
DEL PEZZO SURFACES OF DEGREE FOURVIOLATING THE HASSE PRINCIPLEARE ZARISKI DENSE IN THE MODULI SCHEMEby Jörg Jahnel and Damaris ShindlerAbstrat. We show that, over every number �eld, the degree four del Pezzo surfaes thatviolate the Hasse priniple are Zariski dense in the moduli sheme.Résumé. Nous montrons que, sur haque orps de nombres, les surfaes de del Pezzo de degréquatre qui violent le prinipe de Hasse sont denses pour la topologie de Zariski dans le shémade modules. 1. IntrodutionA del Pezzo surfae is a smooth, proper algebrai surfae S over a �eld K with an ample anti-anonial sheaf K −1. Over an algebraially losed �eld, every del Pezzo surfae of degree d 6 7 isisomorphi to P2, blown up in (9 − d) points in general position [14, Theorem 24.4.iii)℄.Aording to the adjuntion formula, a smooth omplete intersetion of two quadris in P4 isdel Pezzo. The onverse is true, as well. For every del Pezzo surfae of degree four, its antianonialimage is the omplete intersetion of two quadris in P4 [8, Theorem 8.6.2℄.Although del Pezzo surfaes over number �elds are generally expeted to have many ratio-nal points, they do not always ful�l the Hasse priniple. The �rst example of a degree four delPezzo surfae for whih the Hasse priniple is violated was oneived by B. Birh and Sir PeterSwinnerton-Dyer [3, Theorem 3℄. It is given in P4Q by the equations
T0T1 = T 2

2 − 5T 2
3 ,

(T0 + T1)(T0 + 2T1) = T 2
2 − 5T 2

4 .Meanwhile, more ounterexamples to the Hasse priniple have been onstruted, see, e.g., [5, Ex-amples 15 and 16℄. Quite reently, N.D.Q. Nguyen [18, Theorem 1.1℄ proved that the degree fourdel Pezzo surfae, given by
T0T1 = T 2

2 − (64k2 + 40k + 5)T 2
3 ,

(T0 + (8k + 1)T1)(T0 + (8k + 2)T1) = T 2
2 − (64k2 + 40k + 5)T 2

4is a ounterexample to the Hasse priniple if k is an integer suh that 64k2+40k+5 is a prime num-ber. In partiular, under the assumption of Shinzel's hypothesis, this family ontains in�nitelymany members violating the Hasse priniple.Keywords: Del Pezzo surfae, Hasse priniple, moduli sheme.2010 Mathematis Subjet Classi�ation: Primary 11G35; Seondary 14G25, 14J26, 14J10.



2 JÖRG JAHNEL AND DAMARIS SCHINDLERIn this artile, we prove that del Pezzo surfaes of degree four that fail the Hasse priniple areZariski dense in the moduli sheme. In partiular, we establish, for the �rst time unonditionally,that their number up to isomorphism is in�nite. We show, in addition, that these results hold overan arbitrary number �eld K.Before we an state our main results, we need to reall some notation and fats about the oarsemoduli sheme of degree four del Pezzo surfaes.For this we onsider a del Pezzo surfae X of degree four given as the zero set of two quinaryquadris
Q1(T0, . . . , T4) = Q2(T0, . . . , T4) = 0 .The penil (uQ1 + vQ2)(u:v)∈P1 of quadris de�ned by the forms Q1 and Q2 ontains exatly �vedegenerate elements. The orresponding �ve values t1, . . . , t5 ∈ P1(K) of t := (u : v) are uniquelydetermined by the surfaeX , up to permutation and the natural operation of Aut(P1) ∼= PGL2(K).Let U ⊂ (P1

K)5 be the Zariski open subset given by the ondition that no two of the �veomponents oinide. Then there is a K-isomorphism
j : U/(S5 × PGL2)

∼=−→ Mto the oarse moduli sheme M of degree four del Pezzo surfaes [12, Setion 5℄.The quotient of U modulo S5 alone is the spae of all binary quintis without multiple roots, upto multipliation by onstants. This is part of the stable lous in the sense of Geometri InvariantTheory, whih is formed by all quintis without roots of multipliity >3 [16, Proposition 4.1℄.Furthermore, lassial invariant theory teahes that, for binary quintis, there are three funda-mental invariants I4, I8, and I12 of degrees 4, 8, and 12, respetively, that de�ne an open embedding
ι : U/(S5 × PGL2) →֒ P(1, 2, 3)Kinto a weighted projetive plane. This result is originally due to Ch. Hermite [13, Setion VI℄, f.[21, Paragraphs 224�228℄. A more reent treatment from a omputational point of view is due toA. Abdesselam [1℄.Altogether, this yields an open embedding I : M →֒ P(1, 2, 3)K . More generally, every family

π : S → B of degree four del Pezzo surfaes over a K-sheme B indues a morphism
Iπ = I : B → P(1, 2, 3)K ,whih we all the invariant map assoiated with π.Remark 1.1. � There annot be a �ne moduli sheme for degree four del Pezzo surfaes, asgeometrially every suh surfae X has at least 16 automorphisms [8, Theorem 8.6.8℄. (The state-ment of Theorem 8.6.8 in [8℄ ontains a misprint, but it is lear from the proof that the desribedquotient group may either be isomorphi to one of the listed groups or be trivial).Let us, for simpliity of notation, identify the spae S2((K5)∗) of all quinary quadrati forms withoe�ients in K with K15. This is learly a non-anonial isomorphism. To give an intersetion oftwo quadris in P4

K is then equivalent to giving a K-rational plane through the origin of K15, i.e. a
K-rational point on the Graÿmann sheme Gr(2, 15)K . The open subset Ureg ⊂ Gr(2, 15)K thatparametrises non-singular surfaes is isomorphi to the Hilbert sheme [10℄ of del Pezzo surfaesof degree four in P4

K . We will not go into the details as they are not neessary for our purposes.Using this identi�ation, we an now state our main result in the following form.



DEL PEZZO SURFACES OF DEGREE FOUR VIOLATING THE HASSE PRINCIPLE 3Theorem 1.1. � Let K be a number �eld, Ureg ⊂ Gr(2, 15)K the open subset of the Graÿmannsheme that parametrises degree four del Pezzo surfaes, and H C K ⊂ Ureg(K) be the set of alldegree four del Pezzo surfaes over K that are ounterexamples to the Hasse priniple.Then H C K is Zariski dense in Gr(2, 15)K .Remark 1.2. � An analogous result for ubi surfaes has reently been established by A.-S. Elsenhans together with the �rst author [9℄. Our approah is partly inspired by the methodsapplied in the ubi surfae ase. The onrete onstrution of del Pezzo surfaes of degree fourthat violate the Hasse priniple is motivated by the work [18℄ of N.D.Q. Nguyen. In partiular, allthe failures of the Hasse priniple we onsider below are due to the Brauer-Manin obstrution.The following result ould be seen as a orollary of Theorem 1.1, but it is, in fat, more orless equivalent. Our strategy will be to prove Theorem 1.2 �rst and then to dedue Theorem 1.1from it.Theorem 1.2. � Let K be a number �eld, Ureg ⊂ Gr(2, 15)K the open subset of the Graÿmannsheme that parametrises degree four del Pezzo surfaes, and H C K ⊂ Ureg(K) be the set of alldegree four del Pezzo surfaes over K that are ounterexamples to the Hasse priniple.Then the image of H C K under the invariant map
I : Ureg −→ P(1, 2, 3)Kis Zariski dense.Remark 1.3 (Partiular K3 surfaes that fail the Hasse priniple). � In their artile [23℄,A. Várilly-Alvarado and B. Viray provide, among other things, families of K3 surfaes ofdegree eight that violate the Hasse priniple. These K3 surfaes allow a morphism p : Y → Xbeing generially 2:1 down to a degree four del Pezzo surfae X that fails the Hasse priniple.Sine X(K) = ∅, the existene of the morphism alone ensures that Y (K) = ∅. Examples of thesame kind also appear in [18℄.The onstrution of these families easily generalises to our setting. One has to interset the one

CX ⊂ P5 over the del Pezzo surfae with a quadri that avoids the vertex. The intersetion Y isthen a degree eight K3 surfae, provided it is smooth, whih it is generially aording to Bertini'stheorem. Thus, Y is a ounterexample to the Hasse priniple provided it has an adeli point.For Y , the failure of the Hasse priniple may be explained by the Brauer-Manin obstrution(f. Setion 3 for details). If α ∈ Br(X) explains the failure for X then p∗α does so for Y .However, the K3 surfaes obtained in this way do learly not dominate the moduli spae ofdegree eight K3 surfaes. Indeed, the pull-bak homomorphism p∗ : Pi(XK) → Pi(YK) doublesthe intersetion numbers and is, in partiular, injetive. This means that Y has geometri Piardrank at least six, while a general degree eight K3 surfae is of geometri Piard rank one.Aknowledgements. The authors would like to thank Christian Liedtke, Daniel Loughran, andthe anonymous referee for useful omments.2. A family of degree four del Pezzo surfaesWe onsider the surfae S := S(D;A,B) over a �eld K, given by the equations
T0T1 = T 2

2 − DT 2
3 ,(2.1)

(T0 + AT1)(T0 + BT1) = T 2
2 − DT 2

4(2.2)



4 JÖRG JAHNEL AND DAMARIS SCHINDLERfor A, B, D ∈ K. We will typially assume that D is not a square in K and that S is non-singular.If S is non-singular then S is a del Pezzo surfae of degree four.Proposition 2.1. � Let K be a �eld of harateristi 6=2 and A, B, D ∈ K.a) Then the surfae S(D;A,B) is non-singular if and only if ABD 6= 0, A 6= B, and
A2 − 2AB + B2 − 2A − 2B + 1 6= 0.b) If D 6= 0 then S(D;A,B) is not a one and has at worst isolated singularities.Proof. a) The surfae S(D;A,B) is de�ned by the two quadris Q1 and Q2 that are given by thesymmetri matries

M1 =




0 1
2 0 0 0

1
2 0 0 0 0

0 0 −1 0 0

0 0 0 D 0

0 0 0 0 0




and M2 =




1 A+B
2 0 0 0

A+B
2 AB 0 0 0

0 0 −1 0 0

0 0 0 0 0

0 0 0 0 D




,respetively. Therefore,
det(uM1 + vM2) = −D2[ABv2 − (Av+Bv+u)2

4 ](u + v)uv

= 1
4D2[u2 + 2(A + B)uv + (A2 − 2AB + B2)v2](u + v)uv .It is well-known [20, Proposition 2.1℄ that S is non-singular if and only if det(uM1 + vM2) has �vedistint roots in P1(K).In partiular, S is learly singular for D = 0. Otherwise, the roots are u/v = −(A+B)±2

√
AB,

0, −1, and ∞. The �rst two oinide exatly when AB = 0. It therefore remains to investigate theases that −(A + B) ± 2
√

AB = 0 or −(A + B) ± 2
√

AB = −1.Clearly, the �rst equality is equivalent to ±2
√

AB = (A + B), hene to 4AB = (A + B)2,and A = B. On the other hand, −(A+B)±2
√

AB = −1 means nothing but ±2
√

AB = A+B−1,hene 4AB = A2 + 2AB + B2 + 1 − 2A − 2B, and A2 − 2AB + B2 − 2A − 2B + 1 = 0.b) First of all, the binary quinti form det(uM1 + vM2) does not entirely vanish. Therefore, thepenil of quadris de�ning S ontains one of full rank, whih is enough to show that S is not a one.On the other hand, a point (t0 : . . . : t4) ∈ S(K) is singular if and only if the Jaobian matrix
(

t1 t0 −2t2 2Dt3 0

2t0 + (A + B)t1 (A + B)t0 + 2ABt1 −2t2 0 2Dt4

)is not of full rank. In partiular, this means that t20 = ABt21 and that at least two of the oordinates
t2, t3, and t4 must vanish. Together these onditions de�ne six lines in P4, whih ollapse to threein the ase that AB = 0.If there were in�nitely many singular points then at least one of these lines would be entirelyontained in S. But this is not the ase, as, on eah of the six lines, one equation of the form

F (T1) = T 2
2 , F (T1) = −DT 2

3 , or F (T1) = −DT 2
4remains from the equations of S. �Remark 2.1. � Assume that D ∈ K is a non-square and that S(D;A,B) is non-singular.Then there is neither a K-rational point (t0 : t1 : t2 : t3 : t4) ∈ S(K) suh that t0 = t1 = 0,nor one suh that t0 + At1 = t0 + Bt1 = 0. Indeed, in view of A 6= B either ondition implies that

t0 = t1 = 0, so t22 = Dt23 = Dt24. Sine D is a non-square, there is no K-rational point satisfyingthese onditions.



DEL PEZZO SURFACES OF DEGREE FOUR VIOLATING THE HASSE PRINCIPLE 53. A lass in the Grothendiek-Brauer groupIt is a disovery of Yu. I. Manin [14, �47℄ that a non-trivial element α ∈ Br(S) of the Grothen-diek-Brauer group [11℄, [15, Chapter IV℄ of a variety S may ause a failure of the Hasse priniple.Today, this phenomenon is alled the Brauer-Manin obstrution. Its mehanism works as follows.Let K be a number �eld, l ⊂ OK a prime ideal, and Kl be the orresponding ompletion.The Grothendiek-Brauer group is a ontravariant funtor from the ategory of shemes to theategory of abelian groups. In partiular, for an arbitrary sheme S and a Kl-rational point
x : SpeKl → S, there is a restrition homomorphism x∗ : Br(S) → Br(SpeKl) ∼= Q/Z. For aBrauer lass α ∈ Br(X), we allevα,l : S(Kl) −→ Q/Z , x 7→ x∗(α)the loal evaluation map, assoiated to α. Analogously, for σ : K →֒ R a real prime, there is theloal evaluation map evα,σ : S(Kσ) → 1

2Z/Z.Proposition 3.1 (The Brauer-Manin obstrution to the Hasse priniple). � Let S be a pro-jetive variety over a number �eld K and α ∈ Br(S) be a Brauer lass.For every prime ideal l ⊂ OK , suppose that S(Kl) 6= ∅ and that the loal evaluation map evα,lis onstant. Analogously, assume that, for every real prime σ : K →֒ R, one has S(Kσ) 6= ∅ andthat the loal evaluation map evα,σ is onstant. Denote the values of evα,l and evα,σ by el and
eσ, respetively. If, in this situation,

∑

l⊂OK

el +
∑

σ:K →֒Reσ 6= 0 ∈ Q/Zthen S is a ounterexample to the Hasse priniple.Proof. The assumptions imply, in partiular, that S is not the empty sheme. Consequently, thereare Kτ -rational points on S for every omplex prime τ : K →֒ C. The Hasse priniple would assertthat S(K) 6= ∅.On the other hand, by global lass �eld theory [22, Setion 10, Theorem B℄ one has a short exatsequene
0 → Br(K) →

⊕

ν

Br(Kν) → Q/Z→ 0 ,where the diret sum is taken over all plaes ν of the number �eld K. Assume that there is a point
x : SpeK → S. Then x∗(α) ∈ Br(SpeK) is a Brauer lass that naturally maps to an element of⊕

l Br(Kl)⊕
⊕

σBr(Kσ) ∼=
⊕

lQ/Z⊕⊕
σ

1
2Z/Z of a non-zero sum, whih is a ontradition to theexatness of the above sequene. �Proposition 3.2. � Let K be a �eld of harateristi 6= 2 and A, B, D ∈ K \{0} be arbi-trary elements. Suppose that D is a non-square and set L := K(

√
D). Assume that S := S(D;A,B)is non-singular.a) Then the quaternion algebra (see [19, Setion 15.1℄ for the notation)

A :=
(
L(S), τ, T0+AT1

T0

)over the funtion �eld K(S) extends to an Azumaya algebra over the whole of S. Here, by
τ ∈ Gal(L(S)/K(S)), we denote the nontrivial element.b) Assume that K is a number �eld and denote by α ∈ Br(S) the Brauer lass, de�ned by theextension of A . Let l be any prime of K.



6 JÖRG JAHNEL AND DAMARIS SCHINDLERi) Let (t0 : t1 : t2 : t3 : t4) ∈ S(Kl) be a point and assume that at least one of the quotients
(t0 + At1)/t0, (t0 + At1)/t1, (t0 + Bt1)/t0, and (t0 + Bt1)/t1 is properly de�ned and non-zero.Denote that by q. Then evα,l(t0 :t1 :t2 :t3 :t4) =

{
0 if (q, D)l = 1 ,
1
2 if (q, D)l = −1 ,for (q, D)l the Hilbert symbol.ii) If l is split in L then the loal evaluation map evα,l is onstantly zero.Proof. a) (Cf. [24, Lemma 3.2℄.) First of all, A is, by onstrution, a yli algebra of degree two.In partiular, A is simple [19, Setion 15.1, Corollary d℄. Furthermore, A is obviously a entral

K(S)-algebra.To prove the extendability assertion, it su�es to show that A extends as an Azumaya algebraover eah valuation ring that orresponds to a prime divisor on S. Indeed, this is the lassialTheorem of Auslander-Goldman for non-singular surfaes [2, Proposition 7.4℄, f. [15, Chapter IV,Theorem 2.16℄.For this, we observe that the prinipal divisor div((T0 + AT1)/T0) ∈ Div(S) is the norm of adivisor on SL. In fat, it is the norm of the di�erene of two prime divisors, the oni, given by
T0 + AT1 = T2 −

√
DT4 = 0, and the oni, given by T0 = T2 −

√
DT3 = 0. In partiular, A de�nesthe zero element in H2(〈σ〉,Div(SL)). Under suh irumstanes, the extendability of A over thevaluation ring orresponding to an arbitrary prime divisor on S is worked out in [14, Paragraph42.2℄.b.i) The quotients

T0+AT1

T0

/T0+AT1

T1

=
T 2

2
−DT 2

3

T 2

0

, T0+BT1

T0

/T0+BT1

T1

=
T 2

2
−DT 2

3

T 2

0

, and T0+AT1

T0

/T0+BT1

T0

=
T 2

2
−DT 2

4

(T0+BT1)2are norms of rational funtions. Thus, eah de�nes the zero lass in H2(〈σ〉, K(SL)∗) ⊆ BrK(S),and hene in BrS. In partiular, the four expressions (T0+AT1)/T0, (T0+AT1)/T1, (T0+BT1)/T0,and (T0 + BT1)/T1 de�ne the same Brauer lass.The general desription of the evaluation map, given in [14, Paragraph 45.2℄ shows thatevα,l(t0 : t1 : t2 : t3 : t4) is equal to 0 or 1
2 depending on whether q is in the image of the normmap NLL/Kl

: L∗
L → K∗

l , or not, for L a prime of L lying above l. This is exatly what is tested bythe Hilbert symbol (q, D)l.ii) If l is split in L then the norm map N : K(SLL
)∗ → K(SKl

)∗ is surjetive. In partiular,
T0+AT1

T0

∈ K(SKl
)∗ is the norm of a rational funtion on SLL

. Therefore, it de�nes the zero lassin H2(〈σ〉, K(SLL
)∗) ⊆ BrK(SKl

), and thus in BrSKl
. Finally, we observe that every Kl-rationalpoint x : SpeKl → S fators via SKl

. �Geometrially, on a rank four quadri in P4, there are two penils of planes. In our situation,these are onjugate to eah other under the operation of Gal(K(
√

D)/K). The equation T0 = 0uts two onjugate planes out of the quadri (2.1) and the same is true for T1 = 0. The equations
T0 + AT1 = 0 and T0 + BT1 = 0 eah ut two onjugate planes out of (2.2).Remark 3.1. � A. Várilly-Alvarado and B. Viray [24, Theorem 5.3℄ prove for a ertain lassof degree four del Pezzo surfaes that the Brauer-Manin obstrution is the only obstrution to theHasse priniple and to weak approximation. Their result is onditional under the assumption ofShinzel's hypothesis and the �niteness of Tate-Shafarevih groups of ellipti urves and based onideas of O. Wittenberg [26, Théorème 1.1℄. The lass onsidered in [24℄ inludes our family (2.1, 2.2).



DEL PEZZO SURFACES OF DEGREE FOUR VIOLATING THE HASSE PRINCIPLE 7One might formulate our strategy to prove S(D;A,B)(K) = ∅ for K a number �eld and partiularhoies of A, B, and D in a more elementary way as follows.Suppose that there is a point (t0 :t1 :t2 :t3 :t4) ∈ S(K). Then (t0, t1) 6= (0, 0). Among (t0+At1)/t0,
(t0 + At1)/t1, (t0 + Bt1)/t0, and (t0 + Bt1)/t1, onsider an expression q that is properly de�nedand non-zero. Then show that, for every prime l of K inluding the Arhimedean ones, but withthe exeption of exatly an odd number, the Hilbert symbol (q, D)l is equal to 1. Finally, observethat suh a behaviour ontradits the Hilbert reiproity law [17, Chapter VI, Theorem 8.1℄.In other words, the element q ∈ Kl belongs to the image of the norm map N : LL → Kl,for L := K(

√
D) and L a prime of L lying above l, for all but an odd number of primes. Whih isinompatible with [17, Chapter VI, Corollary 5.7℄ or [22, Theorem 5.1 together with 6.3℄.4. Unrami�ed primesLemma 4.1. � Let K be a �eld of harateristi 6=2 and A, B, D ∈ K be elements suh that

D 6= 0. Then the minimal resolution of singularities S̃ of S := S(D;A,B) is geometrially isomorphito P2, blown up in �ve points (some of whih may be in�nitely near points).Proof. By Proposition 2.1.b), we know that SK is not a one and has at worst isolated singularities.In this situation, it is well-known that all the singularities of SK are of ADE-type. The usualargument for this is based on the lassi�ation of singularities of ubi surfaes (e.g. [8, Setion 9.2℄).Cf. [6, Setion 5, partiularly Proposition 5.1℄ for details.Consequently, aording to [6, Example 0.7.b)℄, SK is either a del Pezzo surfae of degree 4or a singular del Pezzo surfae of degree 4 in the sense of [6℄. That is, its minimal resolution ofsingularities S̃K is a generalised del Pezzo surfae of degree 4 [7℄. But those are isomorphi to P2
K
,blown up in �ve points [6, Proposition 0.4℄. �Corollary 4.1. � Let Fℓ be a �nite �eld of harateristi 6= 2 and A, B, D ∈ Fℓ suh that

D 6= 0. Then S := S(D;A,B) has a regular Fℓ-rational point.Proof. By Lemma 4.1, the minimal resolution of singularities S̃ of S is geometrially isomorphito P2, blown up in �ve points. In suh a situation, the Weil onjetures have been established byA. Weil himself [25, page 557℄, f. [14, Theorem 27.1℄.At least one of the eigenvalues of Frobenius on Pi(S̃Fℓ
) is equal to (+1). Say, the number ofeigenvalues (+1) is exatly n > 1. The remaining (6 − n) eigenvalues are of real part > (−1).Hene, #S̃(Fℓ) > ℓ2 + (2n − 6)ℓ + 1.Among these, at most (n − 1)(ℓ + 1) points may have originated from blowing up the singularpoints of Sl. Indeed, eah time an Fℓ-rational point is blown up, a (+1)-eigenspae is added to thePiard group. Therefore,

#Sreg(Fℓ) > ℓ2 + (2n − 6)ℓ + 1 − (n − 1)(ℓ + 1) = ℓ2 − 5ℓ + 2 + n(ℓ − 1) > ℓ2 − 4ℓ + 1 .For ℓ > 5, this is positive.Thus, it only remains to onsider the ase that ℓ = 3. Then S is the losed subvariety of P4F3
,given by

T0T1 = T 2
2 − DT 2

3 ,

(T0 + aT1)(T0 + bT1) = T 2
2 − DT 2

4



8 JÖRG JAHNEL AND DAMARIS SCHINDLERfor D = ±1 and ertain a, b ∈ F3. Independently of the values of a and b, S has the regularF3-rational point (1 : 0 : 1 : 1 : 0) in the ase that D = 1 and (1 : 0 : 0 : 0 : 1) in the ase that D = −1.
�Proposition 4.2 (Unrami�ed primes). � Let K be a number �eld, A, B, D ∈ OK , and l ⊂ OKbe a prime ideal that is unrami�ed under the �eld extension K(

√
D)/K. Consider the surfae

S := S(D;A,B).a) If #OK/l is not a power of 2 then S(Kl) 6= ∅.b) Assume that A 6≡ B (mod l), that S is non-singular, and that S(Kl) 6= ∅. Let α ∈ Br(S) be theBrauer lass, desribed in Proposition 3.2.a). Then the loal evaluation map evα,l : S(Kl) → Q/Zis onstantly zero.Proof. We put ℓ := #OK/l. Furthermore, we normalise D to be a unit in OKl
. This is possiblebeause l is unrami�ed.a) It su�es to verify the existene of a regular Fℓ-rational point on the redution Sl of S. For this,we observe that (D mod lOKl

) 6= 0, whih shows that Corollary 4.1 applies.b) If l is split then this is Proposition 3.2.b.ii). Otherwise, let (t0 : t1 : t2 : t3 : t4) ∈ S(Kl) be anarbitrary point. Normalise the oordinates suh that t0, . . . , t4 ∈ OKl
and at least one is a unit.We �rst observe that one of t0 and t1 must be a unit. Indeed, otherwise one has l|t0, t1. Aord-ing to equation (2.1), this implies that l|NKl(

√
D)/Kl

(t2 + t3
√

D). Suh a divisibility is possible onlywhen l|t2, t3, sine Kl(
√

D)/Kl is an unrami�ed, proper extension and √
D ∈ Kl(

√
D) is a unit.But then t4 is a unit, in ontradition to equation (2.2).Seond, we laim that t0+At1 or t0+Bt1 is a unit. Indeed, sine A 6≡ B (mod l), the assumption

l|t0 + At1, t0 + Bt1 implies l|t0, t1.We have thus shown that one of the four expressions (t0+At1)/t0, (t0+At1)/t1, (t0+Bt1)/t0, and
(t0 + Bt1)/t1 is a unit. Write q for that quotient. As the loal extension Kl(

√
D)/Kl is unrami�edof degree two, we see that (q, D)l = 1. Proposition 3.2.b.i) implies the assertion. �If l is a split prime then an even stronger statement is true.Lemma 4.2 (Split primes). � Let K be a number �eld, A, B, D ∈ OK , and l ⊂ OK a primeideal that is split under K(

√
D)/K. Consider the surfae S := S(D;A,B).a) Then S(Kl) 6= ∅.b) Furthermore, if S is non-singular and α ∈ Br(S) is the Brauer lass, desribed in Proposition3.2.a), then the loal evaluation map evα,l : S(Kl) → Q/Z is onstantly zero.Proof. a) The assumption that l is split under the �eld extension K(

√
D)/K is equivalent to√

D ∈ Kl. Therefore, the point (1 :0 :1 : 1√
D

:0) is de�ned over Kl. In partiular, S(Kl) 6= ∅.b) This is the assertion of Proposition 3.2.b.ii). �Remark 4.3. � If l is inert, 0 6≡ A ≡ B (mod l), and (A/D mod l) ∈ OK/l is a non-square thenthe assertion of Proposition 4.2.b) is true, too.Indeed, t0 or t1 must be a unit by the same argument as before. The assumption l|t0+At1, t0+Bt1does not lead to an immediate ontradition, but to l|t2, t4 and t0/t1 ≡ −A (mod l). In par-tiular, both t0 and t1 must be units. But then equation (2.1) implies the ongruene
−At21 ≡ −Dt23 (mod l).



DEL PEZZO SURFACES OF DEGREE FOUR VIOLATING THE HASSE PRINCIPLE 9Remark 4.4 (Inert primes�the ase of residue harateristi 2). � We note that a statementanalogous to Proposition 4.2.a) is true for any inert prime l under some more restritive onditionson the oe�ients A and B.For this suppose that A, B, D ∈ OK and that l ⊂ OK is a prime ideal that is inert under
K(

√
D)/K. Let e be a positive integer suh that x ≡ 1 (mod le) is enough to imply that x ∈ Kl isa square. Assume that νl(B−1) = f > 1 and that νl(A) is an odd number suh that νl(A) > 2f +e.Then S(Kl) 6= ∅.Indeed, let us show that there exists a point (t0 : t1 : t2 : t3 : t4) ∈ S(Kl) suh that t3 = t4and t1 6= 0. This leads to the equation (T0 + AT1)(T0 + BT1) = T0T1, or

T 2
0 + (A + B − 1)T0T1 + ABT 2

1 = 0 .The disriminant of this binary quadri is (A + B − 1)2 − 4AB = (B−1)2 + A(A − 2B−2), whihis a square in Kl by virtue of our assumptions. Thus, there are two solutions in Kl for T0/T1 andtheir produt is AB, whih is of odd valuation. We may therefore hoose a solution t0/t1 suh that
νl(t0/t1) is even. This is enough to imply that (t0 + At1)(t0 + Bt1) = t0t1 is a norm from Kl(

√
D).Remark 4.5 (Arhimedean primes). � i) Let σ : K →֒ R be a real prime. Then, for A, B ∈ Karbitrary and D ∈ K non-zero, one has Sσ(R) 6= ∅.Indeed, we an put t1 := 1 and hoose t0 ∈ R suh that t0, t0 + σ(A), and t0 + σ(B) are positive.Then C := t0 > 0 and C′ := (t0 + σ(A))(t0 + σ(B)) > 0 and we have to show that the system ofequations

T 2
2 − σ(D)T 2

3 = C

T 2
2 − σ(D)T 2

4 = C′is solvable in R. For this one may hoose t2 suh that t22 > max(C, C′) if σ(D) > 0 and suh that
t22 6 min(C, C′), otherwise. In both ases it is lear that there exist real numbers t3 and t4 suhthat the resulting point is ontained in Sσ(R).Moreover if σ(D) > 0 then the loal evaluation map evα,σ : S(Kσ) → 1

2Z/Z is onstantly zero.Indeed, then one has (q, D)σ = 1 for every q ∈ Kσ
∼= R, di�erent from zero.ii) For τ : K →֒ C a omplex prime and A, B, and D ∈ K arbitrary, we learly have that S(Kτ ) 6= ∅.Furthermore, (q, D)τ = 1 for every non-zero q ∈ Kτ
∼= C.5. Rami�ation�Redution to the union of four planesThe goal of this setion is to study the evaluation of the Brauer lass at rami�ed primes l.Under ertain ongruene onditions on the parameters A and B we dedue that the evaluationmap is onstant on the Kl-rational points on S, and we determine its value depending on A and B.Proposition 5.1 (Rami�ed primes in residue harateristi 6=2). �Let K be a number �eld, A, B, D ∈ OK , and l ⊂ OK a prime ideal suh that #OK/l is not apower of 2 and that is rami�ed under the �eld extension K(

√
D)/K. Suppose that A := (A mod l)

∈ OK/l is a square, di�erent from 0 and (−1), that A
2

+ A + 1 6= 0, and that
B ≡ − A

A+1 (mod l) .Consider the surfae S := S(D;A,B).a) Then S(Kl) 6= ∅.



10 JÖRG JAHNEL AND DAMARIS SCHINDLERb) Assume that S is non-singular and let α ∈ Br(S) be the Brauer lass, desribed in Proposition3.2.a).i) If A+1 ∈ OK/l is a square then the loal evaluation map evα,l : S(Kl) → Q/Z is onstantly zero.ii) If A+1 ∈ OK/l is a non-square then the loal evaluation map evα,l : S(Kl) → Q/Z is onstant ofvalue 1
2 .Proof. First of all, we note that νl(D) is odd. Indeed, assume the ontrary. We may then normalise

D to be a unit and write Kn
l for the unrami�ed quadrati extension of Kl. Then (D mod lOKn

l
) isa square and, sine OKn

l
/lOKn

l
is a �eld of harateristi di�erent from 2, Hensel's Lemma ensuresthat D is a square in Kn

l . I.e., Kl(
√

D) ⊆ Kn
l , a ontradition.Let us normalise D suh that νl(D) = 1. Then the redution Sl of S is given by the equations

T0T1 = T 2
2 ,(5.1)

(T0 + AT1)(T0 − A
A+1

T1) = T 2
2 ,(5.2)whih geometrially de�ne a one over four points in P2.a) We write ℓ := #OK/l. It su�es to verify the existene of a regular Fℓ-rational point on Sl.For this, it is learly enough to show that one of the four points in P2, de�ned by the equations(5.1) and (5.2), is simple and de�ned over Fℓ.Equating the two terms on the left hand side, one �nds the equation

T 2
0 + A

2
−A−1
A+1

T0T1 − A
2

A+1
T 2

1 = 0 ,whih obviously has the two solutions T0/T1 = 1 and T0/T1 = − A
2

A+1
. By virtue of our assumptions,both are Fℓ-rational points in P1, di�erent from 0 and ∞. They are di�erent from eah other, sine

A
2

+ A + 1 6= 0.Consequently, the four points de�ned by the equations (5.1) and (5.2) are all simple. The twopoints orresponding to (t0 :t1) = 1 are de�ned over Fℓ. The two others are de�ned over Fℓ if andonly if (−A − 1) ∈ Fℓ is a square.b) Let (t0 : t1 : t2 : t3 : t4) ∈ S(Kl) be any point. We normalise the oordinates suh that
t0, . . . , t4 ∈ OKl

and at least one of them is a unit. Then l annot divide both t0 and t1. In-deed, this would imply l2|t22 − Dt23 and l2|t22 − Dt24 and, as νl(D) = 1, this is possible only for
l|t2, t3, t4.Therefore, ((t0+At1)/t1 mod l) = A+(t0/t1 mod l) is either equal to (A+1) or to A− A

2

A+1
= A

A+1
.Both terms are squares in Fℓ under the assumptions of b.i), while, under the assumptions of b.ii),both are non-squares.As a unit in OKl

is a norm from the rami�ed extension Kl(
√

D) if and only if its residue modulo lis a square, for q := (t0 + At1)/t1, we �nd that (q, D)l = 1 in ase i) and (q, D)l = −1 in ase ii).Proposition 3.2.b.ii) implies the assertion. �6. Zariski density in the oarse moduli shemeWe are now in the position to formulate su�ient onditions on A, B, D, under whih the or-responding surfae S(D;A,B) violates the Hasse priniple.Theorem 6.1. � Let D ∈ K be non-zero and (D) = (qk1

1 · . . . ·qkl

l )2 p1 · . . . ·pk its deompositioninto prime ideals with p1, . . . , pk being distint. Suppose thati) k > 1,



DEL PEZZO SURFACES OF DEGREE FOUR VIOLATING THE HASSE PRINCIPLE 11ii) the quadrati extension K(
√

D)/K is unrami�ed at all primes of K lying over the rationalprime 2,iii) for every real prime σ : K →֒ R, one has σ(D) > 0.iv) For every prime l of K that lies over the rational prime 2 and is inert under K(
√

D)/K, assume
that νl(B − 1) = fl > 1 , that νl(A) is odd , and that νl(A) > 2fl + el ,for el a positive integer suh that x ≡ 1 (mod lel) is enough to ensure that x ∈ Kl is a square.v) For every i = 1, . . . , k, suppose that

• (A mod pi) ∈ OK/pi is a square, di�erent from 0, (−1), and the primitive third roots of unity.If #OK/pi is a power of 3 then assume (A mod pi) 6= 1, too.
• B ≡ − A

A+1 (mod pi).
• 1 + (A mod pi) ∈ OK/pi is a non-square for i = 1, . . . , b, for an odd integer b, and a square for
i = b + 1, . . . , k.vi) Finally, assume that (A − B) is a produt of only split primes.Then S(D;A,B)(AK) 6= ∅. If S(D;A,B) is non-singular then S(D;A,B)(K) = ∅.Remark 6.1. � Without any hange, one may assume q1, . . . , ql distint, too. Note, on the otherhand, that we do not suppose {p1, . . . , pk} and {q1, . . . , ql} to be disjoint.Proof of Theorem 6.1. By i), D is not a square in K, hene K(

√
D)/K is a proper qua-drati �eld extension. It is learly rami�ed at p1, . . . , pk. Aording to ii), these are the onlyrami�ed primes. In view of assumption iv), S(AQ) 6= ∅ follows from Proposition 4.2.a) and Propo-sition 5.1.a), together with Lemma 4.2.a), Remark 4.4, and Remark 4.5.On the other hand, let α ∈ Br(S) be the Brauer lass, desribed in Proposition 3.2.a). Then, inview of assumptions vi), v) and iii), Proposition 4.2.b) and Proposition 5.1.b), together withLemma 4.2.b) and Remark 4.5, show that the loal evaluation map evα,l is onstant of value 1

2 for
l = p1, . . . , pb and onstantly zero for all others. Proposition 3.1 proves that S is a ounterexampleto the Hasse priniple. �Example 6.2. � Let S be the surfae in P4Q, given by

T0T1 = T 2
2 − 17T 2

3 ,

(T0 + 9T1)(T0 + 11T1) = T 2
2 − 17T 2

4 .Then S(AQ) 6= ∅ but S(Q) = ∅.Proof. We have K = Q and D = 17. Furthermore, A = 9 and B = 11 suh that Proposition 2.1ensures that S = S(D;A,B) is non-singular.The extension L := Q(
√

17)/Q is real-quadrati, i.e. D > 0, and rami�ed only at 17. Un-der Q(
√

17)/Q, the prime 2 is split, whih ompletes the veri�ation of i)�iii) and shows thativ) is ful�lled trivially.For v), note that 17 6≡ 1 (mod 3), suh that there are no nontrivial third roots of unity in F17.Furthermore, 9 6= 0, (−1) is a square modulo 17, but 10 is not, and 11 ≡ − 9
10 (mod 17). Finally,for vi), note that (A − B) = (−2) = (2) is a prime that is split in Q(

√
17). �Remark 6.3. � The assumption on S to be non-singular may be removed from Theorem 6.1.Indeed, the elementary argument desribed at the very end of setion 3 works in the singularase, too.



12 JÖRG JAHNEL AND DAMARIS SCHINDLERThe goal of the next lemma is to onstrut disriminants D ∈ K, for whih we will later be ableto onstrut ounterexamples to the Hasse priniple, via the previous theorem.Lemma 6.4. � Let K be an arbitrary number �eld and p, r1, . . . , rn be distint prime idealssuh that OK/p and OK/ri are of harateristis di�erent from 2. Then there exists some D ∈ Ksuh thati) the prime p is rami�ed in K(
√

D),ii) all primes lying over the rational prime 2 are split in K(
√

D).iii) For every real prime σ : K →֒ R, one has σ(D) > 0.iv) The primes ri are unrami�ed in K(
√

D).In partiular, assumptions i)�iv) of Theorem 6.1 are ful�lled.Proof. Let l1, . . . , lm be the primes of K that lie over the rational prime 2. We impose the on-gruene onditions D ≡ 1 (mod le1

1 ), . . . , D ≡ 1 (mod lem

m ), for e1, . . . , em large enough that thisimplies that D is a square in Kl1 , . . . , Klm .Furthermore, the assumptions imply that p, r1, . . . , rn are di�erent from l1, . . . , lm. We impose,in addition, the onditions D ∈ p\p2 and D 6∈ r1, . . . , rn.Aording to the Chinese remainder theorem, these onditions have a simultaneous solution D′.Put D := D′ + k · #(OK/le1

1 . . . lem

m p2r1 . . . rn), for k an integer that is su�iently large to ensure
σ(D) > 0 for every real prime σ : K →֒ R. Then assertion iii) is true. Furthermore, the ongruenes
D ≡ 1 (mod lei

i ) imply ii), while D ∈ p\p2 yields assertion i) and D 6∈ r1, . . . , rn ensures that iv)is true. �Before we ome to the next main theorem of this setion, we need to formulate two tehniallemmata.Lemma 6.5. � Let K be a number �eld, I ⊂ OK an ideal, and x ∈ OK \ I any element.Then there exists an in�nite sequene of pairwise non-assoiated elements yi ∈ OK suh that, foreah i ∈ N, one has that (yi) is a prime ideal and yi ≡ x (mod I).Proof. The invertible ideals in K relatively prime to I modulo the prinipal ideals generated byelements from the residue lass (1 mod I) form an abelian group that is anonially isomorphi tothe ray lass group ClIK
∼= CK/CI

K of K [17, Chapter VI, Proposition 1.9℄. Thus, the Chebotarevdensity theorem applied to the ray lass �eld KI/K, whih has the Galois group Gal(KI/K) ∼= ClIK ,shows that there exist in�nitely many prime ideals ri ⊂ OK with the property below.There exist some ui, vi ∈ OK , ui ≡ vi ≡ 1 (mod I) suh that
ri ·(ui) = (x)·(vi) .Take one of these prime ideals. Then ri ·(ui) = (xvi). As ri ⊂ OK , this shows that xvi is divisibleby ui. Put yi := xvi/ui. Then (yi) = ri. Furthermore, yi ≡ x (mod I). �Lemma 6.6. � Let Fq be a �nite �eld of harateristi 6=2 having >25 elements. Then thereexist elements a00, a01, a10, and a11 ∈ Fq, di�erent from 0, (−1), (−2) and suh that a2

ij+aij+1 6= 0,that ful�l the onditions below.i) a00, (a00 + 1), and (a00 + 2) are squares in Fq.ii) a01 and (a01 + 1) are squares in Fq, but (a01 + 2) is not.iii) a10 and (a10 + 2) are squares in Fq, but (a10 + 1) is not.iv) a11 is a square in Fq, but (a11 + 1) and (a11 + 2) are not.



DEL PEZZO SURFACES OF DEGREE FOUR VIOLATING THE HASSE PRINCIPLE 13Proof. Let C1 ∈ F∗
q be a square in the ases i) and ii), and a non-square, otherwise. Similarly, let

C2 ∈ F∗
q be a square in the ases i) and iii), and a non-square, otherwise. The problem thentranslates into �nding an Fq-rational point on the urve E, given in P3 by

U2
1 + U2

0 = C1U
2
2 ,

U2
1 + 2U2

0 = C2U
2
3 ,suh that Ui 6= 0 for i = 0, . . . , 3 and (U1/U0)

4 +(U1/U0)
2 +1 6= 0. Note that the onditions U2 6= 0and U3 6= 0 imply that (

U1

U0

)2 6= −1,−2.Sine the harateristi of the base �eld is di�erent from two, a diret alulation shows that E isnon-singular, i.e. a smooth urve of genus 1. The extra onditions de�ne an open subsheme Ẽ ⊂ Ethat exludes not more than 32 points. Thus, Hasse's bound yields #Ẽ(Fq) > q − 2
√

q − 31, whihis positive for q > 44.An experiment shows that the four a�ne urves have points, too, over F27, F29, F31, F37, F41,and F43. �The following theorem provides us with Hasse ounterexamples in the family S(D;A,B) for suitabledisriminants D. For us, the important feature is that one may hoose the parameters A and Bto lie in (almost) arbitrary ongruene lasses modulo some prime ideal l ⊂ OK , unrami�ed in
K(

√
D), provided only that A 6≡ B (mod l).Theorem 6.2. � Let K be an arbitrary number �eld and D ∈ K a non-zero element. Write

(D) = (qk1

1 · . . . · qkl

l )2p1 · . . . · pk for its deomposition into prime ideals, the pi being distint.Assume thati) k > 1,ii) all primes lying over the rational prime 2 are split in K(
√

D),iii) for every real prime σ : K →֒ R, one has σ(D) > 0,iv) all primes with residue �eld F3 are unrami�ed in K(
√

D).Suppose further that among the primes p of K that are rami�ed in K(
√

D), there is one suh that
#OK/p > 25.Then, for every prime l ⊂ OK , unrami�ed in K(

√
D), and all a, b ∈ OK/l suh that a 6= b,there exist A, B ∈ OK suh that (A mod l) = a, (B mod l) = b, and S(D;A,B)(AK) 6= ∅, but

S(D;A,B)(K) = ∅.Proof. First step. Constrution of A and B.Let M ∈ {1, . . . , k} be suh that #OK/pM > 25. Besides(6.1) (A mod l) = a and (B mod l) = b ,we will impose further ongruene onditions on A and B. For eah i 6= M , we hoose a square
ai ∈ OK/pi suh that ai 6= 0, (−1), (−2) and a2

i + ai + 1 6= 0. This is possible sine OK/pi is ofharateristi 6=2 and #OK/pi > 3. For instane, ai := 1 may be taken exept when pi is of residueharateristi 3.We require(6.2) (A mod pi) = ai and (B mod pi) = − ai

ai + 1
.Finally, we hoose a square aM ∈ OK/pM suh that aM 6= 0, (−1), (−2) and a2

M + aM + 1 6= 0,satisfying the additional onditions below.
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• If, among the elements a1 + 1, . . . , aM−1 + 1, aM+1 + 1, . . . , ak + 1, there are an odd number ofnon-squares then aM + 1 is a square. Otherwise, aM + 1 is a non-square.
• If, among the elements a1 + 2, . . . , aM−1 + 2, aM+1 + 2, . . . , ak + 2, there are an odd number ofnon-squares then aM + 2 is a square. Otherwise, aM + 2 is a non-square.Lemma 6.6 guarantees that suh an element aM ∈ OK/pM exists. We impose the �nal ongru-ene ondition(6.3) (A mod pM ) = aM and (B mod pM ) = − aM

aM + 1
.Aording to the Chinese remainder theorem, one may hoose an algebrai integer B ∈ OKsuh that the onditions on the right hand sides of (6.1), (6.2), and (6.3) are ful�lled. Then, byLemma 6.5, there exist in�nitely many non-assoiated elements yi ∈ OK suh that (yi) is a primeideal and (yi + B, B) a simultaneous solution of the system of ongruenes (6.1, 6.2, 6.3).We hoose some i ∈ N suh that r := (yi) is of residue harateristi di�erent from 2, that

r 6= p1, . . . , pk, q1, . . . , ql, and suh that A2 − 2AB + B2 − 2A − 2B + 1 6= 0 for A := yi + B.Note that r 6= p1, . . . , pk, q1, . . . , ql is equivalent to r 6∋ D.Seond step. The surfae S := S(D;A,B) is a ounterexample to the Hasse priniple.To show this, let us use Theorem 6.1. Our assumptions on D imply that assumptions i)�iv) ofTheorem 6.1 are ful�lled. Assumption v) is satis�ed, too, by onsequene of the onstrution ofthe elements ai. Observe, in partiular, that among the elements a1 + 1, . . . , ak + 1, there are anodd number of non-squares. Furthermore, S is non-singular.It therefore remains to hek assumption vi). The only prime p ⊂ OK , for whih A ≡ B (mod p),is p = r (=(A−B)). We have to show that r is split under K(
√

D)/K.For this, we observe that, for i = 1, . . . , k,
A − B ≡ A + A

A+1 = AA+2
A+1 (mod pi) .As A is a square modulo pi, this shows

k∏

i=1

(A − B, D)pi
=

k∏

i=1

(A + 2, D)pi

/ k∏

i=1

(A + 1, D)pi
.Here, by our onstrution, both 1+(A mod pi) and 2+(A mod pi) are non-squares, an odd numberof times. Consequently,

k∏

i=1

(A − B, D)pi
= 1 .On the other hand, D is a square in Kli for li the primes of residue harateristi 2 and forevery real prime, by assumption iii). Thus, (A − B, D)l = 1 unless l divides either (A − B) or D.I.e. for l 6= r, p1, . . . , pk, q1, . . . , ql. Moreover, (A−B, D)q = 1 for q ∈ {q1, . . . , ql}\{p1, . . . , pk} sineboth arguments of the Hilbert symbol are of even q-adi valuation. The Hilbert reiproity law [17,Chapter VI, Theorem 8.1℄ therefore reveals the fat that

(A − B, D)r ·
k∏

i=1

(A − B, D)pi
= 1 .Altogether, this implies (A − B, D)r = 1. Consequently, the prime ideal r splits in K(

√
D). �



DEL PEZZO SURFACES OF DEGREE FOUR VIOLATING THE HASSE PRINCIPLE 15Sublemma 6.7. � The rational map κ : A2/S2 − //__

U/(S5 × PGL2), given on points by
(a1, a2) 7→ (a1, a2, 0,−1,∞) ,is dominant.Proof. It su�es to prove that the rational map κ̃ : A2 − //__ U/(S5 × PGL2), given by

(a1, a2) 7→ (a1, a2, 0,−1,∞) is dominant. For this, reall that dominane may be tested after baseextension to the algebrai losure. Moreover, it is well-known that three distint points on P1
K
maybe sent to 0, (−1), and ∞ under the operation of PGL2(K). �Lemma 6.8. � Let K be a �eld of harateristi 6= 2 and 0 6= D ∈ K. Let π : S → U be thefamily of degree four del Pezzo surfaes over an open subsheme U ⊂ A2

K , given by
T0T1 = T 2

2 − DT 2
3 ,

(T0 + a1T1)(T0 + a2T1) = T 2
2 − DT 2

4 .I.e., the �bre of π over (a1, a2) is exatly the surfae S(D;a1,a2). Then the invariant map
Iπ : U −→ P(1, 2, 3)assoiated with π is dominant.Proof. As dominane may be tested after base extension to the algebrai losure, let us assumethat the base �eld K is algebraially losed. Write

Q1(a1, a2; T0, . . . , T4) := T0T1 − (T 2
2 − DT 2

3 ) and

Q2(a1, a2; T0, . . . , T4) := (T0 + a1T1)(T0 + a2T1) − (T 2
2 − DT 2

4 ),and onsider the family (uQ1 + vQ2)(u:v)∈P1 of penils of quadris that is parametrised by
(a1, a2) ∈ A2(K).We see that, independently of the values of the parameters, degenerate quadris our for
(u : v) = 0, ∞, and (−1). The two other degenerate quadris appear for (u : v) the zeroes ofthe determinant

∣∣∣∣
1 (a1 + a2 + t)/2

(a1 + a2 + t)/2 a1a2

∣∣∣∣ = − 1
4 [t2 + 2(a1 + a2)t + (a1 − a2)

2] .Thus, Iπ is the omposition of the rational map ρ : A2 ⊃ U − //__ A2/S2, sending (a1, a2) to the pairof roots of t2+2(a1+a2)t+(a1−a2)
2, followed by the rational map κ : A2/S2 − //__ U/(S5×PGL2),studied in Sublemma 6.7, and the open embedding ι : U/(S5 ×PGL2) →֒ P(1, 2, 3), de�ned by thefundamental invariants. It remains to prove that ρ : U − //__ A2/S2 is dominant.For this, as oordinates on A2/S2 one may hoose the sum and the produt of the oordinateson A2. Indeed, these generate the �eld of S2-invariant funtions on A2. Thus, we atually laimthat the map A2 → A2, given by (a1, a2) 7→ (−2(a1+a2), (a1−a2)

2) is dominant, whih is obvious.
�We are now, �nally, in the position to prove that the set of ounterexamples to the Hasse prinipleis Zariski dense in the moduli sheme of del Pezzo surfaes of degree four. For this, we will onsiderthe family S(D;A,B) for some �xed disriminant D and use Theorem 6.2.Theorem 6.3. � Let K be a number �eld, Ureg ⊂ Gr(2, 15)K the open subset of the Graÿmannsheme that parametrises degree four del Pezzo surfaes, and H C K ⊂ Ureg(K) be the set of alldegree four del Pezzo surfaes over K that are ounterexamples to the Hasse priniple.



16 JÖRG JAHNEL AND DAMARIS SCHINDLERThen the image of H C K under the invariant map
I : Ureg −→ P(1, 2, 3)Kis Zariski dense.Proof. Aording to Lemma 6.4, there exists an algebrai integerD ∈ OK ful�lling the assumptionsof Theorem 6.2. Suppose that the image of I were not Zariski dense. By Lemma 6.8, this impliesthat there exists a (possibly reduible) urve C ⊂ A2 of ertain degree d suh that, for all surfaesof the form

T0T1 = T 2
2 − DT 2

3 ,

(T0 + AT1)(T0 + BT1) = T 2
2 − DT 2

4that violate the Hasse priniple, one has (A, B) ∈ C(K).On the other hand, let l ⊂ OK be an unrami�ed prime and put ℓ := #OK/l. Then, by The-orem 6.2, we know ounterexamples to the Hasse priniple having ℓ(ℓ − 1) distint redutionsmodulo l. But an a�ne plane urve of degree d has 6ℓd points over Fℓ [4, the lemma in Chapter 1,Paragraph 5.2℄. For a prime ideal l suh that ℓ > d + 2, this yields a ontradition. �7. Zariski density in the Hilbert shemeThis setion is devoted to Zariski density of the ounterexamples to the Hasse priniple in theHilbert sheme. Our result is, in fat, an appliation of the Zariski density in the moduli shemeestablished above.Theorem 7.1. � Let K be a number �eld, Ureg ⊂ Gr(2, 15)K the open subset of the Graÿmannsheme that parametrises degree four del Pezzo surfaes, and H C K ⊂ Ureg(K) be the set of alldegree four del Pezzo surfaes over K that are ounterexamples to the Hasse priniple.Then H C K is Zariski dense in Gr(2, 15)K .Proof. Let us �x an algebrai losure K and an embedding of K into K. Assume for the sake ofassertion that H C K ⊂ Ureg ⊂ Gr(2, 15)K is not Zariski dense. It is well-known that the Graÿmannsheme Gr(2, 15)K is irreduible and projetive of dimension (15 − 2)·2 = 26. The Zariski losure
H C K ⊂ Gr(2, 15)K is therefore of dimension at most 25.By Theorem 6.3, the invariant map H C K → P(1, 2, 3) is dominant. Its generi �bre thus mustbe of dimension at most 23. In partiular, outside of a �nite union of urves C ⊂ P(1, 2, 3), thespeial �bres are of dimension 623, as well.Now, let us hoose a K-rational point s ∈ [P(1, 2, 3)\C](K) that is the image of a degree four delPezzo surfae S ∈ H C K under the invariant map. The geometri �bre I−1(s)K over s of the fullinvariant map I : Ureg → P(1, 2, 3) parametrises all reembeddings of S into P4

K
and is therefore atorsor under PGL5(K)/Aut(SK). In partiular, I−1(s)K is of dimension 24.This implies that I−1(s) 6⊆ H C K . But the orbit of s under PGL5(K) parametrises ounterex-amples to the Hasse priniple, and is therefore ontained in H C K . As PGL5(K) is Zariski densein PGL5(K), this is a ontradition. �
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