k=0

Ck

(log 2N)k/2
+ OD,P

(
N2

(logN)3/4+P

)
.

The constants Ck have explicit descriptions as in equations (21) and (22). Moreover, the 
leading constant C0 is positive.
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We note that the implied constant in the error term depends ineffectively on P due 
to possible Siegel zeros of Dirichlet L-functions.

Moreover, we note that we can always reduce to the case where D is squarefree by 
substituting t3 = d−1t′3 and t4 = d−1t′4 if d2|D for some positive integer d.

It is known that the Brauer–Manin obstruction to the Hasse principle (and weak 
approximation) is the only one for the family (1) under the assumption of Schinzel’s hy-
pothesis and the finiteness of Tate–Shafarevich groups of elliptic curves. Várilly-Alvarado 
and Viray show this in [VAV] (see Theorem 5.3) in applying a deep theorem of Witten-
berg [Wi2, Théorème 1.1] (see also [Wi1]) on genus 1 fibrations Y → P1, and checking 
that the conditions of his theorem are satisfied. Hence, we conclude that, conditionally 
on those two conjectures, we also obtain an asymptotic expansion for RD(N).

Theorem 1.2. Let D be as in Theorem 1.1 and P ≥ 0 be an integer. Assume Schinzel’s 
hypothesis and the finiteness of Tate–Shafarevich groups of elliptic curves. Then

RD(N) = 4N2

(log 2N)1/4
2P∑
k=0

Ck

(log 2N)k/2
+ OD,P

(
N2

(logN)3/4+P

)
,

with real constants Ck given as in Theorem 1.1.

Remark 1.3. Theorem 1.1 can be used to conclude that the set of del Pezzo surfaces 
of degree four, that are counterexamples to the Hasse principle, is Zariski dense in the 
moduli scheme. Indeed, one can argue as in Theorem 6.11 in [JS] and note that the 
density estimate for RBr

D (N) implies that the set of (A, B), for which S(D;A,B) is a 
counterexample to the Hasse principle, cannot be contained in a finite union of curves 
in A2.

Next we compare our result from Theorem 1.1 with the number of del Pezzo surfaces 
in the family that are everywhere locally soluble.

Proposition 1.4. Assume that D is some positive, squarefree integer with D ≡ 1 modulo 8. 
Then there exists a positive constant cloc such that one has

Rloc
D (N) = clocN

2 + O(N2−θ(D)),

for some θ(D) > 0. The constant cloc has an explicit description in equation (6) in 
section 2. In particular, it is a product of local densities.

In section 2, we give an elementary proof of Proposition 1.4. Alternatively, one should 
be able to use the methods from the papers of Poonen and Stoll in [PSa] and [PSb] as used 
in Theorem 3.6 in work of Poonen and Voloch [PV] or work of Ekedahl [Ek]. However, 
it turns out that except for a finite number, all the local densities in our problem are 
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identically equal to 1 and hence we can pursue an easier proof. Moreover, we obtain an 
explicit error term with a power saving of the main parameter.

If D is chosen suitably as in the assumptions of our main theorems, then Propo-
sition 1.4 shows that a positive proportion of surfaces in the family (1) are locally 
soluble. The family (1) is built in such a way that in the generic case one obtains a 
non-trivial Brauer-group isomorphic to Z/2Z. However, in most cases one would only 
expect that weak approximation is obstructed, but the Hasse principle still holds. Theo-
rem 1.1 and Theorem 1.2 verify this expectation for the Hasse principle in a quantitative 
way.

Similar questions for other families of algebraic varieties have been studied before. In 
[Bh], Bhargava considers families of genus one curves and shows among other results that 
a positive proportion of plane cubics fail the Hasse principle. In a similar spirit, Browning 
and Newton [BN] study twists of norm one tori and find that a positive proportion of 
rational numbers fail the Hasse norm principle in the case of a non-trivial knot group. 
The situation for the degree four del Pezzo surfaces in our family is different in the 
sense that only on a sparse subset one observes failure of the Hasse principle due to a 
Brauer–Manin obstruction. This phenomenon is closer to the observations of La Bretèche 
and Browning [BB2] on the failure of the Hasse principle for a certain family of Châtelet 
surfaces. Similarly to our situation, they find a positive proportion of locally soluble 
surfaces and only a sparse set failing the Hasse principle, with a density decaying like 
∼ 1

(log N)1/4 as in our Theorems 1.1 and 1.2. The study of a certain family of coflasque 

tori in [BB1] shows a similar behaviour.
In order to count counterexamples to the Hasse principle in the family (1), we need 

to understand the Brauer group of the variety and its evaluation on the local points 
S(D;A,B)(Qν) for any place ν sufficiently well. Our analysis in this direction, in particular 
criteria for the constancy of the evaluation of a Brauer group element on S(D;A,B)(Qν), 
builds on and generalises part of our earlier work in [JS]. For inert primes, we have 
a rather precise criterion (see Lemma 3.2), whereas for ramified primes the situation 
remains to some extent unsolved. We circumvent the problem in using the continuity 
properties of Brauer classes, see Lemma 4.3.

Note that in our setting it is enough to consider algebraic Brauer classes. Since 
del Pezzo surfaces are rational varieties, their Brauer group is trivial after passing to 
some algebraic closure, see Remark 1.3.8 in [Co] and III, Example 8.7.ii) in [Ja] as 
well as Theorem 42.8 in [Ma]. Hence, in the usual notation we have BrX = Br1 X =
ker[BrX → BrX].

The structure of this paper is as follows. In section 2, we study the number of locally 
soluble del Pezzo surfaces in our family (1) and prove Proposition 1.4. In section 3, we 
study the action of the Brauer group at inert primes and give explicit criteria for its 
evaluation on S(D;A,B)(Qp). We use these criteria in section 4 to give asymptotics for 
counting functions related to RBr

D (N). First, we additionally fix A and B in congruence 
classes modulo some integer T that is composed of primes dividing the discriminant D. 
We use these asymptotics in the final section to prove the main Theorem 1.1.
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We note that all implicit constants in Vinogradov’s notation may depend on the 
discriminant D.

2. Local solubility

The goal of this section is to prove Proposition 1.4. We start by recalling a few results 
on local solubility obtained in [JS].

Lemma 2.1. Let p �= 2 be some prime that is unramified in the field extension Q(
√
D )

and A, B ∈ Z such that S(D;A,B) is smooth. Then one has S(D;A,B)(Qp) �= ∅.

This is part a) of Proposition 4.3 in [JS]. Hence the only relevant primes are 2, 
the infinite place and all ramified primes. Solubility over R is always guaranteed as for 
example noted in Remark 4.7 in [JS]. Furthermore, if p = 2 is split, then S(D;A,B)(Q2) �= ∅
by Lemma 4.4.a) in the same paper.

In the following, we set G(A, B) = A2 − 2AB + B2 − 2A − 2B + 1. We recall that 
the surface S(D;A,B) is smooth over Q if and only if AB �= 0, A �= B and G(A, B) �= 0
(see Proposition 2.1 in [JS]). Note that if S(D;A,B) is smooth over Q, then the same 
holds for all completions Qp. In the following, we give a more refined and quantitative 
version of this statement. We observe that if no high power of pl+1 divides into any of 
the expressions A, B, A − B or G(A, B) and we are given a primitive solution modulo 
p8l+1, then we can bound the multiplicity of the power of p dividing all of the 2 × 2
minors of the Jacobian by 4l.

For convenience, we use in the following the vector notation t = (t0, . . . , t4) and set

Q1(t) = t22 −Dt23 − t0t1,

Q2(t) = t22 −Dt24 − (t0 + At1)(t0 + Bt1).

We also use vector notation for the system Q = (Q1, Q2) of quadratic forms.

Lemma 2.2. Assume that p | D and p2 � D where p �= 2 is a prime. Let l ≥ 1 be such 
that pl+1 � A, B, A − B, G(A, B). Assume that t ∈ (Z/p8l+1Z)5 has components not all 
divisible by p and satisfies Q(t) ≡ 0 modulo p8l+1. Then p4l+1 does not divide all 2 × 2
minors of the Jacobian matrix J(Q)(t) at the point t.

Note that the assumption p2 � D is crucial for the proof of Lemma 2.2. However, since 
our discriminant D is squarefree, this is no restriction in our application.

Proof of Lemma 2.2. Let t ∈ (Z/p8l+1Z)5 be as in the statement of the lemma. It is easy 
to see that p � t1. We recall that the Jacobian matrix at the point t is given by(

t1 t0 −2t2 2Dt3 0
2t + (A + B)t (A + B)t + 2ABt −2t 0 2Dt

)
. (2)
0 1 0 1 2 4
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Assume that p4l+1 divides all 2 × 2 minors and that Q(t) ≡ 0 mod p8l+1. Since p �= 2, 
we conclude first that p4l|t4. Furthermore, we observe that p4l|t2t3 which implies that 
p2l|t2 or p2l|t3.

First assume that both t2, t3 are divisible by p2l. In this case, the congruence Q1(t) ≡
0 mod p8l+1 implies that p4l|t0 and the second quadratic congruence delivers p4l|AB, 
which is a contradiction to our assumption.

In the case where p2l � t2, we have that p2l+1|t3. Considering the 2 × 2-minors of the 
Jacobian consisting of the 1st and 3rd and the 2nd and 3rd column, we find that

(A + B − 1)t1 + 2t0 ≡ (A + B − 1)t0 + 2ABt1 ≡ 0 mod p2l+2.

This leads to

4ABt1 − (A + B − 1)2t1 ≡ 0 mod p2l+2,

and hence to p2l+2|G(A, B), which is a contradiction, as well.
Similarly, the case p2l � t3 and p2l+1|t2 leads to pl+1|A − B, and hence a contradic-

tion. �
The restriction p �= 2 is not strictly necessary in Lemma 2.2, but one would need 

to change the exponents slightly for p = 2. Since we assume p = 2 to be split in our 
applications, we do not include this case into the lemma.

Definition 2.3. Let Rl(p) be the set of residue classes of A, B modulo p8l+1 such that 
pl+1 � A, B, A − B, G(A, B) and the congruence system Q(t) ≡ 0 mod p8l+1 has a 
primitive solution.

The following lemma justifies the definition of the sets Rl(p) and explains their role.

Lemma 2.4. Let p �= 2 be a ramified prime with p2 � D and l ≥ 1. Assume that pl+1 �

A, B, A − B, G(A, B). Then S(D;A,B)(Qp) �= ∅ if and only if (A, B) modulo p8l+1 is 
contained in Rl(p).

Proof. It is clear that (A, B) ∈ Rl(p) if S(D;A,B)(Qp) �= ∅. Hence we need to show that 
there is a Qp-point on S(D;A,B) as soon as (A, B) ∈ Rl(p). For this, recall that pl+1 �

A, B, A − B, G(A, B). We assume that we are given a primitive vector t ∈ (Z/p8l+1Z)5
with Q(t) ≡ 0 mod p8l+1. By Lemma 2.2, we know that p4l+1 does not divide the 
determinants of all 2 × 2 minors of the Jacobian J(Q)(t). Hence a version of Hensel’s 
Lemma (see Proposition 5.21 in [Gr]) implies that there is some t′ ∈ Z5

p such that Q(t′) =
0 and t′ ≡ t modulo p4l+1, and therefore t′ is in particular not the zero vector. �

We are now prepared to deduce the asymptotic for Rloc
D (N) as stated in Proposi-

tion 1.4. We note that the cases of A, B for which S(D;A,B) is singular only contribute 
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a small error. By Proposition 2.1 in [JS], the surface S(D;A,B) is singular if and only if 
AB = 0 or A −B = 0 or G(A, B) = 0. And it is clear that

�{|A|, |B| ≤ N : AB(A−B)G(A,B) = 0} � N.

We assume that D ≡ 1 mod 8 is squarefree. Then Lemma 2.1 implies that

Rloc
D (N) = �{|A|, |B| ≤ N : S(D;A,B)(Qp) �= ∅ ∀ p|D} + O(N).

Note that we always have S(D;A,B)(R) �= ∅, since D is positive.
Now we use the characterisation in Lemma 2.4 to detect local solubility at primes 

dividing D. For this, let D =
∏r

i=1 pi be the prime factorisation of D into primes p1 <

. . . < pr, and L be the largest positive integer such that N
1/2

D8 < D8L+1 ≤ N1/2. Then 
we have

Rloc
D (N) = �{|A|, |B| ≤ N : (A,B) mod p8L+1

i ∈ RL(pi) ∀ 1 ≤ i ≤ r} + O(N) + E1,

where E1 is an error term bounded by

E1 �
r∑

i=1
�{|A|, |B| ≤ N : pL+1

i divides one of A,B,A−B,G(A,B)}

�
r∑

i=1

(
N

pL+1
i

)2

�{(A,B) mod pL+1
i : pL+1

i divides one of A,B,A−B,G(A,B)}.

In order to bound the last counting function for the case where pL+1
i |G(A, B), it is 

enough to trivially sum over B and apply Lemma 4.9 in [PSW] to the count of solutions 
in A. Moreover, we observe that

8L + 1 ≥ 1
2

logN
logD − 8.

Hence we have

E1 �
r∑

i=1

N2

p
L/2
i

� N2

p
L/2
1

� N2

2L/2 � N2−θ(D),

where 0 < θ(D) < 1/2 is given by θ(D) = log 2
32 log D .

Next we use the observation

�{|A| ≤ N : A ≡ t mod D8L+1} = 2N
D8L+1 + O(1),

to further rewrite the counting function Rloc
D (N) as



J. Jahnel, D. Schindler / Journal of Number Theory 162 (2016) 224–254 231
Rloc
D (N) = 4N2

(D8L+1)2 �{A,B mod D8L+1 : (A,B) ∈ RL(pi) ∀ 1 ≤ i ≤ r}

+ O(D8L+1N) + O(N2−θ(D)).

We set R0(p) := ∅ for all primes p. For any l ≥ 1, we let R∗
l (p) ⊂ Rl(p) be the set of 

tuples (A, B) modulo p8l+1 such that the reduction of (A, B) modulo p8(l−1)+1 is not 
contained in Rl−1(p). For each prime dividing D, we now sort the tuples (A, B) according 
to the smallest l, for which (A, B) mod p8l+1 ∈ Rl(p). In this way, we obtain

Rloc
D (N)

= 4N2

D16L+2

L∑
l1,...,lr=1

�{A,B mod D8L+1 : (A,B) mod p8li+1
i ∈ R∗

li(pi) ∀1 ≤ i ≤ r}

+ O(N2−θ(D))

= 4N2

D16L+2

L∑
l1,...,lr=1

r∏
i=1

�{A,B mod p8L+1
i : (A,B) mod p8li+1

i ∈ R∗
li(pi)}

+ O(N2−θ(D))

= 4N2

D16L+2

L∑
l1,...,lr=1

r∏
i=1

(
p8L+1
i

p8li+1
i

)2

�{A,B mod p8li+1
i : (A,B) ∈ R∗

li(pi)}

+ O(N2−θ(D))

= 4N2
L∑

l1,...,lr=1

r∏
i=1

|R∗
li
(pi)|

p
2(8li+1)
i

+ O(N2−θ(D)). (3)

We claim that the last sum is absolutely convergent for L → ∞. For this, we first observe 
that

|R∗
l (p)| � �{A,B mod p8l+1 : pl divides one of A,B,A−B,G(A,B)}

� p2(8l+1)

p�l/2�
�D

p2(8l+1)

pl/2
. (4)

Here we have used that G(A, B) is a quadratic polynomial in A, B and p1/2 �D 1. Hence 
we can estimate

∑
l1,...,lr

max(l1,...,lr)>L

r∏
i=1

|R∗
li
(pi)|

p
2(8li+1)
i

�
∑

l1,...,lr
max(l1,...,lr)>L

r∏
i=1

1
p
li/2
i

�
∞∑
l=L

1
2l/2

� 2−L/2 � N−θ(D). (5)
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Finally, we put

cloc := 4
∞∑

l1,...,lr=1

r∏
i=1

|R∗
li
(pi)|

p
2(8li+1)
i

= 4
r∏

i=1

∞∑
li=1

|R∗
li
(pi)|

p
2(8li+1)
i

. (6)

Then equation (3) together with equation (5) gives

Rloc
D (N) = clocN

2 + O(N2−θ(D)),

which proves the asymptotic in Proposition 1.4 for some constant cloc. Next, we observe 
that the constant cloc is indeed positive.

Lemma 2.5. Let D ≡ 1 modulo 8 and assume that D is squarefree. Then one has the 
lower bound

cloc ≥
4
D2 .

Proof. We use the expression for cloc in (6) to prove the lower bound cloc ≥ 4
D2 . Note 

that p|D implies that p �= 2 by the congruence condition on D modulo 8. We first 
consider the case p > 3. For this, we fix a choice of residue classes (a, b) modulo p with 
the property that (ap ) = 1 and a �≡ 0, −1 modulo p as well as a2 + a + 1 �≡ 0 modulo p, 
and set b ≡ a

a+1 modulo p. Such a choice is possible, since p > 3. If (A,B) is a pair 
of residue classes modulo some power pk with k ≥ 1 that reduces to (a, b) modulo p, 
then Proposition 5.1.a) in [JS] shows that the system Q(t) = 0 has a primitive solution 
modulo pk. We deduce that

L∑
l=1

|R∗
l (p)|

p2(8l+1) ≥

p−2(8L+1)�{(A,B) mod p8L+1 : (A,B) mod p = (a, b), pL+1 � A,B,A−B,G(A,B)}.

We take the limit for L → ∞ and, in combination with the bound in (4), we obtain

∞∑
l=1

|R∗
l (p)|

p2(8l+1) ≥ 1
p2 . (7)

Now consider the case where p = 3 and p|D. Then we choose (a, b) = (0, 0) and observe 
that (1 : 1 : 1 : 0 : 0) is a smooth point on the reduction of S(D;A,B) for any (A, B)
that reduces to (a, b) modulo 3. Hence Hensel’s Lemma implies that S(D;A,B)(Q3) �= ∅
for such (A, B). Now the same argument as above shows that (7) also holds for p = 3. 
Together with equation (6), this completes the proof of the lemma. �
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3. Evaluation of the Brauer group at inert primes

For a surface S(D;A,B) in the family (1), we can explicitly write down a Brauer class, 
which is locally defined by one of the quotients t0/(t0 +At1), t1/(t0 +At1), t0/(t0 +Bt1)
or t1/(t0 + Bt1). Let l be some place and t ∈ S(D;A,B)(Ql) a point, where one of the 
quotients is defined and non-zero. Denote one of the quotients by q. Then the evaluation 
of the Brauer class α described in Proposition 3.2 in [JS] is given by

evα,l(t) =
{

0 if (q,D)l = 1,
1
2 if (q,D)l = −1,

and the evaluation is independent of the choice of q above.
In Proposition 4.3 in [JS], we observed that S(D;A,B)(Qp) �= ∅ as soon as p �= 2 is a 

finite unramified prime. We even have the stronger statement that in this case there is 
always a point in S(D;A,B)(Qp) on which the Brauer class α evaluates to 0.

Lemma 3.1. Let p �= 2 be some unramified prime in the extension Q(
√
D ). Then there 

is a point t ∈ S(D;A,B)(Qp) such that evα,p(t) = 0.

Proof. In the case where p is split, this is clear and only requires the existence of some 
point t ∈ S(D;A,B)(Qp), which is guaranteed by Proposition 4.3 in [JS].

Let p �= 2 be some inert prime. In the proof of Proposition 4.3 in [JS], we showed 
that there is a regular Fp-rational point on the reduction of S(D;A,B). Considering the 
Jacobian (2) at this point together with the system of equations defining S(D;A,B), we 
see that, for each (t0 : . . . : t4) ∈ S(D;A,B)(Qp) lifting it, at least one of t0, t1 and one of 
t0+At1, t0+Bt1 has to be a unit. The corresponding quotient q then satisfies (q, D)p = 1
and hence evα,p(t) = 0. �

For an inert prime p �= 2, we hence need to distinguish two cases. Either 
S(D;A,B)(Qp) �= ∅ and the Brauer class evaluates constantly to 0, or there are Qp-rational 
points, but α takes both values 0 and 1/2 on S(D;A,B)(Qp). We give some criteria for 
both cases in the next lemma. Let νp be the p-adic valuation on Qp.

Lemma 3.2. Let p �= 2 be some inert prime and α the Brauer class described above. 
Assume that νp(A) ≤ νp(B).

i) If νp(A) is odd, then the evaluation of α on S(D;A,B)(Qp) is constant if and only if 
B is a square in Qp.

ii) If νp(A) is even, then the evaluation of α is non-constant if and only if νp(B−A) >
νp(A) and BD is a square.

In the case of constancy, the Brauer class takes the value 0 on all of S(D;A,B)(Qp).
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Note that, by symmetry, Lemma 3.2 covers all cases of choices for integers A and B.

Proof of Lemma 3.2. By Lemma 3.1, we already know that S(D;A,B)(Qp) �= ∅ and that α
takes the value 0 on some element in this set. Let t ∈ S(D;A,B)(Zp) be a primitive solution, 
i.e. one such that not all of the coordinates of t are divisible by p. Note that one of t0 or t1
is a unit. If t0 is a unit and t1 is divisible by p, then both of the factors t0+At1 and t0+Bt1
have even valuation, and hence evα,p(t) = 0. Therefore, the only points of interest to us 
are those where t1 is a unit. Furthermore we note that the first equation in (1) implies 
that t0 has even p-adic valuation. In the cases of non-constancy of the lemma, we need to 
find some element t ∈ S(D;A,B)(Qp) with νp(t0 +At1) and νp(t0 +Bt1) both being odd, 
and in the other cases we need to show that any primitive solution t ∈ S(D;A,B)(Zp) with 
t1 a unit has the property that νp(t0 +At1) and νp(t0 +Bt1) are even. By homogeneity, 
we may in this case even assume that t1 = 1. We prove the lemma in three steps, where 
we distinguish different cases (which are again different than in the formulation of the 
lemma).

First step: We claim that if νp(A) and νp(B) are both odd, then the evaluation of α on 
S(D;A,B)(Qp) is non-constant. For this, let a = νp(A) and b = νp(B), and write A = pau

and B = pbv with units u and v. We use the substitution t0 = pa+by0 and t1 = y1 and 
ti = p

a+b
2 yi for i = 2, 3, 4. Then the system of equations (1) simplifies to

y0y1 = y2
2 −Dy2

3 ,

(pby0 + uy1)(pay0 + vy1) = y2
2 −Dy2

4 .

We find a non-singular solution on the reduction modulo p, and the corresponding point 
t has the property that t1 has even and t0 +At1 has odd valuation, and hence evα,p(t) =
1/2, as desired.

Second step: Let now νp(A) be even and νp(A) = νp(B − A). We then claim that the 
evaluation on S(D;A,B)(Qp) is constantly zero.

As we noted at the beginning of the proof, it is sufficient to show that all reduced 
vectors t ∈ S(D;A,B)(Zp) with t1 = 1 have the property that evα,p(t) = 0. Assume, to 
the contrary, that both t0 + A and t0 + B have odd p-adic evaluation. If we keep the 
notation a = νp(A), then we see that t0 = −A + rpa+1 for some r ∈ Zp. However, then 
the term t0 +B = B−A +rpa+1 has even valuation, a contradiction. Hence we conclude 
that the evaluation of the Brauer class α on S(D;A,B)(Qp) is constant.

Third step: Assume that νp(A) < νp(B), and additionally that νp(A) is odd and νp(B)
even. Or that νp(A) = νp(B) are even and νp(B −A) > νp(B).

We first aim to show that α evaluates constantly in the case where BD is not a square 
in Qp. For this, it suffices to consider a primitive solution t ∈ S(D;A,B)(Zp) with t1 = 1. 
In this case one of t0 +A or t0 +B has even valuation, and hence α evaluates to zero at 
this point.
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We now claim that α evaluates non-constantly if BD is a square in Qp. For this we 
construct solutions t ∈ S(D;A,B)(Qp) with evα,p(t) = 1/2. We hence assume that BD

is a square in Qp and then distinguish two subcases. In the first subcase, we assume 
that νp(B − A) is odd. We put t1 = 1, t2 = 0 and observe that there is a solution with 
t0 = −B + spb+1 for some s ∈ Zp. Our constructed point t ∈ S(D;A,B)(Zp) has the 
property that t0 + B has odd p-adic valuation and t1 = 1, and hence evα,p(t) = 1/2.

For the last subcase that νp(B − A) is even, recall that we have that νp(A) = νp(B)
are even and νp(B−A) > νp(B). Let b = νp(B). We construct a point t ∈ S(D;A,B)(Qp)
with t1 = 1, t4 = 0 and t0 = −B + vpb+1 for some unit v. The constructed point has the 
property that evα,p(t) = 1/2, as desired. �
4. First asymptotics

As before, let D =
∏r

i=1 pi be a factorisation of D into distinct primes p1 < . . . < pr. 
In this section, we fix some modulus T , which is composed of primes dividing the discrim-
inant D, and two congruence classes a and b modulo T . We seek density estimates for the 
number of surfaces S(D;A,B) in the family (1) with (A mod T ) = a and (B mod T ) = b

that are counterexamples to the Hasse principle explained by some algebraic Brauer–
Manin obstruction. For this, we introduce the counting function RBr

D (N ; T, a, b), which 
counts the number of |A|, |B| ≤ N with (A mod T ) = a and (B mod T ) = b such that 
S(D;A,B) is a counterexample to the Hasse principle explained by some Brauer–Manin 
obstruction.

Lemma 4.1. Assume that S(D;A,B) is non-singular, has an adelic point and that nei-
ther of the expressions −AB or D((A + B − 1)2 − 4AB) is a square in Q. Then 
Br(S(D;A,B))/ Br(Q) is isomorphic to Z/2Z or 0.

Proof. Generally, the Brauer group of S(D;A,B) can be either isomorphic to 0 or Z/2Z
or (Z/2Z)2. Let S ⊂ P1 be the degeneracy locus of the pencil of the two quadratic 
forms defining S(D;A,B). In particular, S is a degree five subscheme of P1. Since 
S(D;A,B)(AQ) �= ∅, we may apply Theorem 3.4 in [VAV] (see also [CTSSD] and [Wi1]). 
This includes the statement that Br(S(D;A,B))/ Br(Q) ∼= (Z/2Z)2 if and only if S has 
three distinct points s0, s1, s2 ∈ S (Q) such that the corresponding discriminants Ds0 , 
Ds1 , Ds2 of the rank four quadrics are non-squares in Q and coincide up to square 
factors.

An explicit computation of the characteristic polynomial P (λ, μ) = det(λQ1 + μQ2)
shows that under the assumptions of the lemma, exactly three points s0, s1, s2 of S
are defined over Q. The corresponding discriminants are given up to square factors by 
Ds0 = D, Ds1 = D and

Ds2 = 1
D2((A + B − 1)2 − 4AB).
4
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By the assumption of the lemma, the discriminant Ds2 does not coincide with Ds0 or 
Ds1 up to square factors, and hence Theorem 3.4 in [VAV] implies that the Brauer group 
cannot be isomorphic to (Z/2Z)2. �

We claim that the contribution of those A and B, for which Lemma 4.1 does not 
apply, is negligible.

Lemma 4.2. Let Q be the set of squares in Q. One has the bounds

�{|A|, |B| ≤ N : −AB ∈ Q} �ε N
3/2+ε,

and

�{|A|, |B| ≤ N : D((A + B − 1)2 − 4AB) ∈ Q} �ε D
εN3/2+ε.

Proof. This is a consequence of Theorem 13.1 in [Se]. �
Recall that, if Br(S(D;A,B))/Br(Q) ∼= Z/2Z and S(D;A,B) has an adelic point, then 

there is a Brauer–Manin obstruction to the Hasse principle if and only if the non-trivial 
Brauer class evaluates constantly at each place and takes the value 1

2 an odd number of 
times. We show next that, for T sufficiently large, the surfaces showing this behaviour 
may be characterised entirely in terms of the residue classes (A mod T ) and (B mod T ).

Lemma 4.3. Set G1(X, Y ) = G(X, Y )8 = (X2−2XY +Y 2−2X−2Y +1)8, G2(X, Y ) =
X8, G3(X, Y ) = Y 8 and G4(X, Y ) = (X −Y )8. Let p | D be a prime not equal to 2 with 
p2 � D, and assume, for certain A, B ∈ Z, that pl � Gi(A, B) for all 1 ≤ i ≤ 4.

a) Then the local solubility S(D;A,B)(Qp) �= ∅ only depends on A and B modulo pl.
b) Furthermore, the set of values taken by the evaluation of α on S(D;A,B)(Qp), as 

described in Section 3, only depends on A and B modulo pl.

The proof of Lemma 4.3 is similar to the proof of Lemma 2.2 and Lemma 2.4.

Proof of Lemma 4.3. Let Gi(X, Y ) for 1 ≤ i ≤ 4 be as chosen above, and assume that 
pl � Gi(A, B) for 1 ≤ i ≤ 4. Lemma 2.4 now implies that local solubility of S(D;A,B) over 
Qp only depends on (A, B) modulo pl. This proves the first part of the lemma.

Next we need to understand the evaluation of α on S(D;A,B)(Qp). For this let t ∈
S(D;A,B)(Qp) be a point, which we may assume to have coordinates in Zp in reduced 
form. Then, as shown in the proof of Lemma 2.2, we have that p � t1. Furthermore, 
we claim that pl � t0 + At1 or pl � t0 + Bt1. Indeed, otherwise we would have pl|A − B, 
which is a contradiction to pl � (A − B)8. Hence the p-adic valuation of t1(t0 + At1) or 
t1(t0 +Bt1) is at most l− 1. Therefore, the evaluation of (q, D)p, with q = t1/(t0 +At1)
or q = t1/(t0 + Bt1), only depends on t and A, B modulo pl. Moreover, any primitive 
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solution modulo pl lifts according to Lemma 2.2 and Hensel’s Lemma (for example in 
the form of Proposition 5.21 in [Gr]) to a solution in S(D;A,B)(Qp). In order to find all 
possible values of α on S(D;A,B)(Qp), one hence only needs to consider A and B modulo 
pl and evaluate α on all primitive solutions modulo pl. The result only depends on A
and B modulo pl. �

In the following, we use the notation Gj(X, Y ), 1 ≤ j ≤ 4, for the four polynomials 
specified in Lemma 4.3.

Notation. With the conclusions of Lemma 4.3 in mind, for a vector l = (l1, . . . , lr) ∈ Nr, 
we define

H (l) ⊂
(
Z/

r∏
i=1

plii Z

)2

to be the set of all pairs (a, b) modulo 
∏r

i=1 p
li
i such that

a) for each 1 ≤ i ≤ r, there is some 1 ≤ j ≤ m with pli−1
i |Gj(a, b),

b) for each 1 ≤ i ≤ r and 1 ≤ j ≤ m, one has plii � Gj(a, b),
c) one has S(D;A,B)(Qpi

) �= ∅ for (A mod
∏r

i=1 p
li
i ) = a, (B mod

∏r
i=1 p

li
i ) = b, and 

all 1 ≤ i ≤ r, and
d) the Brauer class α described in section 3 evaluates constantly at all places pi and 

takes the value 1/2 at an odd number of them.

Before we state a lemma, which we use to characterise surfaces S(D;A,B) in our family 
(1) that are counterexamples to the Hasse principle explained by some Brauer–Manin 
obstruction, we give an easy upper bound for the cardinality of the set H (l).

Lemma 4.4. There is a positive real constant θ0, such that

�H (l) �D

r∏
i=1

p
2(li−θ0)
i .

More precisely, the bound is valid for any θ0 < 1/16.

Proof. It is enough to use property a) in the definition of the set H (l), and bound

�H (l) �
r∏

i=1
�{(a, b) mod plii : pli−1

i |Gj(a, b) for some 1 ≤ j ≤ 4}. �

Lemma 4.5. Let D ≡ 1 mod 8 be squarefree with a factorisation into primes D =
∏r

i=1 pi, 
as before. Let a and b be congruence classes modulo T =

∏r
i=1 p

li
i such that (a, b) ∈ H (l). 

Assume that (A mod T ) = a and (B mod T ) = b and that neither of the expressions 
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−AB or D((A + B − 1)2 − 4AB) is a square in Q. Furthermore, assume that S(D;A,B)

is non-singular.
Then there is a Brauer–Manin obstruction to the Hasse principle for S(D;A,B) if and 

only if, for all inert primes q in Q(
√
D)/Q, the evaluation of the Brauer class α, as 

described in section 3, is constant.

Proof. Note that the condition D ≡ 1 mod 8 ensures that 2 is split in the quadratic 
extension Q(

√
D )/Q. Hence S(D;A,B)(Q2) �= ∅ by Lemma 4.4 in [JS]. Furthermore, the 

definition of H (l) ensures that S(D;A,B)(Qp) �= ∅ for all ramified primes and Lemma 2.1
ensures local solubility at all unramified primes different from 2. Since D > 0, it is clear 
that there are real solutions. Hence one has S(D;A,B)(AQ) �= ∅. If there is some inert 
prime q, for which the evaluation of α on S(D;A,B)(Qq) is non-constant, then this shows 
that α defines a non-trivial element in Br(S(D;A,B))/Br(Q). By Lemma 4.1 the element α
already generates Br(S(D;A,B))/ Br(Q) and hence there is no Brauer–Manin obstruction 
to the Hasse principle.

For the other direction, as (a, b) ∈ H (l), we have constant evaluation at all ramified 
primes, whereas the evaluation takes the value 1

2 an odd number of times. Moreover, 
we note that if α evaluates constantly at some unramified prime different from 2, then 
it automatically takes the value zero by Lemma 3.1. Also, the evaluation of α at the 
prime 2 is constantly zero, as this prime is split. Hence S(D;A,B) is a counterexample 
to the Hasse principle, explained by some Brauer–Manin obstruction, if α evaluates 
constantly on S(D;A,B)(Qq) for all inert primes q. �

Before we start to establish an asymptotic formula for RBr
D (N ; T, a, b), let us introduce 

the following definition.

Definition 4.6. Let n �= 0. We call an integer B admissible for n, if the following two 
conditions hold.

a) If p is an inert prime and pl‖n for some odd l, then B is of the form B = up2k with 
(up ) = 1, or B = −n + up2k with 2k > l and (up ) = 1.

b) If p is an inert prime and pl‖n for some even l, then either pl|B or B is of the form 
B = up2k with 2k < l and (up ) = 1.

We can now characterise elements in the family S(D;A,B), for which there is a Brauer–
Manin obstruction to the Hasse principle.

Lemma 4.7. Let a and b be congruence classes modulo T such that (a, b) ∈ H (l). Assume 
that (A mod T ) = a, (B mod T ) = b, and that S(D;A,B) is non-singular and neither of 
the expressions −AB or D((A + B − 1)2 − 4AB) is a square in Q. Put n := A −B.

Then there is a Brauer–Manin obstruction to the Hasse principle for S(D;A,B) if and 
only if B is admissible for n.
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Proof. By Lemma 4.5, we need to show that admissibility is equivalent to saying that α
evaluates constantly to zero at all inert primes p. For this, we consider some fixed inert 
prime p.

We have A = n +B and it is, of course, possible that νp(A) < νp(B). This happens if 
and only if νp(n) < νp(B). In this case, νp(n) = νp(A). Thus, Lemma 3.2 shows that the 
evaluation of α is constant at the prime p if and only if we are in one of the four cases 
below.

i) νp(n) < νp(B), νp(n) is odd, and B is a square.
ii) νp(n) < νp(B) and νp(n) is even.
iii) νp(n) ≥ νp(B), νp(B) is odd, and A is a square.

As A = n + B and νp(B) is odd, the latter is possible only when νp(n) = νp(B). I.e., if 
B = −n + q for q a square such that νp(q) > νp(n).

iv) νp(n) ≥ νp(B), νp(B) is even, and νp(n) = νp(B) or AD is a non-square. The 
last statement is hence of interest only when νp(n) > νp(B). In which case, AD =
(n +B)D being a non-square is equivalent to BD being a non-square, and to B being 
a square.

Thus, given n, α evaluates constantly at the prime p if and only if one of the following 
holds.

• νp(n) > νp(B) and B is a square.
• νp(n) is odd, νp(n) < νp(B) and B is a square.
• νp(n) is odd, and B = −n + q, for q a square such that νp(q) > νp(n).
• νp(n) is even and νp(n) ≤ νp(B).

In view of Definition 4.6, this completes the proof. �
We now define the counting function

r(N,n) = �{|B| ≤ N : (B mod T ) = b, |B + n| ≤ N, B is admissible for n},

and for convenience of notation also write r(N, n) = r(n) if the dependence on N is 
clear. Let (a, b) ∈ H (l). By the above considerations in combination with Lemma 4.2
and Proposition 2.1 in [JS], we can rewrite the counting function RBr

D (N ; T, a, b) as

RBr
D (N ;T, a, b) =

∑
n≡a−b mod T

r(n) + Oε(DεN3/2+ε). (8)
|n|≤2N
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Note that the implied constant in the error term is independent of T . In our computa-
tions, we will generally keep explicit dependence of the error terms on T , whereas the 
implicit constants may depend on D.

Our next goal is to approximate the function r(n) by some linear combination of mul-
tiplicative functions, which then can be used to evaluate the main term in the asymptotic 
for RBr

D (N ; T, a, b). For this, we introduce the multiplicative function σ(m) for m ∈ N, 
which is defined in the following way. If l is an even positive integer and p some inert 
prime, then we put

σ(pl) := 1
pl

+
l
2−1∑
k=0

p− 1
2p2k+1 ,

and note that

σ(pl) = 1
pl

+ (1 − p−l)
2(1 + p−1) .

For l odd and p an inert prime, we set

σ(pl) :=
∞∑
k=0

p− 1
2p2k+1 +

∞∑
k=(l+1)/2

p− 1
2p2k+1 = 1 + p−(l+1)

2(1 + p−1) .

We extend σ to a multiplicative function on all of Z by setting σ(m) := 1 if m is not 
divisible by any inert prime, and σ(−1) := 1.

Lemma 4.8. Let q1, . . . , qτ be the list of the inert primes dividing n. One has

r(n) = 2N − |n| + 1
T

σ(n) + r1(n),

with an error r1(n), which is absolutely bounded by

r1(n) �
(

τ∏
i=1

qi

)3/4+ε

�{k ∈ Zτ
≥0 :

∏
i

qki
i ≤ N2}.

Proof. Write n = ql11 . . . qlττ . Without loss of generality, we may assume that q1, . . . , qh
divide n to some odd power and that qh+1, . . . , qτ divide n to some even power. We first 
split the counting function r(n) into different contributions according to what property 
of B makes this value admissible for n. Hence, let Ii for 1 ≤ i ≤ 4 be disjoint index sets 
with I1 ∪ I2 = {1, . . . , h} and I3 ∪ I4 = {h + 1, . . . , τ}. Now let rI(n) be the number of 
integers B which satisfy the following properties:

i) |B| ≤ N and |B + n| ≤ N ,
ii) (B mod T ) = b,
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iii) for i ∈ I1, one has B = uiq
ki
i for some (ui

qi
) = 1 and some even ki ≥ 0,

iv) if i ∈ I2, then B = −n + uiq
ki
i for some even ki > li and (ui

qi
) = 1,

v) for i ∈ I3, one has B = uiq
ki
i for some even ki < li and (ui

qi
) = 1,

vi) qlii |B for i ∈ I4.

By the definition of admissibility for n, we have

r(n) =
∑

I1∪I2={1,...,h}
I1∩I2=∅

∑
I3∪I4={h+1,...,τ}

I3∩I4=∅

rI(n). (9)

First step: We evaluate each of the summands rI(n) separately. Let k ∈ Z
τ−|I4|
≥0 and 

define rI(n,k) to be the same counting function as rI(n) where we postulate properties 
iii)–v) with the exponent occurring exactly equal to the given ki. Note that rI(n; k) = 0
unless all the ki are even and ki > li for i ∈ I2 and ki < li for i ∈ I3. Furthermore, one 
has rI(n,k) = 0 if 

∏
i∈I1∪I3

qki
i > N or 

∏
i∈I2

qki
i > N . Hence, we may rewrite rI(n) as

rI(n) =
∑

k∈Z
τ−|I4|
≥0

rI(n,k), (10)

which is a finite sum. Now we approximate rI(n, k) for fixed even k. For this, we 
parametrise the integers B counted by rI(n, k) using conditions iii), iv) and vi). Set 	 :=∏

i∈I1∪I2∪I3
qki
i

∏
i∈I4

qlii , as well as 	1 :=
∏

i∈I1∪I3
qki
i

∏
i∈I4

qlii and 	2 :=
∏

i∈I2
qki−li
i . 

We observe that there are integers t0 and ν0 with t0	1 + (
∏

i∈I2
q−li
i )n = ν0	2. Set 

μ := t0	1
∏

i∈I2
qlii and ν := ν0

∏
i∈I2

qki
i . Then the function rI(n, k) counts the number 

of integers u in some bounded interval J with the following properties:

a) the coprimality conditions (t0 + u	2, 
∏

i∈I1∪I3
qi) = 1 and (ν0 + u	1, 

∏
i∈I2

qi) = 1
hold,

b) (u	 + μ mod T ) = b,
c) for i ∈ I1 ∪ I3, one has ( q

−ki
i (u�+μ)

qi
) = 1, and

d) for i ∈ I2, one has ( q
−ki
i (u�+ν)

qi
) = 1.

If k has even coordinates and ki > li for i ∈ I2 and ki < li for i ∈ I3, then we can now 
write rI(n, k) in the form

rI(n,k) = 2−τ+|I4|
∑
u∈J

a), b) hold

∏
i∈I1∪I3

((
q−ki
i (u	 + μ)

qi

)
+ 1

)

×
∏ ((

q−ki
i (u	 + ν)

qi

)
+ 1

)
.

i∈I2
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Second step: Next, we remove the coprimality condition a). For this, write d = (d1, d2)
and define

rI(n,k,d) := 2−τ+|I4|
∑

u∈J , b) holds
d1|t0+u�2
d2|ν0+u�1

∏
i∈I1∪I3

((
q−ki
i (u	 + μ)

qi

)
+ 1

)

×
∏
i∈I2

((
q−ki
i (u	 + ν)

qi

)
+ 1

)
.

Then we have

rI(n,k) =
∑

d1|
∏

i∈I1∪I3
qi

μ(d1)
∑

d2|
∏

i∈I2
qi

μ(d2)rI(n,k,d). (11)

Let us consider one of the summands rI(n, k, d). Set 	3 =
∏

i∈I1∪I3
qki
i and 	4 =∏

i∈I2
qki
i . Similar congruence considerations as in step 1 show that there exist integers 

α, β, γ and δ and a bounded interval J ′, such that

rI(n,k,d) = 2−τ+|I4|
∑

x∈J ′

∏
i∈I1∪I3

((
q−ki
i 	3(α + βx)

qi

)
+ 1

)

×
∏
i∈I2

((
q−ki
i 	4(γ + δx)

qi

)
+ 1

)
. (12)

Third step: Let I ′i for 1 ≤ i ≤ 3 be subsets of Ii, and consider the sum

∑
x∈J ′

∏
i∈I′

1∪I′
3

(
q−ki
i 	3(α + βx)

qi

) ∏
i∈I′

2

(
q−ki
i 	4(γ + δx)

qi

)
.

We aim to give an upper bound for this character sum. By the definitions of 	3 and 	4, 
and from the fact that all ki are even, we see that it coincides with the sum

EI′ :=
∑

x∈J ′

∏
i∈I′

1∪I′
3

(
α + βx

qi

) ∏
i∈I′

2

(
γ + δx

qi

)
.

Using the Polya–Vinogradov inequality (see equation (51), p. 263 in [Te]) for multiplica-
tive characters we deduce the bound

EI′ �
∏
′ ′

qi

⎛⎝∏
′

qi

⎞⎠1/2

log(
τ∏

i=1
qi).
i∈I1∪I3 i∈I2
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The same bound holds for the roles of 
∏

i∈I′
1∪I′

3
qi and 

∏
i∈I′

2
qi reversed, and hence we 

conclude that

EI′ � (
∏

i∈I′
1∪I′

2∪I′
3

qi)3/4 log(
τ∏

i=1
qi).

Fourth step: Using this bound, we may now rewrite the function rI(n, k, d) in (12) as

rI(n,k,d) =
∑

x∈J ′

2−τ+|I4| + O

⎛⎝2−τ+|I4|2|I1|+|I2|+|I3|(
∏

i∈I′
1∪I′

2∪I′
3

qi)3/4 log(
τ∏

i=1
qi)

⎞⎠
= 2−τ+|I4|(|J ′| + O(1)) + O

⎛⎝(
∏

i∈I′
1∪I′

2∪I′
3

qi)3/4 log(
τ∏

i=1
qi)

⎞⎠ .

We compute the length of the interval J ′ in the substitutions in the previous steps as

|J ′| = (Td1d2	)−1(2N − |n| + 1)

and deduce that

rI(n,k,d) = 2−τ+|I4|(Td1d2	)−1(2N − |n| + 1) + O

⎛⎝(
∏

i∈I′
1∪I′

2∪I′
3

qi)3/4 log(
τ∏

i=1
qi)

⎞⎠ .

By equation (11), we obtain

rI(n,k) = 2−τ+|I4| 2N − |n| + 1
T	

∑
d|

∏
i∈I1∪I2∪I3

qi

μ(d)
d

+O

⎛⎝(
∏

i∈I′
1∪I′

2∪I′
3

qi)3/4 log(
τ∏

i=1
qi)

⎞⎠ .

Let K be the set of vectors k ∈ Z
τ−|I4|
≥0 such that all coordinates ki are even and ki > li

for i ∈ I2 and ki < li for i ∈ I3. Furthermore, let K (N) be the intersection of K with 
the set of tuples k ∈ Z

τ−|I4|
≥0 such that 

∏
i∈I1∪I3

qki
i ≤ N and 

∏
i∈I2

qki
i ≤ N . Then we 

obtain by equation (10)

rI(n) =
∑

k∈K (N)

2−τ+|I4| 2N − |n| + 1
T	

∑
d|

∏
i∈I1∪I2∪I3

qi

μ(d)
d

+ O(E4), (13)

with an error term E4 bounded by

E4 � (
τ∏

qi)3/4+ε�{k ∈ Zτ
≥0 :

τ∏
qki
i ≤ N2}.
i=1 i=1
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Fifth step: We next complete the sum in (13) over all k ∈ K . Note that it is absolutely 
convergent, and more precisely one has

∑
k∈K \K (N)

∏
i∈I1∪I2∪I3

q−ki
i � τ2τN−1�{k ∈ Zτ

≥0 :
τ∏

i=1
qki
i ≤ N2}.

Hence, we obtain

rI(n) =
∑
k∈K

2−τ+|I4| 2N − |n| + 1
T	

∏
i∈I1∪I2∪I3

(
1 − 1

qi

)
+ O(E4).

We finally come back to equation (9) to evaluate r(n) as

r(n) = 2N − |n| + 1
T

∑
I1∪I2={1,...,h}

I1∩I2=∅

∑
I3∪I4={h+1,...,τ}

I3∩I4=∅

ρ(I) + O(2τE4), (14)

with

ρ(I) :=
∑
k∈K

∏
i∈I4

q−li
i

∏
i∈I1∪I2∪I3

(
q−ki
i 2−1(1 − 1

qi
)
)
.

By the definition of the multiplicative function σ(n), we conclude that

r(n) = 2N − |n| + 1
T

σ(n) + O(2τE4),

which establishes the lemma. �
Before we treat the main term arising from Lemma 4.8 in the asymptotic for 

RBr
D (N ; T, a, b), let us show that the contribution of the error term r1(n) in Lemma 4.8

is negligible.

Lemma 4.9. Let r1(n) be as in Lemma 4.8. Then one has

∑
1≤n≤N

r1(n) �ε N
7/4+ε,

with an implied constant independent of T .

Proof. It is sufficient to show that

Rτ (N ;q) := �{k ∈ Zτ
≥0 :

τ∏
qki
i ≤ N2} �ε N

ε, (15)

i=1
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for any n ≤ N . Hence, we assume that q1 < . . . < qτ are primes with 
∏τ

i=1 qi|n. Since 
we are only interested in upper bounds, we may even assume that q1 < . . . < qτ are the 
first τ primes. Note that

Rτ (N ;q) = �{k ∈ Zτ
≥0 :

τ∑
i=1

ki log qi ≤ 2 logN}.

We observe that

Rτ (N ;q) ≤ vol{k ∈ Rτ
≥0 :

τ∑
i=1

ki log qi ≤ 3 logN} = 1
τ !

(3 logN)τ∏τ
i=1 log qi

.

We need to get an upper bound for the last expression. By the prime number theorem 
we have

τ ≤ �{q ≤ qτ : q prime} ≤ C2
qτ

log qτ
≤ C3

logN
log logN ,

for some positive constants C2 and C3.
We are now in a position to estimate the size of

log
[

1
τ !

(3 logN)τ∏τ
i=1 log qi

]
= τ log logN + τ − τ log τ + O

(
logN

log logN log log logN
)
.

The derivative of the function g(τ) := −τ log τ+τ+τ log logN is given by log logN−log τ , 
and hence g(τ) is increasing for τ < logN . For N sufficiently large, we may therefore 
apply the bound τ ≤ C3

log N
log log N , and obtain

log
[

1
τ !

(2 logN)τ∏τ
i=1 log qi

]
= O

(
logN

log logN log log logN
)
.

This establishes the bound (15) with an implied constant depending on ε. �
Next, we aim to evaluate the sum

Σ1 :=
∑

1≤n≤2N
n≡b−a mod T

σ(n). (16)

For this, we let T ′ = gcd(b − a, T ) and T ′′ = T/T ′. Then we may rewrite the sum Σ1 as

Σ1 =
∑

1≤T ′m≤2N
′

σ(T ′m).
T m≡b−a mod T
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Let b − a = T ′d for some d modulo T ′′, and further rewrite Σ1 as

Σ1 =
∑

1≤m≤N ′

m≡d mod T ′′

σ(m),

with N ′ = 2N
T ′ . We encode the condition m ≡ d mod T ′′ using multiplicative characters 

modulo T ′′, and obtain

Σ1 = 1
ϕ(T ′′)

∑
χ mod T ′′

χ(d)
∑

1≤m≤N ′

χ(m)σ(m) = 1
ϕ(T ′′)

∑
χ mod T ′′

χ(d)Σ1(χ), (17)

with sums of the form

Σ1(χ) =
∑

1≤m≤N ′

χ(m)σ(m),

for any multiplicative character χ modulo T ′′. These can be evaluated via an application 
of Perron’s formula. For this, let Dχ(s) be the associated Dirichlet series, given by

Dχ(s) :=
∞∑

m=1

χ(m)σ(m)
ms

.

It is clear that Dχ(s) is absolutely convergent for �(s) > 1. In this region, it can be 
expressed as an Euler product

Dχ(s) =
∏
p|D

(
1 − χ(p)

ps

)−1 ∏
(

D
p

)
=1

(
1 − χ(p)

ps

)−1 ∏
(

D
p

)
=−1

(
1 +

∞∑
l=1

σ(pl)χ(pl)
pls

)
.

We next compare the Dirichlet series Dχ(s) to products of Dirichlet L-functions. For 
some character χ modulo T ′′, we write

L(s, χ) =
∞∑

n=1

χ(n)
ns

.

Using some Euler product manipulations we obtain the following lemma.

Lemma 4.10. One has

Dχ(s)4 = L(s, χ)3L
(
s,
( ·
D

)
χ
)
H(s),

where H(s) is given by some Euler product in �(s) > 1/2, which is absolutely convergent 
in this region. �
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Next, we evaluate the sum Σ1(χ) asymptotically for the trivial character χ = χ0, and 
show that the contribution from all non-trivial characters is negligible or corresponds to 
lower order terms.

Lemma 4.11.

a) One has

Σ1(χ0) = N ′

(logN ′)1/4
P∑

k=0

λk

(logN ′)k + OD,P

(
N ′

(logN ′)1/4+P+1

)
,

for some real constants λk, 0 ≤ k ≤ P . More precisely, one has λ0 = G(1)
Γ
( 3
4
) , for

G(1) :=
∏
p|T ′′

(
1 − p−1)3/4 ∏

p| D
(D,T ′′)

(
1 − p−1)−1/4

L
(
1,
( ·
D

)
χ0

)1/4 ∏
(

D
p

)
=−1

cp

and

cp = (1 − p−1)3/4(1 + p−1)1/4
(

1 +
∞∑
l=1

σ(pl)
pl

)
.

Furthermore, the product defining G(1) is absolutely convergent and G(1) > 0. The 
constants λk are given by λk = λk

( 3
4
)
, as defined in equation (15) in §II.5 of [Te].

b) Let A0 > 0 be some real parameter and assume that T ′′ ≤ (logN ′)A0 . Then there is 
an (ineffective) constant C(A0) with the following property. If χ �= χ0 and χ 

( ·
D

)
is 

a non-trivial character, then one has the bound

Σ1(χ) � N ′e−C(A0)
√

log N ′
.

c) If χ is a non-trivial character modulo T ′′ such that χ 
( ·
D

)
is the trivial character 

modulo D, then one has

Σ1(χ) = N ′

(logN ′)3/4
P∑

k=0

μk

(logN ′)k + OD,P

(
N ′

(logN ′)3/4+P+1

)
,

for some real numbers μk.

Having established Lemma 4.10, we are already prepared to use the Selberg–Delange 
method to evaluate Σ1(χ).

Proof of Lemma 4.11. First, we prove a), i.e. treat the case χ = χ0. Note that, for D
fixed, there is only a finite number of trivial characters modulo T ′′, where T ′′ varies over 
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all moduli which are composed of primes dividing D. Hence, all our estimates for Σ1(χ0)
are uniform in T ′′ and the implicit constants depend only on D.

By Lemma 4.10, we see that the function

G(s) := Dχ0(s)ζ(s)−
3
4 (18)

may be continued as a holomorphic function to the region σ ≥ 1 − c0/(1 + log(3 + |t|)), 
where s = σ + it. Since H(s) is given as an Euler product in �(s) > 1/2, which is 
absolutely convergent in this region, we may apply Theorem 3 in §II.5 in [Te]. We obtain 
for N ′ ≥ 3 the asymptotic formula

Σ1(χ0) = N ′

(logN ′)1/4
P∑

k=0

λk

(logN ′)k + OD,P

(
N ′

(logN ′)1/4+P+1

)
,

where λk = λk

( 3
4
)

is defined as in equation (15) in §II.5 in [Te]. In particular, one has 
λ0 = G(1)

Γ
( 3
4
) . To find the constant G(1), we recall that Lemma 4.10, together with the 

definition (18) of G, shows

G(s) =
∏
p|T ′′

(
1 − p−s

)3/4
L
(
s,
( ·
D

)
χ0

)1/4
H(s)1/4.

A short calculation reveals that

G(1) =
∏
p|T ′′

(
1 − p−1)3/4 ∏

p| D
(D,T ′′)

(
1 − p−1)−1/4

L
(
1,
( ·
D

)
χ0

)1/4 ∏
(

D
p

)
=−1

cp,

with constants cp given by

cp = (1 − p−2)1/4
(

1 − 1
2p

)(
1 +

∞∑
l=1

σ(pl)
pl

)(
1 − 1

p

)1/2 (
1 − 1

p
+ 1

4p2

)−1/2

.

This can be simplified to

cp = (1 − p−1)3/4(1 + p−1)1/4
(

1 +
∞∑
l=1

σ(pl)
pl

)
.

b) Similarly, one can use Lemma 4.10 in combination with an application of Perron’s 
formula to deduce the upper bounds on Σ1(χ), for χ �= χ0 and χ 

( ·
D

)
non-trivial. The 

computations are similar to the Siegel–Walfisz theorem (but simpler) and we omit the 
details here.

c) The last part of the lemma follows in a fashion similar to the first part, via an 
application of the Selberg–Delange method as in §II.5 in [Te]. �
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Let A0 > 0 be some real parameter and T ′′ ≤ (logN ′)A0 . From Lemma 4.11, we now 
conclude in combination with equation (17) that

Σ1 = 2N
ϕ(T ′′)T ′

(
log 2N

T ′

)1/4 2P∑
k=0

λ̃k(T ′′)(
log 2N

T ′

)k/2
+ OD,P

(
N

T ′

(
1

ϕ(T ′′)
(
log 2N

T ′

)P+3/4 + e−C(A0)
√

log N ′

))
, (19)

where the constants λ̃k(T ′′) are defined via

λ̃2k(T ′′) = λk, λ̃2k+1(T ′′) = μk,

and λk and μk are as in Lemma 4.11.
We furthermore define

Σ2 :=
∑

1≤n≤2N
n≡b−a mod T

nσ(n).

We evaluate Σ2 using partial summation and our asymptotic for Σ1 in (19). This leads 
to

Σ2 = 2N2

ϕ(T ′′)T ′
(
log 2N

T ′

)1/4 2P∑
k=0

λ̃′
k(T ′′)(

log 2N
T ′

)k/2
+ OD,P

(
N2

T ′

(
1

ϕ(T ′′)
(
log 2N

T ′

)P+3/4 + e−C(A0)
√

log N ′

))
, (20)

with real constants λ̃′
k(T ′′) and λ̃′

0(T ′′) = λ0.
We are now in a position to collect our results of this section in the following theorem.

Theorem 4.12. Assume that D is some positive integer with D ≡ 1 mod 8, which is 
square-free, and T =

∏r
i=1 p

li
i be a modulus composed of primes dividing D. Let a and 

b be congruence classes modulo T , which satisfy (a, b) ∈ H (l). Finally, let A0 > 0
be some real parameter and T ≤ (logN)A0 . Then there are real constants ci(T ′′) with 
c0(T ′′) = G(1)

Γ
( 3
4
) such that one has

RBr
D (N ;T, a, b) = 4N2

Tφ(T ′′)T ′
(
log 2N

T ′

)1/4 2P∑
k=0

ck(T ′′)(
log 2N

T ′

)k/2 + OD,P,A0

(
N2

T 2(logN)P+3/4

)
.

The constant G(1) is given as in Lemma 4.11, and T ′ and T ′′ are defined by T ′ =
gcd(b − a, T ) and T ′′ = T/T ′. The constant in the last error term is ineffective in A0. 
Moreover, one has ck(T ′′) �D,P 1, for all 0 ≤ k ≤ 2P .
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Proof. We start with the relation from equation (8), which asserts that

RBr
D (N ;T, a, b) =

∑
n≡a−b mod T

|n|≤2N

r(n) + Oε(DεN3/2+ε).

We decompose r(n) according to Lemma 4.8, and obtain

RBr
D (N ;T, a, b) =

∑
n≡a−b mod T

|n|≤2N

2N − |n| + 1
T

σ(n) +
∑

|n|≤2N

r1(n) + Oε(DεN3/2+ε).

Lemma 4.9 implies that

RBr
D (N ;T, a, b) =

∑
n≡a−b mod T

|n|≤2N

2N − |n| + 1
T

σ(n) + Oε,D(N7/4+ε).

We recall that σ(−1) = 1 and hence∑
n≡a−b mod T

−2N≤n<0

σ(n) =
∑

n≡b−a mod T
1≤n≤2N

σ(n).

This is evaluated in the very same way as Σ1 (see equation (16)). A combination of the 
asymptotics in (19) and (20) leads to

RBr
D (N ;T, a, b) = 4N2

Tφ(T ′′)T ′
(
log 2N

T ′

)1/4 2P∑
k=0

ck(T ′′)(
log 2N

T ′

)k/2 + OD,P,A0

(
N2

T 2(logN)P+3/4

)
,

with real constants ck(T ′′) and c0(T ′′) = G(1)
Γ
( 3
4
) . This completes the proof of the theo-

rem. �
5. Proof of the main theorem

Let RBr
D (N) be the number of del Pezzo surfaces S(D;A,B) of degree four in the family 

(1) of height at most H(S(D;A,B)) ≤ N that are counterexamples to the Hasse principle 
explained by some Brauer–Manin obstruction. In order to compute RBr

D (N), we argue 
similarly as for the counting function Rloc

D (N) in section 2. We have

RBr
D (N) =

∑
l∈Nr

∑
(a,b)∈H (l)

RBr
D

(
N ;

r∏
i=1

plii , a, b

)
+ O(N).

The term O(N) here comes from all the tuples (A, B), for which one of the Gj(A, B) = 0. 
We next truncate the sum at a positive integer L. We use the vector notation 1 ≤ l ≤ L
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to express that 1 ≤ li ≤ L for all 1 ≤ i ≤ r. We rewrite the expression for RBr
D (N) as

RBr
D (N) =

∑
1≤l≤L

∑
(a,b)∈H (l)

RBr
D

(
N ;

r∏
i=1

plii , a, b

)
+ O(N) + E5,

with

E5 �
r∑

i=1

m∑
j=1

�{|A|, |B| ≤ N : pLi |Gj(A,B)}.

Here the polynomials Gj(A, B) are defined as in Lemma 4.3. As in the proof of 
Lemma 4.4, there is a real constant θ1 > 0 such that

�{|A|, |B| ≤ N : pLi |Gj(A,B)} � N2p−θ1L
i + Np2L

i .

Let A0 > 0 be a real parameter to be chosen later. We let L be the largest integer 
such that pLr ≤ (logN)A0/r. In particular, we have L ≤ A0 log log N

r log pr
. We hence may apply 

Theorem 4.12 to evaluate RBr
D (N ;

∏r
i=1 p

li
i , a, b) and obtain

RBr
D (N) = 4N2

∑
1≤l≤L

∑
(a,b)∈H (l)

2P∑
k=0

ck(T ′′)
Tφ(T ′′)T ′

(
log 2N

T ′

)1/4+k/2 + O(N) + E5 + E6,

with an error term E6 bounded by

E6 �D,P,A0 (log logN)r N2

(logN)P+3/4 .

We next expand the expression

1
(log(2N) − log T ′)1/4+k/2

into a series of powers of log 2N and hence may rewrite this as

RBr
D (N) = 4N2

2P∑
k=0

∑
1≤l≤L

∑
(a,b)∈H (l)

c′k(T ′′)
Tφ(T ′′)T ′ (log 2N)1/4+k/2 + E5 + E6,

with coefficients c′k(T ′′) �D,P,A0 (log logN)2P and c′0(T ′′) = c0(T ′′) for all T ′′. At this 
point, we also note that T ′ and T ′′ in general depend on (a, b) by Theorem 4.12.

We claim that the series

∑
r

∑ c′k(T ′′)
Tφ(T ′′)T ′
l∈N (a,b)∈H (l)
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is absolutely convergent. Indeed, by Lemma 4.4, for any 1 ≤ i ≤ r, we have the estimate

∑
l∈Nr

li>L

∑
(a,b)∈H (l)

c′k(T ′′)
Tφ(T ′′)T ′ �D,P,A0

∑
l∈Nr

li>L

(log logN)2P∏r
i=1 p

2li
i

�H (l)

�D,P,A0 (log logN)2P
∑
l∈Nr

li>L

r∏
i=1

p−θ0li
i

�D,P,A0 (log logN)2P p−θ0L
i .

If we choose A0 sufficiently large, we hence obtain

RBr
D (N) = 4N2

(log 2N)1/4
2P∑
k=0

Ck

(log 2N)k/2
+ OD,P

(
N2

(logN)3/4+P

)
,

with constants Ck of the form

Ck =
∑
l∈Nr

∑
(a,b)∈H (l)

c′k(T ′′)
Tφ(T ′′)T ′ . (21)

Moreover, for k = 0, we specifically obtain

C0 =
∑
l∈Nr

∑
(a,b)∈H (l)

G(1, T ′′)
Γ
( 3

4
)
Tφ(T ′′)T ′ , (22)

where G(1) = G(1, T ′′) is defined as in Lemma 4.11. The proof of Theorem 1.1 is now 
completed by Lemma 5.3. �

Before we prove that the leading constant C0 is indeed positive, we prepare with two 
lemmata. The first of them is a modified version of Lemma 6.7 in [JS].

Lemma 5.1. Let p > 9 be a prime and Fp be the finite field with p elements. Then there 
are elements a0 and a1 ∈ Fp with the following properties. Both a0 and a1 are squares 
different from 0, −1, with a2

i + ai + 1 �= 0, and such that a0 + 1 is a square, and a1 + 1
is a non-square.

Proof. We only consider the case of a0, since the arguments for a1 are identical. To 
establish the claim in the lemma, it is sufficient to find a (non-trivial) point on the 
conic u2 + w2 = v2 over Fp, with w �= 0, ( u

w )2 �= 0,−1 and ( u
w )4 + ( u

w )2 + 1 �= 0. In the 
projective plane, the conic u2 + w2 = v2 has exactly p + 1 points. There are at most 
two points with w = 0, at most four points with u = 0 or ( u

w )2 = −1, and at most four 
points satisfying w �= 0 and ( u

w )4 + ( u
w )2 + 1 = 0. Hence there is a point with the desired 

properties as soon as p + 1 > 10. �
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Lemma 5.2. Assume that 3|D, A ≡ −D modulo 9 and B ≡ 0 modulo 9. Then 
S(D;A,B)(Q3) �= ∅, and the Brauer class α evaluates constantly to zero on S(D;A,B)(Q3).

Proof. The existence of some point in S(D;A,B)(Q3) is clear since (1 : 1 : 1 : 0 : 0) is a 
smooth point on the reduction of S(D;A,B) to F3. Hence, we need to show that α evaluates 
constantly. For this, let t ∈ S(D;A,B)(Q3), and assume the ti normalised s.t. ti ∈ Z3 and 
one of them is a unit. If 3|t1, then the first equation in (1) shows that 3|t2 and hence 
by the second equation yields 3|t0. Since D is assumed to be squarefree, this leads to 
all of the ti being divisible by 3, a contradiction. Hence, we may assume without loss 
of generality that t1 = 1. Now, the first equation in (1) shows that t0 is a norm, and 
hence t0 ≡ 1 mod 3 or t0 ≡ −D mod 9 or t0 ≡ 0 mod 9. In the first case, one has 
t0+At1

t1
≡ 1 mod 3, which is a norm. In the second case, one has t0+Bt1

t1
≡ −D mod 9, 

and in the third case t0+At1
t1

≡ −D mod 9, which are both norms, as well. Hence α
evaluates constantly to 0 on S(D;A,B)(Q3). �

We can now show that the leading constant C0 is indeed positive.

Lemma 5.3. One has C0 > 0.

Proof. Recall the definition of C0 in equation (22). By Lemma 4.11, we see that each of 
the G(1, T ′′) > 0, such that the problem reduces to showing that there is some l ∈ Nr

such that H (l) �= ∅. For this, we construct a tuple of integers (A, B) satisfying the 
following properties:

i) If p1 = 3, then A ≡ −D modulo 9 and B ≡ 0 modulo 9.
ii) For pi > 3, the residue class Ā = (A mod pi) is a square, different from 0, −1, and 

such that Ā2 + Ā + 1 �= 0. Furthermore B ≡ − A
A+1 mod pi.

iii) If there is an even number of non-squares among (A mod pi) + 1 for primes pi > 3
and i < r, then (A mod pr) + 1 is a non-square, and if there is an odd number of 
non-squares among (A mod pi) +1 for primes pi > 3 and i < r, then (A mod pr) +1
is a square.

iv) All of the polynomials Gj(A, B) as defined in Lemma 4.3 are non-zero.

By Lemma 5.1, such a choice for (A, B) is possible. This is clear for D �= 3 · 5 · 7. For 
D = 3 ·5 ·7 we note that condition ii) forces (A mod 5) = 1 and hence (A mod 5) +1 is a 
non-square. Then, over the field F7, there is an element a0 �= 0, −1 with a2

0 + a0 + 1 �= 0, 
and such that a0 + 1 is a square, take e.g. a0 = 1.

If 3|D then, by Lemma 5.2, condition i) implies that S(D;A,B)(Q3) �= ∅. Furthermore, 
the Brauer class α evaluates constantly to zero on S(D;A,B)(Q3). Since none of the 
Gj(A, B) vanish, this implies, together with Proposition 5.1 in [JS], that there is some 
l ∈ Nr such that the reduction of (A, B) modulo 

∏r
i=1 p

li
i is contained in H (l). Hence 

we have H (l) �= ∅, which completes the proof of the lemma. �
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