GreenLab in XL – usage and more

Katarína Smoleňová, Michael Henke

Department Ecoinformatics, Biometrics and Forest Growth, University of Göttingen, Germany

Tutorial and Workshop
"Modelling with GroIMP and XL"
combined with the 5th GroIMP user and developer meeting

Göttingen, 2012-02-28
Mathematical model of plant growth
Developed by several teams: Sino-French lab LIAMA (China), Digiplante (INRIA, ECP, France)
Several versions: deterministic, stochastic, mechanistic, ...
Applied to various plant species:
Botanical background

- **Physiological age** (PA) - relates to the degree of differentiation of axes (usually ≤ 5)
- **Metamer** (phytomer) - basic structural unit of a plant
- **Growth unit** (GU) - portion of an axis which develops during uninterrupted period of extension (growth cycle (GC))

(Letort, 2010)
Growth cycle

- Deterministic case of GreenLab model (GL1)
Software for GreenLab

GreenLab versions: GL1 - deterministic, GL2 - stochastic, GL3 - deterministic with retroaction loop (mechanistic), GL4 - stochastic with retroaction loop

- **GreenScilab**
 - GL1, GL2
 - Open source
 - Several versions (slightly different implementation / input parameter data)
 - with GUI: GreenScilab demo, GreenScilab-Crop
 - without GUI: for pine (GL2), for tomato (GL1), for chrysanthemum (GL1)

- **QingYuan**
 - GL1, GL2, GL3, GL4
 - Licenced

- **DigiPlant**
 - GL1, GL3

- And more (GLOUPS, CornerFit, VisualPlant, . . .)
GreenScilab-Crop V1.0

Parameter Preview & Customization:

- **Number of axillary organs**
 - Leaf: 1
 - Female Organ: 1
 - Male Organ: 1
 - Female organ: 15, 15, 1, 0
 - Male organ: 21, 99, 1, 0

- **Number of branches**
 - branches: 0
 - Branches Time: 1, 99, 1, 0

- **length of axis**
 - length of axis: 21
 - from functioning file: false

Opened Parameter file: C:/Dokumente und Einstellungen/All Users/ksmolen/software/GreenLab/greenscilab-cropv1.0_web/GreenScilab-CropV1.0_Web/
Motivation

Existing Software

DigiPlant

DigiPlante - [abies_massart.slm]

Simulation

Inputs

Parameters

Topology

- Continuous Growth Plant Topology
- Phyllotactic Growth Plant Topology

Growth unit of Phy. age 1

Metamers Organization

Element 0
- Variable Number
- Variable Nb of
- Variable Number
- Variable Number
- Geometry at M

Element 1
- Variable Number
- Variable Nb of
- Variable Number
- Variable Number
- Geometry at M

Element 2
- Variable Number
- Variable Nb of
- Variable Number
- Variable Number
- Geometry at M

Element 3
- Variable Number
- Variable Nb of
- Variable Number
- Variable Number
- Geometry at M

Element 4

Template

- Growth unit of Phy. age 1
- Metamers Organization

Reduction and Control

- Rotator Order
- Reduction Coefficient
- Rotator Control
- Branch Control
- Apical Dominance
- Monopodial / Sympodial

Mutation

- Number of Macrostates
- Next Phy Age
- Complex Macro Num

Geometric Parameters at the level of Growth Units

- Phyllotaxy Angle
- First Angle for Phyllotaxy
- Leaf Insertion Type
- Organ deviation
- Branch Straightening
- Branch Subsidy
- Mechanical Parameters
- Parameters for Bend...

Number of Macrostates

int macro_num
Dual-scale automaton in XL

- **Test structure (according to Kang et al. (2003))**

- **Rule-based representation (1 rule in XL)**

after 30 iterations:
Dual-scale automaton in XL

- Test structure (according to Kang *et al.* (2003))

- Rule-based representation (1 rule in XL)

after 30 iterations:

```
• → • → • → • → • →
```

time: 0 (Axiom)
Dual-scale automaton in XL

- Test structure (according to Kang et al. (2003))

- Rule-based representation (1 rule in XL)

After 30 iterations:

\[
\begin{align*}
&\text{time: 1}
\end{align*}
\]
Dual-scale automaton in XL

- Test structure (according to Kang et al. (2003))

- Rule-based representation (1 rule in XL)

after 30 iterations:
Methods & Results

Test structure (according to Kang et al. (2003))

Rule-based representation (1 rule in XL)

After 30 iterations:

Time: 3
Dual-scale automaton in XL

- Test structure (according to Kang et al. (2003))

- Rule-based representation (1 rule in XL)

after 30 iterations:

time: 4
Dual-scale automaton in XL

- Test structure (according to Kang et al. (2003))

- Rule-based representation (1 rule in XL)

after 30 iterations: [diagram showing progression over 30 iterations]

time: 5
Probabilistic growth

- P_C - survival probability of a bud
- P_A - growth probability of an apical bud
- P_I - appearance probability of a metamer
- P_B - branching probability of a bud

(Kang et al., 2008)

$P_C = P_B = P_A = P_I = 1$ $P_C = 0.9$ $P_B = 0.5$ $P_A = 0.8$ $P_I = 0.8$
Main attention / Features

- GUI aided input method for parameter input
- Make it “user save”
 - Control of inputs (general)
 - Number fields
 - Choice boxes
 - Check boxes
 - Check input ranges
 - Deactivate not used fields
 - Measurement units
- Description window (parameter description, type, unit, range)
- Provide import and export of GreenLab parameter files ("sci")
- Support AMAPSymbol files ("smb") for shape objects
Future work

- Extensions:
 - Connect to GroIMP’s light model
 - Include more photosynthesis models

- Model comparison:
 GreenLab ⇔ LIGNUM ⇔ GroIMP

- Convert to a component-based model (show case)
Thank you for your attention!

Special thanks:
Cong Ding - GUI
Yongzhi Ong - smb import
Letort V.
Modélisation Mathématique de la Croissance des Plantes : construction des modèles. Presentation, 2010

Structural Factorization of Plants to Compute Their Functional and Architectural Growth. *Simulation* 82 (7), 2006, 427–438
