5,7-Dihydroxy-5,6,7,8-tetrahydro-1H-azocin-2-one from a Marine-derived Streptomyces sp.¶

Serge Fotsoa, Shao Jie Wuabc, Song Qinb and Hartmut Laatscha,∗

aDepartment of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
bInstitute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, 266071 Qingdao, P.R. China
cGraduate School of the Chinese Academy of Sciences, Yuquan Road 19A, 100039 Beijing, P.R. China

hlaatsc@gwdg.de

Received: October 10th, 2005; Accepted: November 16th, 2005

¶Dedicated to Prof. Dr. Dr. h.c. mult. H. W. Roesky on the occasion of his 70th birthday.

In the course of a screening program, we have isolated the new natural product, 5,7-dihydroxy-5,6,7,8-tetrahydroazocin-2(1H)-one (1), from the staurosporine producing marine-derived Streptomyces sp. strain QD518. Here we report the isolation and structure elucidation of 1 and the artifacts 3 and 4 resulting from 1 by acid catalyzed intra- and inter-molecular reactions.

Keywords: marine Streptomycetes, fermentation, natural products, azocine.

Marine bacteria are presently subject of many natural product studies, demonstrating that these organisms are a prolific source of unique secondary metabolites. Among these, compounds having the tetrahydro-1H-azocin-2-one skeleton are very rare in comparison to the homologous hexahydro-1H-azepin-2-one substructure (caprolactam), but are found in some plant metabolites like the indole alkaloids decursivine [2], moschamide [3], moschaminindolol and moschaminindole isolated from the seeds of Centaurea moschata [4]. We isolated now the new natural product 5,7-dihydroxy-5,6,7,8-tetrahydroazocin-2-one (1), which undergoes a rapid cyclization and trimerization. Related azocinones may be the precursors also of various other microbial pyrrolizidines.

During a previous investigations of the marine-derived Streptomyces sp. QD518, among other compounds, staurosporins and various indole derivatives were obtained [1], however, we were not able to isolate substantial amounts of 1 due to its instability and rapid decomposition. Repeated fermentations led to the isolation of sufficiently pure samples, and immediate measurements allowed us now to determine the structure of this labile metabolite and also of its follow-up products.

Compound 1 was obtained as an oil by preparative TLC from a strongly UV absorbing spot, which turned to green on spraying with anisaldehyde/sulfuric acid. The 1H NMR spectrum of 1 was very simple and exhibited two doublets of doublets in the aromatic region at δ 7.26 and 6.07 and two methine protons connected to oxygen at δ 4.83 (t) and 4.77 (ddm). In addition, two pairs of signals assigned to methylene groups appeared at δ 4.05/3.51 and 2.39/1.64, respectively. The EI-MS suggested a molecular weight of m/z 157, and the molecular formula C7H11NO3 (from EI-HRMS) indicated three double bond equivalents. The 13C NMR spectrum showed in accordance with the molecular formula 7 carbon signals, which were assigned by HMOC to amide carbonyl, two sp2 methines, two oxygen-bound sp3 methines and two methylene carbons. By systematic interpretation of H,H COSY and HMBC spectra (see Figure 1), compound 1 was identified as
5,7-dihydroxy-5,6,7,8-tetrahydro-1H-azocin-2-one, which is reported here for the first time.

![Structure of 5,7-dihydroxy-5,6,7,8-tetrahydro-1H-azocin-2-one](image)

Figure 1: Structure and selected H,H COSY (↔) and HMBC (→) correlations of 1.

Azocin-2-one derivatives are very rare in nature, and in microorganisms no compound of this type has been found, however, some homologous hexahydro-1H-azepin-2-ones (caprolactams) are known. Caprolactin A and B have been isolated from an unidentified Gram-positive marine bacterium and are cytotoxic towards human epidermoid carcinoma cells and human colorectal adenocarcinoma and also exhibit antiviral activity towards Herpes simplex type II virus [5]. Although the chemistry of caprolactam and its synthetic unsaturated derivatives has been explored extensively, very few reports appeared regarding the eight-membered ring homologues, the 1H-azocin-2-ones [6]. An example is the description of the synthetic 5,6,7,8-tetrahydro-1H-azocin-2-one (2a) by Ridley et al. [6,7].

![Structure of 5,7-dihydroxy-5,6,7,8-tetrahydro-1H-azocin-2-one](image)

2a: R = H, H
2b: R = H, OH
2c: R = O

The unusual reactivity of tetrahydro-1H-azocin-2-one (2a) has been attributed to ring conformational effects, which promote an intramolecular cyclization in suitably substituted tetrahydro-1H-azocin-2-ones [7]. Obviously, this happened also with 1. During the NMR measurements in CDCl₃, a complete decomposition was observed when the sample was allowed to stand in the NMR tube resulting in two artifacts 3 and 4.

Compound 3 was obtained as minor component and showed in its ¹H NMR spectrum only four signals. Three protons of an ABC system at δ 7.02, 6.43 and δ 5.94 were assigned to a five-membered ring due to the small coupling constants, and a broad 4H singlet at δ 3.00 was attributed to two methylene groups. The molecular weight was deduced from EI MS to be m/z 121. The ¹³C NMR spectrum of 3 indicated the presence of seven carbon atoms as in 1, a carbonyl, a quaternary carbon at δ 139.6, three sp² methines and two aliphatic methylenes. Interpretation of the HMBC spectrum (Figure 2) led to the identification of the rearrangement product as 1,2-dihydropyrrolizin-3-one (3). The structure was fully confirmed by comparison with synthetic 3, which we obtained following a procedure of Flitsch et al. [8].

![Structure of 5,7-dihydroxy-5,6,7,8-tetrahydro-1H-azocin-2-one](image)

The molecular formula of the more polar decomposition product 4 was established as C₂₁H₂₂N₃O₃ by high-resolution ESI-MS of the peak at m/z 364 ([M+H]+). The EI-MS delivered a fragment at m/z 242, which corresponds to [M-C₇H₇NO] and may be a hint, that compound 3 was polymerized. The ¹H NMR spectrum of 4 showed some similarities with that of 3, however, revealed 21 protons including four pairs of doublets for olefinic protons at δ 6.26, 6.14, 5.84 and δ 5.78. In addition, to a methine group connected to a hetero atom at δ 3.95, there are eight methylene groups, of which two at δ 3.01 and 2.93 appeared as broad singlet as in the spectrum of 3. The ¹³C NMR spectrum also exhibited signals for eight methylene groups in the range of δ 46.8-19.0, of which the resonances at δ 46.8 and δ 44.6 may be due to CH₂-N groups. An aliphatic and four sp² methine groups, four signals of quaternary sp², one of a quaternary sp³ and three of amide carbonyl C atoms suggested that 4 may be a trimer of 3. Based on comparison of the data with those of 3 followed by intensive interpretation of H,H COSY and HMBC spectra, three fragments were constructed (Figure 3).
Dihydroxytetrahydroazocinone from *Streptomyces* sp.

There is only one way to connect these parts, resulting in 4, which was further confirmed by HMBC correlation of the 6-methylene signal at δ_H 3.95 (δ_C 37.2), the two methylene groups 5-H_2 and 7-H_2 at δ_H 2.78, 2.10 (δ_C 44.6 and δ_H 3.63 (δ_C 46.8), respectively, to the carbon atom C-5' at (δ_C 128.5. Additionally, the 1- and 7-methylene signals indicated cross-peaks to the quaternary carbon atoms C-7a (δ_C 70.6) and C-5'' (δ_C 130.3). The trimer 4 decomposed slowly at –20 °C under formation of insoluble products.

Figure 3: Fragments of compound 4 derived from H,H COSY (↔)and HMBC spectra (→).

Compound 3 and its congener 4 are having the 1-azabicyclo[3.3.0]octane skeleton (pyrrolizidine), which is found frequently in plants [9] and insects [10] and is part of pheromones, defensive agents, or growth determinants. Mammals convert many of these pyrrolizidine alkaloids into dehydro-pyrrolizidines, which exhibit e.g. hepatotoxic, mutagenic, and carcinogenic activities [11]. The pyrrolams (e.g. A, 5) or 5,6,7,7a-tetrahydro-3H-pyrrolizin-7a-ol-3-one (6) are some of the very few pyrrolizidine derivatives from microorganisms [12,13]. Also in the case of 5, a dimerization forming 7 was observed when a solution of the former was kept aside for 3 weeks. In contrast, compound 1 rearranged within a few hours.

Figure 4: Structure of compound 4 with important HMBC correlations between the sub-structures

It can be assumed that the cyclization of 1 in alcohol-free chloroform was catalyzed by a light-induced liberation of HCl. Protonation of 5-OH will allow a transannular attack of the nitrogen atom on C-5 under cyclization and elimination of water. A second loss of water and rearrangement of the double bond delivers 3. It can be speculated that the *Streptomyces* metabolite 5 is formed in a similar way from the hypothetical 2b, and 6 from the corresponding ketone 2c. A similar reaction may responsible for the formation of ephohelmins A and B [14].

Based on the fact that 5 dimerized slowly in solution under formation of 7 [12], an alcohol-free chloroform solution of 3 was put aside for a while, however, no reaction occurred. This observation led us to assume that the trimer 4 may result from an intermolecular reaction of 1 or between 1 and 3. Mechanistic details of the rearrangement of 1 are, however, still under investigation.

Experimental

ESI mass spectra were recorded on a Finnigan LCQ spectrometer with quaternary pump Rheos 4000 (Flux Instrument). ESI HR mass spectra were recorded on A Bruker FTICR 4.7 T mass spectrometer. EI MS spectra were recorded on a Finnigan MAT 95 spectrometer at 70 eV. Further materials & methods were used as described earlier [15].

Compounds 3 and 4 showed no activity against *Bacillus subtilis*, *Streptomyces viridochromogenes* (Tü 57), *Staphylococcus aureus*, and *Escherichia coli*, the microalgae *Chlorella vulgaris*, *Chlorella sorokiniana*, and *Scenedesmus subspicatus*, and the fungi *Mucor miehei* and *Candida albicans* at a concentration of 80 μg/paper disk; 1 was not tested because of its small amount.
The marine *Streptomyces* sp. QD518 was cultivated on a 25 L scale on meat extract medium at 28 °C for 7 days on a linear shaker (110 rpm), and worked up as described previously [1]. Column chromatography of the extract delivered a fraction B₁, which was further purified by PTLC (CH₂Cl₂/3% MeOH) to yield a sesquiterpene (4 mg) and the azocinone 1 (5 mg). The other fractions delivered 15 known compounds and two new staurosporine derivatives [1].

During the NMR measurement in CDCl₃, a sample of 1 (6 mg) get decomposed. Separation of the mixture by preparative TLC with CH₂Cl₂/MeOH (93:7) afforded 3 (2 mg), 4 (1.5 mg), and remaining 1 (1.1 mg).

5,7-Dihydroxy-5,6,7,8-tetrahydro-1H-azocin-2-one (1)

Colorless oil.

IR (KBr): ν: 3650, 2926, 2855, 2361, 2343, 1691 cm⁻¹.

UV λ max (MeOH) nm (log ε): 233 (sh), 206 (3.80).

1H NMR (300 MHz, CDCl₃) δ: 7.26 (1H, dd, J = 5.8, 1.8 Hz, 4-H), 6.07 (1H, dd, J = 5.8, 1.6 Hz, 3-H), 4.83 (1H, t br, J = 5.8 Hz, 7-H), 4.77 (1H, ddm, J = 10.8, 5.6 Hz, 5-H), 3.51 (1H, d, J = 13.3 Hz, 8-Hα), 2.39 (1H, dd, J = 13.3, 5.6 Hz, 6-Hα), 1.64 (1H, ddd, J = 13.3, 10.8, 5.4 Hz, 6-Hβ).

13C NMR (150.8 MHz, CDCl₃) δ: 175.6 (C-2), 149.2 (CH-4), 128.6 (CH-3), 65.6 (CH-5), 62.8 (CH-7), 53.2 (CH₂-8), 40.1 (CH₂-6).

EI MS (70 eV): m/z (%) 157 ([M⁺], 86), 141 (16), 129 (20), 122 (34), 99 (26), 95 (100), 78 (71), 41 (48); EI HRMS: m/z [M⁺] calcd for C₇H₁₁NO₃: 157.0734; found: 157.0740.

1,2-Dihydro-pyrrolizin-3-one (3)

Colorless oil.

IR (KBr): ν: 3650, 2926, 2855, 2361, 2343, 1691 cm⁻¹.

UV λ max (MeOH) nm (log ε): 269 (3.70), 230 (4.14), 209 (4.20).

1H NMR (300 MHz, CDCl₃) δ: 7.02 (1H, d, J = 2.9 Hz, 5-H), 6.43 (1H, dd, J = 2.9, 2.8 Hz, 6-H), 5.94 (1H, brd, J = 2.8 Hz, 7-H), 3.00 (4H, s, 1,2-H2).

13C NMR (150.8 MHz, CDCl₃) δ: 175.1 (C-3), 139.6 (C-7a), 119.0 (CH-6), 104.5 (CH-7), 110.9 (CH-5), 34.8 (CH₂-2), 19.3 (CH₂-1).

Acknowledgments - We thank R. Machinek and H. Frauendorf for NMR and mass spectra and F. Lissy and A. Kohl for technical assistance. This work was supported by a grant from the International Bureau at DLR (CHN 01/326) and by the National High Technology Research and Development Program of China (863 Program, 2001AA624020), and the Key Innovative Project of CAS (KZCX3-SW-215).

References

Dihydroxytetrahydroazocinone from Streptomyces sp.

