History, island area and habitat availability determine land snail species richness of Aegean islands

by WELTER-SCHULTES, F. W. & WILLIAMS, M. R. (1999)

This paper was published in the Journal of Biogeography. I am the first author of the paper and have no reprints any more. Because this paper is frequently requested, I decided to create this internet file.

 Last modified 1.10.2002.

   Francisco Welter-Schultes 
   Zoologisches Institut der Universität 
   Berliner Str. 28 
   D-37073 Göttingen, Germany

 E-mail:

 
.
Homepage 

 .

WELTER-SCHULTES, F. W. & WILLIAMS, M. R. (1999): History, island area and habitat availability determine land snail species richness of Aegean islands. -- Journal of Biogeography 26 (2): 239-249.

.
This is the text of this paper. Figures are below.

.

History, island area and habitat availability determine land snail species richness of Aegean islands


F. W. WELTER-SCHULTES1 and M. R. WILLIAMS2


1Institut für Zoologie und Anthropologie der Universität, Berliner Str. 28, D-37073 Göttingen, Germany
2Biometrics Unit, Science and Information Division, Department of Conservation and Land Management, 50 Hayman Road, Como WA 6152, Australia


Short running title:    Species-area relations of Aegean land snails


 Abstract.   We examined the species-area relations of land snails on 65 islands of the Aegean archipelago (Greece). The single most important factor determining land snail species number was area. While colonization-extinction dynamics have frequently been cited to explain this result, this conclusion was not tenable in this study as it was contradicted by species number not being related to the islands' distances to neighbouring larger islands, after accounting for other factors affecting species number. We conclude that the snail fauna of the Aegean is relictual, not equilibrial.
The unusually high number of land snail species found on Crete is consistent with this conclusion. Crete is a currently united island which was separated into at least six smaller islands for 7-9 million years during the Neogene. Our results are consistent with the hypothesis that Crete still hosts a large number of endemic species of these paleoislands, resulting in a total number of species in excess of what would be expected based on area alone.
We also found that habitat diversity affected species richness even after accounting for the effects of area: both increased elevation and greater extent of calcareous substrate on islands resulted in higher species number. This effect was most likely due to the fact that particular ecological conditions increased the probability that particular species could survive on an island.
Finally, we compared the utility of the power and extreme-value function models of the species-area relation and found that both gave substantially the same results. However, fitting the power function model using non-linear regression was of questionable utility.

Résumé.   Nous avons examiné la relation d'espèce-superficie de mollusques terrestres de 65 îles de l'archipel égéen (Grèce). Le facteur le plus important déterminant le nombre d'espèces était la superficie. Tandis que la dynamique de colonisation-extinction a été fréquemment citée pour expliquer ce résultat, cette conclusion n'était pas tenable dans cette étude car elle a été contredite par le nombre d'espèces n'étant pas lié aux distances des îles vers de plus grandes îles voisines, après avoir déduit les effets d'autres facteurs affectant le nombre d'espèces. Nous concluons que la faune de mollusques terrestres de l'Égée est relictuale, non équilibriale.
Le nombre exceptionnellement élevé d'espèces de mollusques terrestres de Crète est en accord avec cette conclusion. Crète est une île actuellement unie qui était séparée dans au moins six plus petites îles pour une période de 7-9 millions d'années pendant le néogène. Nos résultats sont conformes à l'hypothèse que Crète accueille toujours un grand nombre d'espèces endémiques de ces paléoîles, ayant pour résultat un nombre total d'espèces au-dessus de ce qui serait prévu étant basé seulement sur la superficie.
Nous avons également constaté que la diversité d'habitats a affecté la richesse d'espèces même après avoir soustrait les effets de la superficie: la plus grande altitude et la plus grande superficie du substrat calcaire sur des îles ont eu comme conséquence un nombre plus élevé d'espèces. Cet effet était très probablement dû au fait que les conditions écologiques particulières augmentent la probabilité que l'espèce particulière pourrait survivre sur une île.
Finalement nous avons comparé l'utilité des modèles de fonction de puissance et d'extrême-valeur de la relation d'espèce-superficie et avons constaté que tous les deux ont donné sensiblement les mêmes résultats. Cependant, appliquant la régression non linéaire dans le modèle de fonction de puissance était d'une utilité incertaine.

 


Key words: Land snails, Greece, island biogeography, power function, extreme-value function

 

Introduction

The species-area relation has been studied intensively over the past four decades and reviews of the many different approaches to analysing island species-area data may be found in Gilbert (1980) and Williams (1995). The dynamic equilibrium theory of island biogeography (MacArthur & Wilson, 1967) postulates that the effect of island area on species number is due to an equilibrium between immigration and extinction. In many of the most important studies, birds or flying insects have been used (e.g. Slud, 1976; Jaenike, 1978; Abbott, 1978; Boecklen, 1986; Hanski & Gyllenberg, 1997). Because birds behave differently to other organisms, the use of birds as "reference organisms" in species-area studies has been questioned (Gilbert, 1980). One question that remains unresolved is the effect of habitat diversity on species number. MacArthur & Wilson (1967) stated that the use of area alone is misleading. They envisaged that the area effect acts by increasing the number of habitats, and thus area acts as a surrogate variable. In the decades that followed, many studies were carried out to test this theory. Most of these studies rejected any effect of habitat diversity on species richness (Simberloff, 1976; Abbott, 1978; Nilsson, Bengtsson & Ås, 1988), others did not (Boecklen, 1986; Kohn & Walsh, 1994).
A further complicating factor in all species-area studies is the methods used to fit the species-area model. Originally proposed by Arrhenius (see references in Arrhenius, 1921), the power function model S = cAz has dominated studies of the species-area relationship since its endorsement by Preston (1962, see Tokeshi, 1993). Widespread use of the power function model, and the many empirical studies that appear to fit this model, have led to its almost routine use in studies of island biogeography. This is in contrast to the findings of Connor & McCoy (1979) who concluded that the power function model is merely a computationally convenient method of fitting a curve and has been applied as an approximation primarily because of its ability to fit observed data, despite some undesirable properties. The problems of the power function model were discussed by Williams (1995), who extended the pioneering work of Coleman (1981) and proposed the cumulative extreme-value function (EVF) as an appropriate model of species incidence and hence of the species-area relation. The EVF is a sigmoidal curve that is very similar to the power function for values of S less than about 70% of the size of the total species pool. Like the power function, the EVF adequately fits species-area data, but it has two principal advantages. First, the EVF is bounded, so predicted values of S cannot exceed the size of the source pool. Second, the EVF is appropriate to the distribution of S, which is approximately binomial and thus can take only non-negative integer values. The extreme-value function model also accommodates samples with S = 0. However, the best-fit model for a particular species-area curve can usually only be determined empirically (Connor & McCoy, 1979). In other words, after decades of intensive study of the species-area relationship we are still dealing with phenomenology.
Much interest has centered on the z-values produced from the power function model. This is because it is has been thought to reflect the shape of the underlying species abundance distribution and a value of around 0.26 has been equated with the canonical lognormal distribution. The slopes of empirical studies often fall in the range of 0.2-0.5 (0.262 in Preston (1962); 0.263 in MacArthur & Wilson (1967)). For land snails recorded values have been 0.42 for the high islands of the Western Indian Ocean (Peake, 1971); 0.27 and 0.37 for the Madeiran archipelago (Cook, Jack & Pettitt, 1972; Waldén, 1984); 0.27 for the Kikládes (Mylonas, 1982); 0.25 for the South Aegean Island Arc (Vardinoyannis, 1994). The question whether or not the value of z has any importance for ecological communities remains unresolved (Tokeshi, 1993).
The Greek islands seem predestined for species-area studies. They are numerous and generally old enough to ensure that they do not bear primary succession faunas, as occur for example in uplift archipelagos (Valovirta, 1979). Land snails also seem ideal objects for biogeographical studies, as they are strictly resident organisms with extremely limited ability to actively disperse over the sea. Although wind-borne dispersal of Greek land snails may occur in exceptional circumstances (Kirchner, Krätzner & Welter-Schultes, 1997), natural immigration and colonization rates for island land snails are relatively low.
The geological history of the Aegean archipelago during the past 15 million years is an important factor in their biogeography (Sfenthourakis, 1996). Before the Serravallian (12-14 Ma), the area between modern Crete and northern Greece was much less extensive than at present and consisted of a continental environment without marine ingressions (Kissel & Laj, 1988; Götz, 1996; Fig. 1A). As a result of the collision between the Arabian and the Eurasian plate in the Caucasus and eastern Anatolia, the Anatolian block started to move westwards in the Serravallian, originating the southward extension of the Aegean plate (Angelier, 1979; Angelier et al., 1982; Jacobshagen, 1986; Taymaz, Jackson & McKenzie, 1991; Götz 1996). Massive marine ingressions in the northern and southern Aegean followed during the lower Tortonian (11 Ma), resulting in the separation of six or more islands in the region of present-day Crete. These Cretan paleoislands were relatively stable during the following 7-9 M yr (Fig. 1B). Due to this long isolation time, the species' populations on the paleoislands may have diverged sufficiently to become different species. For Albinaria, the most speciose group of Cretan snails, range contractions are thought to have resulted in subspeciation and speciation processes; non-adaptive radiation was suggested as the principal source of diversification (Gittenberger, 1991; Schilthuizen, 1994). In the late Pliocene (4 Ma) the southern Aegean was submitted to tectonic uplift as a result of subduction of the African oceanic lithosphere (Angelier, 1979; Angelier et al., 1982; Götz, 1996; Papazachos & Kiratzi, 1996). The Cretan paleoislands were joined around 3-2 Ma (Angelier, 1981; Jacobshagen, 1986). At the same time, the Kikládes land mass was submerged. The present islands of the Kikládes archipelago (Fig. 1C) represent the summits of the mountains of the ancient paleomainland.

[INSERT FIG. 1A-C NEAR HERE]

Sixty-five Greek islands hosting 264 autochthonous land snail species were included in this study. Using these data, we tested two hypotheses about the number of species of land snails on islands in the Aegean archipelago: (i) that species number is independent of the distance of an island from the nearest large species pool; and (ii) that species number is greater on islands with more potential habitats. Hypothesis (i) tests whether island faunas are relictual or equilibrial and hypothesis (ii) tests whether area per se is sufficient to explain island species number. We also compared the results of using the power and EVF models of the species-area relation.


Materials and methods

The species number data for 26 small islands near Crete are based on collections by F. Welter-Schultes, the results are published elsewhere. The data for the central Aegean islands were taken from other literature sources. Fossil records and records of shells of dead land snails that have sometimes been found at island beaches were excluded. We analysed only the number of autochthonous species, but also record the number of introduced species in the appendix. Fossil species were not considered because the probability of finding fossil shells depends upon: (i) the geological structure of the area, which in turn determines their conservation probability, and (ii) on the abundance of the extinct species.
The area values for the small islands around Crete were determined from 1:200 000 maps (Ethnikí Statistikí Ipiresía tis Elládos, 1972) as some previously published values of area for the small Cretan islands are inaccurate. The values for area, elevation and area of calcareous substrate for the other islands were taken from various sources (see references in Table 1).
To assess the nature of any relationship between the area of calcareous substrate and species number, four new variables were derived for each island: (i) the proportion of the island comprised of calcareous substrate; (ii) whether calcareous substrate was present on the island, and if so then: (iii) whether calcareous substrate comprised all, or (iv) only part, of the total area of the island. The rationale for including these latter three variables was to assess whether the mere presence of a different habitat type would prove as important as the extent of that habitat. Each of these conditional variables were coded as design (or dummy) variables, set to 0 if the condition was false, or 1 if true. Design variables of this kind are the standard approach to identifying the statistical significance of such categorical variables (Hosmer & Lemeshow, 1989).
We tested the two hypotheses by stepwise regression analysis, using both the power and EVF models. A stepwise approach was necessary because some factors, such as the extent of calcareous areas, can only be examined after other related factors, such as area, are accounted for. By identifying the factors affecting species number sequentially, we identified only those variables that were still important after the effects of other, more important factors had been accounted for. To ensure that all variables important in affecting species number were identified, we used a significance level of 0.15 for entering a variable into the stepwise regression model and a significance level of 0.20 to retain the variable. As the choice of these levels may be crucial to the outcome of a stepwise regression procedure, the levels were set a priori to the values recommended by Hosmer & Lemeshow (1989).

Results

No islands with fewer than four autochthonous species were found (Table 1). The smallest island where land snails have been found (Petallídi) has an area of 0.0058 km2, but only approximately 0.0016 km2 of this serves as habitat for land snails (Schultes & Wiese, 1990). Slightly smaller "islands" than Petallídi have been examined north of Gávdos, but no snails were found. Land snails are probably unable to survive there because of the disturbances caused by the sea in stormy weather conditions. It is therefore unlikely that land snails persist on any Greek rocks in the sea smaller than 0.001 km2. These rocks are not considered as islands in this study.

Species-area relations

The fit of the extreme-value and power functions to area alone data was comparable (Table 2). Using non-linear regression to fit the power function model, as suggested by Wright (1981), gave the highest value of R2 (Fig. 2) but this method resulted in systematic lack of fit at small areas. Non-linear regression cannot be used for constructing multiple regression models, so we did not proceed with this method to examine other factors affecting fit. The EVF gave better fit than the power function at large areas, but worse fit at small areas (Fig. 2). Some of this lack of fit may be attributable to other factors, which were examined in the subsequent stepwise regression analysis.

The largest island included in the analyses was Crete. For comparative purposes, we have included Albania, Former Yugoslavia, Europe and the western Mediterranean islands of Sicily, Sardinia and Corsica in figures, but not in any regression models. We did not add values for Turkey presented in Schütt (1993) due to the poor reliability of these data (Hausdorf, 1994, F. Welter-Schultes, unpublished data). Area and island elevation were identified as the most important factors affecting species number (Table 2, parameter estimates for each model are given in Table 3). The proportion of the island composed of calcareous substrate was identified as the next most important factor. After accounting for these factors, distance to the next considerably larger island was not identified as of any statistical importance in affecting species number.

 

Discussion

Error sources

Slugs and species of the small or cryptic genera Truncatellina, Paralaoma (= Toltecia), Cecilioides and Vitrea could live on additional islands, including some smaller ones, the species numbers of which may subsequently prove to be 1-3 species higher. In a few cases it is difficult to distinguish autochthonous from introduced species (e.g. Oxychilus cyprius (Pfeiffer), see Riedel, 1992; Deroceras reticulatum (Müller), see Wiktor, 1996). The occurrence of three Metafruticicola species on Elása (Martens, 1889) is yet to be verified. However, these potential sources of error should not substantially affect the results of this study. The island species numbers of land snails in the Aegean are known with substantially more confidence than the best-known major Pacific archipelago, Hawaii (Cowie, 1995).
On some islands (including uninhabited ones), human activities such as goat rearing and burning practises may have caused extinction of a few species. Their number is considerably lower than in tropical archipelagos (for Hawaii see Cowie, 1995) and is not expected to have any substantial influence on the species numbers.
The area values are based on two-dimensional map projections that do not incorporate the island relief, a factor which may considerably enlarge the habitable area for land snails. Coastal rocks are not habitable by land snails, although they are included in the area values. This error is likely to be substantial only at very small areas. Many metamorphic or ophiolitic formations were counted as "non-calcareous" although they contain CaCO3 in small percentages (Vicente, 1970).

Species-area relations

Island area and elevation accounted for most variability in species number (Table 2). The increased number of species associated with higher island elevations may indicate that increased numbers of potential habitats increases species number. Higher islands typically contain a greater range of potential habitats, and so are habitat-rich relative to low islands of the same area.
Island species number is influenced by the increased number of habitats associated with increasing island elevation and increased extent of calcareous substrate. This leads to the conclusion that there are species which cannot survive on non-calcareous substrate, but few or no species unable to live on calcareous substrate.
In terms of our initial hypotheses, we conclude that these land snail faunas are predominantly relictual. The species number of Crete (120 autochthonous species, F. Welter-Schultes, unpublished data) is much higher than would be expected from its area alone, the predicted values being 50 (power function) and 68 (EVF) (Fig. 2). This probably reflects the paleogeographic history of Crete. Crete was divided into a number of smaller islands from the lower Tortonian (11 Ma) to the late Pliocene (2 Ma). During this period of isolation, several species evolved into different species on the paleoislands; this is particularly apparent in certain groups such as Albinaria, Mastus and Xerocrassa. Today, a high number of vicariant species are found in different regions of Crete, presumably microendemics of the ancient paleoislands. The high species number for Crete thus reinforces that the Aegean snails are relictual, not equilibrial.
Birds and flying insects, which are usually taken as reference examples for equilibrial faunas (Slud, 1976; Boecklen, 1986; Hanski & Gyllenberg, 1997), are not necessarily resident organisms. We may conclude that oceanic islands do not provide effective isolation for flying organisms. As the effect of area on species number is also observed in relictual land snails, where colonization is reduced, colonization-extinction dynamics is not likely to be the only explanation for the species-area relationship.

Comparison of models

The extreme-value and power function models gave almost identical results. The two models are comparable when the number of species is less than approximately 70% of the size of the source pool (Williams, 1995), so this had been anticipated. The systematic lack of fit of the power function when fitted by non-linear regression is attributable to the fact that in non-linear regression, the parameter estimates are too heavily influenced by large values. This fact was overlooked by Wright (1981) when he recommended non-linear regression. When combined with the inability of this type of non-linear method to address multiple regression problems, the value of non-linear regression in modelling species-area problems must be questioned.

Relation between Enidae species and area of Aegean islands

The Enidae (Pulmonata: Pupilloidea) of 63 Aegean islands were analysed by Heller (1976), resulting in no apparent species-area relationship at all (see also Gilbert, 1980). However, as Williams (1995) pointed out, species number is not a continuous, but rather a discrete, variable. This is one of the shortcomings of the power function model and must be considered when evaluating these data, where 53 of 63 islands have only one species and some have zero. Heller (1976) excluded islands with zero enid species, a potential source of bias in species-area studies (Williams, 1996). Mylonas (1982) found that for the Enidae, species number and area were related for a sample of 18 islands of the Kikládes (SEn = cA0.315). Of 24 islands that were thoroughly examined, 6 islands with zero Enidae were excluded from species-area relationship calculations; on a further 9 islands only one enid species was found. For the South Aegean Island Arc, the same procedure was followed by Vardinoyannis (1994) (SEn = cA0.173). However, nine of 13 islands examined had only one enid species. Enid land snails occur on 33 out of 36 examined islands of the South Aegean Island Arc (Table 1); on 29 of these islands the species number is one. We conclude that attempting to calculate a species-area relation for such data using the power function model is unlikely to lead to any biologically meaningful conclusions.

Autochthonous and introduced species

Presence of snail species on islands is assumed to be synonymous with residence, a fact which is usually implicit for species-area studies (Williams, 1995). A major problem with land snails in Greece is the high percentage of anthropochorous species that have been transported by humans to particular Aegean islands in historical times (Mylonas, 1982; Mylonas, 1984; Hausdorf, 1990; Riedel, 1992; Wiktor, Vardinoyannis & Mylonas, 1994; Welter-Schultes, 1998c). The number of introduced species is related to the island area in the same way as are the autochthonous species, only if the rate of introduction is equally related to island area; we may presume that this is not so. There seems little doubt that the probability of successfully introducing new species of land snails to a particular island is positively correlated with commercial attractiveness of the island. This in turn depends upon a variety of cultural and strategic factors. The number of introduced species thus reflects the history of Greece and the Aegean islands. This study was designed to examine natural phenomena, not the cultural history of the Eastern Mediterranean. Consequently, land snail species that had been introduced to particular islands were not considered. The introduced species usually did not cause extinctions of autochthonous species by competitive displacement (Mylonas, 1984).

Influence of habitat size

Surprisingly, islands with only 1-3 species apparently do not exist. Apart from one island with only four species (the non-calcareous island of Mikronísi where Albinaria and Metafruticicola are missing) the smallest three islands (Petallídi, Kaváli NW and Marmára, all smaller than 0.01 km2) host five autochthonous species. Two of them (Petallídi and Marmára) also host two introduced species each. We conclude that several species probably require an aproximately equally sized minimum viable population area. The size of this minimum area is probably near 0.0016 km2 for Mastus, Metafruticicola, Xerocrassa, Eobania, and the introduced Caracollina, Cochlicella, Theba and Helix. For Albinaria and Granopupa the minimum area is probably slightly larger (near 0.005 km2), as they do not occur on Petallídi.

Influence of habitat diversity

Habitat variability is not necessarily a sufficient explanation of the effect of area on species number (Simberloff, 1976; Abbott, 1978). In a study on land snails of 17 islands of Lake Mälaren, Sweden, the habitat diversity hypothesis as an explanation for the species-area relation was rejected (Nilsson, Bengtsson & Ås, 1988). However, presence and absence of particular habitat types (habitat availability) may well be a function of island area. Kohn & Walsh (1994) found that the direct effects of area and habitat diversity on plant species richness of 65 islands off the Shetland mainland were roughly equal in magnitude.
For the Aegean land snails, we found that species numbers were affected by both area and habitat (calcareous substrate, elevation) effects. This agrees with the findings of Boecklen (1986) and Kohn & Walsh (1994). Habitat availability factors such as the occurrence of different vegetation types or the presence of calcareous substrate could affect the number of species present. Some snails (Rupestrella, Pyramidula, Zebrina stokesi) are unable to persist in non-calcareous areas (Mylonas, 1982); conversely, all species are able to survive in calcareous areas. The degree to which this affects total species number depends on the relation between two factors: (i) the relation between total species number and the number of species restricted to calcareous areas; and (ii) the number of studied islands.
The following statements (Mylonas, 1982) provide evidence of the correlation between habitat diversity and total species number, and hence, between habitat diversity and species-area relation.
1. Rupestrella rhodia (Roth) is unable to survive in non-calcareous areas,
2. there are other Aegean land snails surviving in non-calcareous areas,
3. there is no Aegean land snail which is unable to survive in calcareous areas,
4. there are islands with calcareous areas and islands without calcareous areas.
As a logical consequence, the species number of non-calcareous islands will typically be lower than the species number of calcareous islands, because at least one species is unable to persist on the non-calcareous islands. Hence, habitat diversity cannot be ignored in species-area studies, a result found empirically in this study.

Summary

Habitat diversity or availability is an important determinant of species number. It is therefore likely that present-day island species richness has been determined by an interplay of habitat availability, historical effects peculiar to each island, together with equilibrium dynamics. However, this study rejects the equilibrium model as a principal or important cause of land snail species richness on islands of the Aegean. Rather, habitat availability and historical effects have been the major factors, but they have applied differentially at different places to produce the current patterns of species richness.
There are many other factors that may affect the species numbers of particular land snails, such as vegetation type, geology, erosion behaviour or the presence of sandy beaches. For many Aegean land snails the effects of these factors are as yet unknown. At least eight Aegean genera seem to need a minimum viable population area of 0.0016 km2, two more genera 0.005 km2. Albinaria is strictly restricted to calcareous rocky habitats (Welter-Schultes, in press), which explains its absence from the island of Mikronísi. Further knowledge of the autecology of the Aegean snails is needed in order to test the hypothesis that habitat diversity acts indirectly on species number through presence and absence of particular habitat types. This echoes the call by Abbott (1983) for more research on ecological preferences of the species.


 Acknowledgments

We are grateful to E. Gittenberger and G. Manganelli for help with particular data, and to I. Abbott, W. J. Boecklen and M. Schaefer for helpful comments on the manuscript.

 

 


References

Abbott, I. (1978) Factors determining the number of land bird species on islands around South-Western Australia. Oecologia 33, 221-233.
Abbott, I. (1983) The meaning of z in species/area regressions and the study of species turnover in island biogeography. Oikos 41, 385-390.
Angelier, J. (1979) Recent Quaternary tectonics in the Hellenic Arc: examples of geological observations on land. Tectonophysics 52, 267-275.
Angelier, J. (1981) Analyse quantitative des relations entre déformation horizontale et mouvements verticaux: l'extension égéenne, la subsidence de la mer de Crète et la surrection de l'arc hellénique. Annales de Géophysique 37 (2), 327-345.
Angelier, J., Lybéris, N., Le Pichon, X., Barrier, E. & Huchon, P. (1982) The tectonic development of the Hellenic Arc and the Sea of Crete: a synthesis. Tectonophysics 82, 159-196.
Arrhenius, O. (1921) Species and area. Journal of Ecology 9, 95-99.
Bank, R. A. (1988.) Die Molluskenfauna der griechischen Insel Lesbos (= Mytilini). Basteria 52, 61-76.
Bar, Z. & Butot, L. J. M. (1986) The land snails of Chios. De Kreukel 22, 65-93.
Bodon, M., Favilli, L., Giannuzzi Savelli, R., Giovine, F., Giusti, F., Manganelli, G., Melone, G., Oliverio, M., Sabelli, B. & Spada, G. (1995) Gastropoda Prosobranchia, Heterobranchia Heterostropha. Checklist delle specie della fauna italiana, 14 (eds. A. Minelli, S. Ruffo & S. La Posta), pp. 1-60. Edizioni Calderini, Bologna.
Boecklen, W. J. (1986) Effects of habitat heterogeneity on the species-area relationships of forest birds. Journal of Biogeography 13, 59-68.
Coleman, B. D. (1981) On random placement and species-area relations. Mathematical Biosciences 54, 191-215.
Connor, E. F. & McCoy, E. D. (1979) The statistics and biology of the species-area relationship. American Naturalist 113, 791-833.
Cook, L. M., Jack, T. & Pettitt, C. (1972) The distribution of land molluscs in the Madeiran Archipelago. Boletim do Museu Municipal do Funchal 26, 5-30.
Cowie, R. H. (1995) Variation in species diversity and shell shape in Hawaiian land snails - in situ speciation and ecological relationships. Evolution 49, 1191-1202.
Dhora, D. & Welter-Schultes, F. W. (1996) List of species and atlas of the non-marine molluscs of Albania. Schriften zur Malakozoologie 9, 90-197.
Falkner, G. (1990) Binnenmollusken. Steinbachs Naturführer 10, 112-280.
Gilbert, F. S. (1980) The equilibrium theory of island biogeography: fact or fiction? Journal of Biogeography 7, 209-235.
Gittenberger, E. (1991) What about non-adaptive radiation? Biological Journal of the Linnean Society 43, 263-272.
Götz, L.-G. (1996) Beschreibung und Vergleich der Tektonik pazifischer und mediterraner Backarc-Becken hergeleitet aus echographischen und bathymetrischen Vermessungen. Berichte aus dem Zentrum für Meeres- und Klimaforschung, Reihe c: Geophysik 9, 1-165.
Hanski, I. & Gyllenberg, M. (1997) Uniting two general patterns in the distribution of species. Science 275, 397-400.
Hausdorf, B. (1990) Über die Verbreitung von Microxeromagna armillata (Lowe, 1852) und Xerotricha conspurcata (Draparnaud, 1801) in Griechenland und der Türkei. Malakologische Abhandlungen 15, 55-62.
Hausdorf, B. (1994) Buchbesprechungen. Schütt, H. (1993): Türkische Landschnecken. -- 433 S., zahlreiche Abbldungen. Wiesbaden (Hemmen). Mitteilungen der Deutschen Malakozoologischen Gesellschaft 53, 47-48.
Heller, J. (1976) The biogeography of enid landsnails on the Aegean islands. Journal of Biogeography, 3, 281-292.
Hosmer, D. W. & Lemeshow, S. (1989) Applied Logistic Regression. Wiley and Sons, New York.
Jacobshagen, V. (1986) Geologie von Griechenland. Beiträge zur Regionalen Geologie der Erde 19, 1-363, 2 geol. maps.
Jaenike, J. (1978) Effect of island area on Drosophila population densities. Oecologia 36, 327-332.
Kirchner, C., Krätzner, R. & Welter-Schultes, F. W. (1997) Flying snails - how far can Truncatellina (Pulmonata: Vertiginidae) be blown over the sea? Journal of Molluscan Studies 63, 479-487.
Kissel, C. & Laj, C. (1988) The Tertiary geodynamical evolution of the Aegean arc: a paleomagnetic reconstruction. Tectonophysics 146, 183-201.
Kohn, D. D. & Walsh, D. M. (1994) Plant species richness - the effect of island size and habitat diversity. Journal of Ecology 82, 367-377.
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton University Press, Princeton.
Manganelli, G., Bodon, M., Favilli, L. & Giusti, F. (1995) Gastropoda Pulmonata. Checklist delle specie della fauna italiana, 16 (eds. A. Minelli, S. Ruffo & S. La Posta), pp. 1-60. Edizioni Calderini, Bologna.
Martens, E. von (1889) Griechische Mollusken gesammelt von Eberh. von Örtzen. Archiv für Naturgeschichte 55 (1) (2), 169-240, Tafeln 9-11.
Mylonas, M. A. (1982) Meléti páno sti zoogeografía ke ikología ton cherséon malakíon ton Kikládon. [The zoogeography and ecology of the terrestrial molluscs of Cyclades]. Unpublished Ph. D thesis, University of Athens.
Mylonas, M. (1984) The influence of man: a special problem in the study of the zoogeography of terrestrial molluscs in the Aegean islands. World wide snails. Biogeographical studies on non-marine Mollusca (eds. A. Solem & A. C. van Bruggen), pp. 249-259. Brill/Backhuys, Leiden.
Mylonas, M. & Vardinoyannis, K. (1989) Contribution to the knowledge of the terrestrial malacofauna of Macronissos Island (Cyclades, Greece). Journal of Conchology 33, 159-164.
Nilsson, S. G., Bengtsson, J. & Ås, S. (1988) Habitat diversity or area per se? Species richness of woody plants, carabid beetles and land snails on islands. Journal of Animal Ecology 57, 685-704.
Papazachos, C. B. & Kiratzi, A. A. (1996) A detailed study of the active crustal deformation in the Aegean and surrounding area. Tectonophysics 253, 129-153.
Peake, J. (1971) The evolution of terrestrial faunas in the western Indian Ocean. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 260, 581-610.
Piantelli, F., Giusti, F., Bernini, F. & Manganelli, G. (1990) The mollusc and oribatid fauna of the Aeolian and Tuscan archipelagos and the island equilibrium theory. Atti dei Convegni Lincei 85, 117-154.
Preston, F. W. (1962). The canonical distribution of commonness and rarity. Ecology 43, 185-215 and 410-432.
Reischütz, P. L. (1985) Ein Beitrag zur Molluskenfauna von Léros (Dodekanes, Griechenland). Malakologische Abhandlungen 11, 17-24.
Reischütz, P. L. (1986) Beiträge zur Molluskenfauna der ägäischen Inseln. Malakologische Abhandlungen 11, 93-103.
Riedel, A. (1992) The Zonitidae (sensu lato) (Gastropoda, Pulmonata) of Greece. Fauna Graeciae 5, 1-194.
Schilthuizen, M. (1994) Differentiation and hybridisation in a polytypic snail. PhD Thesis, University of Leiden.
Schultes, W. & Wiese, V. (1990) Die Gattung Albinaria auf Kreta: IV. Zur Verbreitung der Landschnecken auf Día. Schriften zur Malakozoologie 3, 23-47.
Schultes, W. & Wiese, V. (1991) Die Gattung Albinaria auf Kreta: VII. Die Landschneckenfauna der Dionisádes-Inseln. Schriften zur Malakozoologie 4, 76-93.
Schultes, W. & Wiese, V. (1992) Die Gattung Albinaria auf Kreta: IX. Landschnecken einiger ostkretischer Nebeninseln. Schriften zur Malakozoologie 5, 73-77.
Schütt, H. (1993) Türkische Landschnecken. Christa Hemmen Verlag, Wiesbaden.
Sfenthourakis, S. (1996) A biogeographical analysis of terrestrial isopods (Isopoda, Oniscidea) from the central Aegean islands (Greece). Journal of Biogeography 23, 687-698.
Simberloff, D. (1976) Experimental zoogeography of islands: effects of island size. Ecology 57, 629-648.
Slud, P. (1976) Geographic and climatic relationships of avifaunas with special reference to comparative distribution in the Neotropics. Smithsonian Contributions to Zoology 212.
Taymaz, T., Jackson, J. & McKenzie, D. (1991) Active tectonics of the north and central Aegean Sea. Geophysical Journal International 106, 433-490.
Tokeshi, M. (1993) Species abundance patterns and community structure. Advances in Ecological Research 24, 111-186.
Vardinoyannis, K. (1994) Viogeografía ton cherséon malakíon sto nótio nisiotikó egeakó tóxo [Biogeography of land snails in the South Aegean Island Arc]. Unpublished Ph. D. thesis, University of Athens.
Valovirta, I. (1979) Primary succession of land molluscs in an uplift archipelago of the Baltic. Malacologia 18, 169-176.
Vicente, J.-C. (1970) Étude géologique de l'île de Gávdos (Grèce), la plus méridionale de l'Europe. Bulletin de la Société Géologique de France (7) 12 (3), 481-494.
Waldén, H. W. (1984) On the origin, affinities, and evolution of the land Mollusca of the Mid-Atlantic Islands, with special reference to Madeira. Boletim do Museu Municipal do Funchal 36, 51-52.
Welter-Schultes, F. W. (1998a) Albinaria land snails in central and eastern Crete: distribution map of the species (Gastropoda: Clausiliidae). Journal of Molluscan Studies 64, 275-279.
Welter-Schultes, F. W. (1998b) Die Landschnecken der griechischen Insel Gávdos, der südlichsten Insel Europas. Schriften zur Malakozoologie 12, 1-120.
Welter-Schultes, F. W. (1998c) Human-dispersed land snails in Crete, with special reference to Albinaria (Gastropoda: Clausiliidae). Biologia Gallo-hellenica 24, 83-106.
Welter-Schultes, F. W. & Wiese, V. (1993) Die Gattung Albinaria auf Kreta: X. Die Landschneckenfauna der Paximádia-Inseln vor Südkreta (Nómos Rethimnís). Schriften zur Malakozoologie 6, 51-54.
Welter-Schultes, F. W. & Wiese, V. (1997a) Die Landschnecken der Grándes-Insel westlich von Palékastro (Ostkreta). Schriften zur Malakozoologie 10, 61-63.
Welter-Schultes, F. W. & Wiese, V. (1997b) Die Landschnecken der Insel Chrisí (südlich Kreta) und der Nebeninsel Mikronísi. Schriften zur Malakozoologie 10, 64-79.
Welter-Schultes, F. W. & Wiese, V. (1997c) Die Landschnecken der Insel Koufonísi (südlich Kreta) mit Nebeninseln. Schriften zur Malakozoologie 10, 80-95.
Wiktor, A. (1996) The slugs of the Former Yugoslavia (Gastropoda terrestria nuda: Arionidae, Milacidae, Agriolimacidae, Limacidae). Annales Zoologici 46, 1-110.
Wiktor, A., Vardinoyannis, K. & Mylonas, M. (1994) Slugs of the Greek Southern Aegean Islands (Gastropoda terrestria nuda: Milacidae, Agriolimacidae et Limacidae). Malakologische Abhandlungen 17, 1-36.
Williams, M. R. (1995) An extreme-value function model of the species incidence and species-area relations. Ecology 76, 2607-2616.
Williams, M. R. (1996) Species-area curves: the need to include zeroes. Global Ecology and Biogeography Letters 5, 91-93.
Wright, S. J. (1981) Intra-archipelago vertebrate distributions: the slope of the species-area relation. American Naturalist 118, 726-748.

 

 Table 1. Parameters for each of the 65 evaluated Aegean islands. Values for the western Mediterranean islands Sicily, Sardinia and Corsica and for continental regions are listed for comparison.

                Island                Region           A       Acal    S       Saut    SEn     Altitude        NCLI    D               References for S
                  or territory                             [km2]   [km2]                                     [m a.s.l.]                   [km]            
        1.      Petallídi (near Día)    Crete   0.0058  0.0058  7       5       1       19      Día     1.15            Schultes & Wiese, 1990
        2.      Kaváli (NW)            Crete       0.0066  0.0066  5       5       0       24      Crete   0.59            Schultes & Wiese, 1992
        3.      Marmára (Koufonísi)     Crete   0.0077  0.0077  7       5       1       10      Koufonísi       0.12            Welter-Schultes & Wiese, 1997c
        4.      Kaváli (E)                  Crete   0.020   0.020   7       5       0       47      Crete   0.62            Schultes & Wiese, 1992
        5.      Kaváli (SW)              Crete   0.021   0.021   10      7       0       59      Crete   0.75            Schultes & Wiese, 1992
        6.      Kimó                           Crete   0.026   0.026   6       5       1       11      Crete   0.20            Schultes & Wiese, 1992
        7.      Kónida                      Crete   0.037   0.037   6       5       1       25      Crete   1.2             Schultes & Wiese, 1992
        8.      Prásonísi (Dionisádes)  Crete   0.055   0.055   11      8       1       44      Dragonáda       0.15            Schultes & Wiese, 1991
        9.      Makrouló (Koufonísi)    Crete   0.070   0.070   5       5       1       10      Koufonísi       0.35            Welter-Schultes & Wiese, 1997c
        10.     Ag. Nikólaos (Móchlos)  Crete   0.073   0.073   13      11      1       62      Crete   0.30            Schultes & Wiese, 1992
        11.     Mikronísi (Chrisí)      Crete   0.150   0.0     7       4       1       16      Chrisí  0.61            Welter-Schultes & Wiese, 1997b
        12.     Strongiló (Koufonísi)   Crete   0.150   0.150   9       7       1       19      Koufonísi       0.68            Welter-Schultes & Wiese, 1997c
        13.     Tráchilos (Koufonísi)   Crete   0.158   0.158   9       5       1       43      Koufonísi       0.18            Welter-Schultes & Wiese, 1997c
        14.     Kolokíthia                  Crete   0.17    0.17    6       5       1       40      Crete   0.40            Schultes & Wiese, 1992
        15.     Grándes                      Crete   0.28    0.28    10      7       1       42      Crete   1.45            Welter-Schultes & Wiese, 1997a
        16.     Pondikonísi               Crete   0.28    0.28    13      9       1       164     Crete   8.7             Vardinoyannis, 1994
        17.     Paximáda (Dionisádes)   Crete   0.32    0.32    7       7       1       133     Dragonáda       2.05            Schultes & Wiese, 1991
        18.     Paximádia (W)        Crete   0.76    0.76    15      14      1       252     Crete   9.7             Welter-Schultes & Wiese, 1993; Vardinoyannis, 1994
        19.     Paximádia (E)   Crete   0.80    0.80    12      11      1       166     Crete   9.1             Welter-Schultes & Wiese, 1993
        20.     Agria Gramvoúsa Crete   0.84    0.84    7       7       1       103     Crete   0.67            Vardinoyannis, 1994
        21.     Psíra   Crete   1.50    1.50    12      10      1       204     Crete   2.3             Schultes & Wiese, 1992
        22.     Elása   Crete   1.75    1.75    ? 9     ? 8     1       72      Crete   2.55            Martens, 1889
        23.     Gianisáda (Dionisádes)  Crete   2.25    2.25    14      13      1       147     Crete   6.8             Schultes & Wiese, 1991
        24.     Gavdopoúla      Crete   2.75    2.75    14      12      1       133     Gávdos  7.3             Vardinoyannis, 1994; Welter-Schultes, 1998b
        25.     Dílos   Kikládes        3.43    0.0     15      10              112     Míkonos 2.2             Mylonas, 1982
        26.     Dragonáda (Dionisádes)  Crete   3.05    3.05    10      9       1       128     Crete   8.3             Schultes & Wiese, 1991
        27.     Koufonísi       Crete   4.25    4.25    14      8       1       64      Crete   5.4             Welter-Schultes & Wiese, 1997c
        28.     Chrisí  Crete   5.08    0.50    12      8       1       27      Crete   14.0            Welter-Schultes & Wiese, 1997b
        29.     Páno Koufonísi  Kikládes        6.00    0.0     9       8               114     Náxos   3.7             Mylonas, 1982
        30.     Día     Crete   12.5    12.5    21      18      1       268     Crete   12.0            Schultes & Wiese, 1990; Vardinoyannis, 1994
        31.     Kéros   Kikládes        15.5    0.0     14      14              432     Náxos   8.2             Mylonas, 1982
        32.     Políegos        Kikládes        17.2    0.0     11      9               370     Mílos   5.5             Mylonas, 1982
        33.     Irakliá Kikládes        17.6    0.0     18      13              419     Náxos   4.5             Mylonas, 1982
        34.     Makrónisos      Kikládes        18.3    0.0     19      17              264     Greece  2.4             Mylonas & Vardinoyannis, 1989
        35.     Andikíthira     S.Aegean        20.0    20.0    25      20      1       378     Crete   35.5            Vardinoyannis, 1994
        36.     Saría   S.Aegean        21.1    21.1    20      17      1       629     Kárpathos       0.60            Vardinoyannis, 1994
        37.     Gávdos  Crete   26.8    25.6    27      20      1       345     Crete   35.8            Welter-Schultes, 1998b
        38.     Folégandros     Kikládes        32.1    19.8    28      21              415     Ios     26.5            Mylonas, 1982
        39.     Andíparos       Kikládes        34.9    16.4    24      15              368     Páros   1.2             Mylonas, 1982
        40.     Kímolos Kikládes        35.7    0.0     20      12              358     Mílos   0.8             Mylonas, 1982
        41.     Anáfi   Kikládes        38.4    20.9    22      17              582     Náxos   61              Mylonas, 1982
        42.     Sikinos Kikládes        41.0    23.9    29      20              533     Náxos   31              Mylonas, 1982
        43.     Léros   Dodek.  53      13.2    40      33              328     Turkey  29              Reischütz, 1985
        44.     Kásos   S.Aegean        66.0    66.0    24      19      1       601     Kárpathos       4.2             Vardinoyannis, 1994
        45.     Sífnos  Kikládes        73.2    43.7    33      24              678     Náxos   52              Mylonas, 1982
        46.     Sérifos Kikládes        73.2    26.8    25      19              585     Greece  64              Mylonas, 1982
        47.     Thíra   Kikládes        75.8    5.9     20      17              586     Náxos   42              Mylonas, 1982
        48.     Síros   Kikládes        83.6    0.0     35      25              422     Andros  19              Mylonas, 1982
        49.     Míkonos Kikládes        85.5    0.0     15      10              372     Tínos   7.3             Mylonas, 1982
        50.     Kíthnos Kikládes        99.3    15.2    25      20              306     Greece  39.5            Mylonas, 1982
        51.     Ios     Kikládes        107.8   19      22      17              713     Náxos   17              Mylonas, 1982
        52.     Amorgós Kikládes        121.1   0.0     31      28              821     Náxos   23.5            Mylonas, 1982
        53.     Kéa     Kikládes        130.6   0.0     34      27              560     Greece  20.5            Mylonas, 1982
        54.     Mílos   Kikládes        150.6   0.0     26      17              751     Greece  99.5            Mylonas, 1982
        55.     Tínos   Kikládes        194.3   0.0     36      29              730     Evia    52.5            Mylonas, 1982
        56.     Páros   Kikládes        194.5   104.0   36      26              705     Greece  113             Mylonas, 1982
        57.     Kíthira S.Aegean        278     53.6    49      37      3       506     Greece  12.8            Vardinoyannis, 1994
        58.     Kárpathos       S.Aegean        301     179.6   48      36      2       1215    Ródos   47              Vardinoyannis, 1994
        59.     Andros  Kikládes        380     102.3   38      29              994     Evia    14.8            Mylonas, 1982
        60.     Náxos   Kikládes        428     240     42      33              1001    Turkey  126             Mylonas, 1982
        61.     Límnos  N.Aegean        460     0.0     34      22              459     Turkey  58.5            Reischütz, 1986
        62.     Chíos   N.Aegean        842     556     50      43              1297    Turkey  5.5             Bar & Butot, 1986
        63.     Ródos   Dodek.  1400    350     60      50      5       1215    Turkey  16.5            Vardinoyannis, 1994
        64.     Lésvos  N.Aegean        1630    0.0     52      43              968     Turkey  9.8             Bank, 1988
        65.     Crete   S.Aegean        8260    6380    135     120     5-14?   2456    Greece  101             F. Welter-Schultes, unpubl. data
                Corsica W. Medit.       8723    1841    85      77              2707    Italy   81              Piantelli et al., 1990
                Sardinia        W. Medit.       24090   3375    98      88              1829    Italy   188             Manganelli et al., 1995; Bodon et al

., 1995
                Sicily  W. Medit.       25710   19330   132     122             3323    Italy   4.0             Manganelli et al., 1995; Bodon et al., 1995
                Albania         2.9x104                 230                                             Dhora & Welter-Schultes, 1996
                Former Yugoslavia               2.5x105                 550                                             F. Welter-Schultes, unpubl. data
                Europe          1.0x107                 1370                                            Falkner, 1990

A = area (total), Acal = calcareous area, S = species (total), Saut = autochthonous species, SEn = Enidae species, NCLI = nearest considerably larger island (or territory), D = distance to NCLI.
 

 

Table 2. Goodness-of-fit statistics and probability (p-) values associated with each variable at each step in the stepwise regression model construction, using both the power and extreme-value function models. The univariate R2 or R2-like statistics show the strength of association between log(species number) [power function model] or species number [EVF model] and each variable alone. Each column of p-values is for the remaining variables, after fitting the variable heading the column to the regression model. Variables that will most improve the model fit have the lowest p-values. At the base of each column is the R2 or R2-like goodness-of-fit statistic for the model after fitting the variable heading 7the column.

                                  Power function model                                                             Extreme-value function model                    
Parameter       Univariate R2 statistic and associated p-value  

                                             P-values associated with each parameter after fitting effects for:                      

                                                                                                                              Univariate R2-like statistic and associated p-value     

                                                                                                                                                        P-values associated with each parameter after

                                                                                                                                                         fitting effects for:              

                                          log(area)Elevation    log(area)Elevation PCS  log(area)

                    Elevation PCS                                                                                      log(area)                log(area)Elevation      log(area)       Elevation

log(area)       0.82(<0.0001)                   -                            -                      -               0.82(<0.0001)                -                        -                     -
Elevation      0.77(<0.0001)                 2E-7                        -                       -              0.84(<0.0001)             1E-17                     -                    -
PCS            0.16(0.00080)                 0.00028                 0.015                   -              0.071(<0.0001)             2E-11               0.053                 -
Distance       0.35(<0.0001)                 0.11                      0.85                 0.96             0.33(<0.0001)              0.014                0.75                   0.64
Calcareous substrate present    0.010(0.43)     0.0015            0.021              0.48             0.00012(0.77)              3E-6                  0.11                  0.74
All calcareous substrate      0.40(<0.0001)   0.049               0.091                0.62             0.33(<0.0001)              3E-5                 0.17                  0.99
Partially calcareous substrate  0.34(<0.0001)   0.089           0.32                   0.47             0.32(<0.0001)             0.031                0.50                  0.81
R2 or R2-like statistic -                       0.82                      0.89                0.90                         -                     0.82                   0.93                 0.93

PCS = proportion of calcareous substrate.

 

 

Table 3. Parameter estimates (top line) and associated standard errors for various regression models. Log(species number) [power function model] or species number [EVF model] was regressed on the variables heading each column.

 

                                            Power function model                                                      Extreme-value function model            
Variable        log(area)       log(area)Elevation      log(area)ElevationPCS              log(area)       log(area)Elevation      log(area)ElevationPCS
Intercept       0.98//0.019           0.92//0.019                    0.85//0.030                        -3.44//0.055              -3.44//0.050                     -3.57//0.084
log(area)       0.180.011                0.120.015                         0.150.018                       0.570.025                      0.290.038                       0.360.052
Elevation          -                      0.00030//0.000052         0.00025//0.000053                      -                        0.00072//0.000077       0.00060//0.000098
PCS                        -                             -                             0.099//0.039                              -                                    -                                  0.20//0.10

PCS = proportion of calcareous substrate.

 

 Figures

Fig. 1. Paleogeography of the Aegean (A) in the middle Miocene (Langhian, 16.5 Ma), (B) during the late Miocene (Messinian, 6.5 Ma), and (C) the present geography in the Aegean, the 65 islands dealt with in this study are shown in black.

 

Fig. 2. Species-area relation for autochthonous land snails of the Aegean islands (closed circles). The western Mediterranean islands (open circles) and the values for continental areas (AL = Albania, FYU = Former Yugoslavia) are shown for comparison and were not included in the analyses. Regression lines are as follows: power function (dashed line, logS = 0.977 + 0.184 logA, R2 = 0.82); power function, fitted using non-linear regression (dotted line, S = 4.626 A0.344, R2 = 0.88, continental values also excluded here); extreme-value function (solid line, S = 264 (1-exp (-exp (0.572 logA-3.444))), R2-like = 0.82). Non-linear regression gives the worst fit.

 

muell@schrottmails.de hier klicken