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Abstract

Background The COVID-19 pandemic has had a profound impact on
health, everyday life and economics around the world. An important
complication that can arise in connection with a COVID-19 infection
is acute kidney injury. A recent observational cohort study of COVID-
19 patients treated at multiple sites of a tertiary care center in Berlin,
Germany identified risk factors for the development of (severe) acute
kidney injury. Since inferring results from a single study can be tricky, we
validate these findings and potentially adjust results by including external
information from other studies on acute kidney injury and COVID-19.

Methods We synthesize the results of the main study with other trials
via a Bayesian meta-analysis. The external information is used to construct
a predictive distribution and to derive posterior estimates for the study
of interest. We focus on various important potential risk factors for
acute kidney injury development such as mechanical ventilation, use of
vasopressors, hypertension, obesity, diabetes, gender and smoking.

Results Our results show that depending on the degree of heterogeneity
in the data the estimated effect sizes may be refined considerably with
inclusion of external data. Our findings confirm that mechanical ventilation
and use of vasopressors are important risk factors for the development of
acute kidney injury in COVID-19 patients. Hypertension also appears to
be a risk factor that should not be ignored. Shrinkage weights depended
to a large extent on the estimated heterogeneity in the model.
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Conclusions Our work shows how external information can be used to
adjust the results from a primary study, using a Bayesian meta-analytic
approach. How much information is borrowed from external studies will
depend on the degree of heterogeneity present in the model.

1 Introduction

Over the past years the global COVID-19 pandemic, caused by the SARS-CoV-2
virus, has had far reaching and damaging effects on society, both in a health
and economic sense (Padhan and Prabheesh, 2021). One important health
complication that can arise in connection with COVID-19 is acute kidney injury
(AKI) (Batlle et al., 2020). Reported rates of AKI suggest the kidney could
be the second most affected organ in patients with COVID-19 (Gabarre et al.,
2020; Hardenberg et al., 2021). However, the underlying mechanisms are not yet
fully explored (Siew and Birkelo, 2020). A recent observational cohort study of
COVID-19 patients treated at multiple sites of a tertiary care center in Berlin,
Germany observed the development of severe AKI in 70 out of 223 patients
(Hardenberg et al., 2021). Patients with severe AKI were older, mostly male and
also had more comorbidities as well as excess mortality Hardenberg et al. (2021).

Inferring results from a single study however can be tricky, especially if the
sample size is small. Researchers may be faced with one or several samples
that have been gathered without necessarily being powered to achieve a certain
pre-specified power. The overall aim for such studies may be rather exploratory
in nature. This is the present context for a recent study on AKI in COVID-19
patients Hardenberg et al. (2021). Here, a tempting approach is to include
external information from other studies. This is also known as borrowing
of strength (Röver and Friede, 2020). A natural way to facilitate this is the
application of Bayesian methods (Schmidli et al., 2014). These allow to synthesize
external studies via meta-analysis and to derive a predictive distribution for
the main effect of a new study. We refer to this as the meta-analytic-predictive
(MAP) prior (McKinney et al., 2021; Schmidli et al., 2014). The MAP prior can
be used as a prior for the new study in order to derive a posterior distribution via
Bayes’ theorem. This is equivalent to a meta-analytic-combined (MAC) approach,
where all studies (including the new one) are meta-analyzed and a shrinkage
estimate is subsequently calculated for the new study (Röver et al., 2019). This
shrinkage estimate will be a weighted average between the meta-analytic estimate
of the overall effect and the study-specific estimate. Whether the shrinkage
estimate lies closer to the study-specific estimate or the meta-analytic estimate
of the overall effect depends to a large degree on the heterogeneity present in
the data. As highlighted in Röver and Friede (2021), it is even possible to
calculate bounds for the “shrinkage weights”, i.e. the contribution of the study
of focus to its own shrinkage estimate. We follow a MAC approach, in order
to validate and potentially adjust the results in Hardenberg et al. (2021). We
do this by incorporating study results from Cai et al. (2021), who conducted a
systematic review and meta-analysis of (potential) risk factors for AKI in adult
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patients with COVID-19. Whereas Hardenberg et al. (2021) mainly considered
longitudinal data and temporal associations with disease course, we focus on
baseline characteristics, due to a lack of comparable studies with longitudinal
data.

In the following Section 2, we first review the standard normal-normal
hierarchical model (NNHM) for meta-analysis in Subsection 2.1. This is followed
by a description of posterior distributions in Subsection 2.2 and a description of
the shrinkage estimates of study-specific means in Subsection 2.3. In Section
3 we introduce research on the occurrence of acute kidney injury and possible
contributing factors in COVID-19 patients. We apply the described Bayesian
methodology on data regarding acute kidney injury in COVID-19 patients from
Hardenberg et al. (2021) and Cai et al. (2021) and present the results. We close
with a discussion and an outlook in Section 4.

2 Methods

2.1 The normal-normal hierarchical model

We briefly describe the standard NNHM, which can be used to address a wide
range of problems and refer to Borenstein et al. (2021) for more details. In
the NNHM, study-level effects are modeled using normal distributions, while
heterogeneity is modeled as an additive normal variance component on a second
hierarchy level. Given k studies with their respective effects yi and (assumed
known) sampling variances σ2

i , with i = 1, . . . , k, the goal is to infer an overall
effect µ. The yi are estimates of µ, which are assumed to be normally distributed
around the ith study’s true effect θi: yi ∼ N (θi, σ

2
i ). In random-effects meta-

analysis the study level effects θi are assumed to vary normally around the
overall mean µ with heterogeneity variance τ2, i.e. θi ∼ N (µ, τ2). The marginal
formulation of this model is

yi ∼ N (µ, σ2
i + τ2), (1)

which may be attractive if the study-specific parameters θi are only of secondary
interest (Borenstein et al., 2021).

2.2 Posterior Distributions

To simplify notation we set y := (y1, . . . , yk)′ for the observed effect sizes and
σ2 := (σ2

1 , . . . , σ
2
k)′ for the respective sampling variances, pooled from our k

studies. Given an improper uniform or normal prior for the effect µ, the effect’s
conditional posterior distribution for a given heterogeneity τ2, p(µ | τ2,σ2,y),
is again normal (Röver, 2020). In case of an improper uniform prior we obtain

µ̂ =
∑k

i=1 wiyi∑k
i=1 wi

and σ̂ = 1/
√∑k

i=1 wi as posterior estimators for the mean and

the standard deviation, respectively, where wi = (σ2
i + τ2)−1. In case of a

normal prior for µ with mean µp and variance σ2
p we obtain posterior mean
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µ̂ =
µp/σ

2
p+

∑k
i=1 wiyi

σ−2
p +

∑k
i=1 wi

and standard deviation σ̂ = 1/
√
σ−2p +

∑k
i=1 wi (Gelman

et al., 2014; Röver, 2020).
To additionally estimate study specific means we consider shrinkage estimates.

2.3 Shrinkage Estimates of study-specific means

In many applications the main interest focuses on the overall mean estimate of
µ. However, here we are interested in estimating the study-specific parameter
θi, which is informed by both the i-th study estimate as well as the estimated
overall mean effect and the between-study heterogeneity. This means we are
interested in inferring the posterior distribution of the study-specific effect θi for
study i with i = 1, . . . , k. In the following we assume the standard NNHM model.
Thus, conditional on a heterogeneity variance of τ2, the posterior distribution of
θi is normal with moments given by

E[θi | τ2,σ2,y] =
yi/σ

2
i + µ̂(τ2)/τ2

σ−2i + τ−2
, (2)

V ar(θi | τ2,σ2,y) =
1

σ−2i + τ−2
+

(
τ−2

σ−2i + τ−2
σ̂

)2

, (3)

where µ̂(τ2) is the estimated summary effect and σ̂ the estimated standard
deviation of µ̂ (Gelman et al., 2014). These formulas illustrate the pull of the
ith study effect estimate toward the estimated population mean. Hence the
term “shrinkage estimate”. Although the posterior distribution of θi condi-
tional on τ2 is normal, in practice the amount of heterogeneity τ2 is unknown
and must be estimated. The resulting posterior distribution for θi will be a
mixture distribution (Röver, 2020), which we denote as Fi for study i. Two
possibilities for constructing confidence intervals (CIs) are (a) define a (1−α)-CI
via [ci,α/2, ci,1−α/2], where ci,α/2 is the α/2 quantile of Fi or (b) numerically
determine a “shortest” interval, which for unimodal posteriors is equal to the
highest posterior density region (Gelman et al., 1995). We apply approach (b)
using the R package bayesmeta, in order to modify results from a recent study
on acute kidney injury in COVID-19 patients by Hardenberg et al. (2021).

3 Acute Kidney Injury and COVID-19

AKI is a relevant complication in COVID-19. Some studies have reported that
the incidence of AKI in COVID-19 patients is more than twice the incidence of
AKI in non COVID-19 patients (Cai et al., 2021). Furthermore, evidence suggests
that patients suffering from AKI experience substantially increased in-hospital
mortality compared with those without AKI. However, the underlying relation-
ships are not fully known. In order to shed some light on these mechanisms, an
observational cohort study of 223 COVID-19 patients treated at three sites of a
tertiary care center in Berlin, Germany at the Charité-Universitätsmedizin Berlin
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was performed. Both descriptive statistics and multivariable Cox regression
models with time-varying covariates were used to identify risks factors of severe
AKI (Hardenberg et al., 2021). The latter considered time-to-severe AKI as the
primary endpoint with prior death as a competing risk. Their study will be our
main focus in the application of the methodology described in Section 1.

3.1 Risk factors for AKI development in COVID-19 Pa-
tients

Cai et al. (2021) conducted a systematic review and meta-analysis of (potential)
risk factors for AKI in adult patients with COVID-19. They extracted their data
based on a systematic literature search in PubMed, EMBASE, Web of Science,
the Cochrane Library, CNKI, VIP and WanFang data between December 1, 2019
and January 30, 2021 (Cai et al., 2021). We use their data and results to add to
the findings in Hardenberg et al. (2021). For this analysis we additionally follow
Hardenberg et al. (2021) with respect to variable selection, i.e. with respect to
selecting the main potential risk factors for AKI development. Their results
are based on a competing risks model with time-dependent covariates. AKI
was diagnosed according to KDIGO guidelines in all considered studies. We
will consider the following (potential) risk factors for the development of AKI
in COVID-19 patients: obesity (BMI > 30), gender, smoking, hypertension,
diabetes, mechanical ventilation (MV) and the intake of vasopressors. The latter
two were deemed especially important risk factors in Hardenberg et al. (2021).
For all (binary) risk factors, we compare the AKI prevalence (any of the three
stages vs. none) in the corresponding patient subgroups for each study, as in
Cai et al. (2021). We note that this is in contrast to the study by Hardenberg
et al. (2021), who considered severe AKI, i.e. stage 3 AKI, as primary event of
interest. However, the studies collected by Cai et al. (2021) all compared any
stage AKI with none. The effect measures are log-odds ratios (ORs).

3.2 Results

In the following Figures 1–3 (5–8 in the Appendix) we show forest plots for each
risk factor separately. Displayed are the study-specific effects and their shrinkage
estimates, as well as their corresponding 95% CIs. In each instance the final
data row, with shrinkage estimate highlighted in red, represents the main study
of interest by Hardenberg et al. (2021). Additionally the estimated population
means and prediction intervals are provided along with an estimate of τ , the
square root of the between-study heterogeneity variance (also with a CI). We
will now consider different potential risk factors for the development of AKI in
COVID-19 patients successively. Here, µ̂ describes the meta-analytic summary
estimate of the effect of the respective risk factor.

Mechanical ventilation (MV) is a statistically significant potential risk factor
with a study specific estimate of 3.488 with a 95% CI of [2.686,4.289] and the
shrinkage estimate is 3.271 with a 95% CI of [2.529,4.017]. MV was pointed out
as one of the main risk factors for AKI in COVID-19 patients in Hardenberg
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et al. (2021). The µ̂ refers to the estimated mean log-OR across all studies.
Meta-analysis yields an estimated log-OR of µ̂ = 2.215 and 95% CI for µ of
[1.799,2.630]. The estimated heterogeneity is τ̂ ≈ 0.920.

The use of vasopressors is also a statistically significant potential risk factor
with a study specific estimate of 5.095 with a 95% CI of [4.076,6.113]. The
respective shrinkage estimate is 4.665 with a 95% CI of [3.676,5.659]. Like
MV, vasopressors were pointed out as one of the main risk factors for AKI in
COVID-19 patients in Hardenberg et al. (2021), based on a competing risks
model with time dependent covariates. Based on a meta-analysis, the estimated
log-OR was µ̂ = 2.295 with a 95% CI for µ of [1.558,3.015]. The estimated
heterogeneity is τ̂ ≈ 1.250.

Moreover, hypertension is also a statistically significant risk factor with a
study specific estimate for the study by Hardenberg et al. (2021) of 1.352 and
a corresponding 95% CI of [0.795,1.909]. The respective shrinkage estimate is
1.053 with a 95% CI of [0.601,1.519]. Meta-analysis yields an estimated log-OR
of µ̂ = 0.687 with a 95% CI for µ of [0.535,0.855]. The estimated heterogeneity
is τ̂ ≈ 0.330.

We highlight the differing amounts of heterogeneity in the models for the
respective risk factors. For MV, vasopressors and hypertension, τ was estimated
at 0.920, 1.250 and 0.330 respectively. Therefore, for MV and vasopressors the
shrinkage estimates are very close to the study-specific estimates by Hardenberg
et al. (2021), as shown in Figures 1 and 2. For hypertension, shown in Figure 3,
where the estimated heterogeneity is considerably smaller, the summary estimate
of µ has a much larger weight, leading to a more substantial difference between
the shrinkage and study-specific estimate. This also becomes evident when one
considers the numerator in expression (2). Röver and Friede (2021) showed that
a study’s minimum contribution to its own shrinkage estimate is its fixed-effect
weight, i.e. the study weight for τ2 = 0 (the fixed-effects model). The study’s
contribution then increases monotonically, as τ2 increases. For τ2 → ∞, the
shrinkage estimate of the ith study converges to the study’s effect estimate yi
with i = 1, . . . , k.

For the forest plots showing the results of gender, smoking, diabetes and
obesity, we refer to the Appendix. These were non-significant potential risk
factors in the competing risks model by Hardenberg et al. (2021), see their
Figure 1. As a reminder to the reader, the effect sizes in the time-to-event
competing risks model by Hardenberg et al. (2021) are cause-specific hazard
ratios. “The cause-specific hazard ratio denotes the relative change in the
instantaneous rate of the occurrence of the primary event in subjects who are
currently event-free” (Austin and Fine, 2017). On the other hand, for the
more simple group comparisons we consider here, the effects are log-odds ratios.
Therefore, there are some important differences that should be kept in mind.
For one, the cause-specific hazard ratios incorporate a time component, which
the ORs do not. Furthermore, the ORs are unadjusted effects, as we are dealing
with simple group comparisons. The cause-specific hazard ratios however, are
adjusted effects as they are part of a model that includes various other covariates.
Even though gender, smoking, diabetes and obesity were non-significant risk
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factors respectively in the competing risks model by Hardenberg et al. (2021)
with regards to the cause-specific hazard ratios, the estimated overall ORs for
gender, smoking and diabetes were in fact statistically significant.

Smoking is a statistically significant potential risk factor with µ̂ = 0.244 and
a 95% CI for µ of [0.011,0.557]. The study specific estimate for Hardenberg et al.
(2021) is 0.903 with a 95% CI of [0.189,1.616]. The corresponding shrinkage
estimate is 0.441 with a 95% CI of [0.031,1.041]. The estimated heterogeneity is
τ̂ ≈ 0.210.

Diabetes is a statistically significant potential risk factor for AKI in COVID-
19 patients with an estimated overall effect of µ̂ = 0.548 and a 95% CI for µ of
[0.480,0.610]. The study-specific log odds ratio from Hardenberg et al. (2021) is
0.694 with a 95% CI of [0.049,1.340]. The corresponding shrinkage estimate is
0.555 with a 95% CI of [0.389,0.718]. The estimated heterogeneity is very small
with τ̂ ≈ 0.045.

Overall, gender is a statistically significant potential risk factor for AKI
in COVID-19 patients with µ̂ = 0.432 and a 95% CI for the main effect µ of
[0.304,0.567]. The study-specific data from Hardenberg et al. (2021) yielded an
estimated log odds ratio 0.634 with a corresponding 95% CI of [0.073,1.195].
The respective shrinkage estimate is 0.527 with a 95% CI of [0.134,0.927]. The
estimated heterogeneity is τ̂ ≈ 0.270.

Obesity was a special case, as the study by Hardenberg et al. (2021) presented
a considerable outlier compared with the other considered studies (cf. Figure 6).
Even though the overall OR of µ̂ = 0.283 was not statistically significant with a
95% CI of [-0.113,0.718], the study-specific estimate of the OR for obesity was
1.955 with a 95% CI of [1.263,2.648]. The resulting shrinkage estimate is 1.383
with a 95% CI of [0.567,2.178]. The estimated heterogeneity is τ̂ ≈ 0.520.

Finally, we present the relative shrinkage weights of the study Hardenberg
et al. (2021) for each potential risk factor respectively in Table 1. The shrinkage
weights lie between 0.856 for vasopressors and 0.054 for diabetes. Here a value
of one would mean the shrinkage estimate is exactly equal to the study-specific
estimate and a value of zero would mean the shrinkage estimate is exactly equal
to the meta-analytic summary estimate µ̂. We remind the reader that as the
heterogeneity variance τ2 increases (decreases), the shrinkage weight of the target
study also increases (decreases).

7



Table 1: Shrinkage weights of the Hardenberg et al. (2021) study for each
potential risk factor.

Contribution of Hardenberg et al. (2021) to shrinkage estimate
Risk factor Shrinkage weight
Mechanical Ventilation 0.837
Vasopressors 0.856
Hypertension 0.566
Obesity 0.685
Diabetes 0.054
Gender 0.485
Smoking 0.328
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4 Discussion

In this manuscript we demonstrated a Bayesian approach that allows researchers
to construct predictive prior distributions based on meta-analyses, yielding
posterior distributions and shrinkage estimates for a study of primary interest,
which are quantified in the light of external evidence. This approach can for
example be easily implemented in R using the bayesmeta package (Röver, 2020).
We apply the discussed approach for a study by Hardenberg et al. (2021), who
analyze potential risk factors for the development of severe AKI in COVID-
19 patients. We expand on their evidence with a meta-analysis on AKI in
COVID-19 by Cai et al. (2021). Although Hardenberg et al. (2021) focus on
time-to-event data and implement competing risks models, due to unavailability
of comparable studies, we focus on more simple effects as published by Cai
et al. (2021). The results confirm that both mechanical ventilation and use of
vasopressors are important risk factors for the development of AKI in COVID-19
patients. Hypertension also appears to be a risk factor for AKI development that
should not be ignored. Furthermore, our analysis of ORs supports that smoking,
diabetes and male gender are additional risk factors for AKI development in
COVID-19 patients that should be taken into account.

As demonstrated in our analysis, there is a clear connection between the
amount of heterogeneity in the meta-analytic model and the amount of borrowing
of strength that takes place from external (relative to the primary study of
interest) information. This becomes evident, when the relative shrinkage weights
for each potential risk factor from Table 1 are compared with the respective
heterogeneity variances. Mechanical ventilation and vasopressors, which have
rather large estimated heterogeneity variances with τ̂2 equal to 0.846 and 1.563
respectively, have the largest shrinkage weights with 0.837 and 0.856. Diabetes
on the other hand has a heterogeneity of only τ̂2 ≈ 0.002 with a corresponding
shrinkage weight of 0.054.

A limitation of this work is that we only applied the presented Bayesian
approach for the normal-normal hierarchical model as we did not have access to or
information on competing risks or covariates in other comparable studies/analyses.
Thus, a more sophisticated analysis, e.g. in the context of a meta-regression,
was not feasible. The present study was facilitated by having access to the
original data from Hardenberg et al. (2021), as this allowed us to compute
estimates corresponding to those discussed in the meta-analyses by Cai et al.
(2021). Analyses may be more difficult if researchers do not have access to the
original data from their primary study of interest.
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Röver, C. and Friede, T. (2021). Bounds for the weight of external data in
shrinkage estimation. Biometrical Journal, 63(5):1131–1143.
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Appendix

Time-to-acute-kidney-injury-development in COVID-
19 patients

Hardenberg et al. (2021) implemented multivariable Cox proportional hazards
regression models with time-varying covariates. More specifically, they fit two
competing risks models with time-varying covariables: a main model with 11
covariates and a reduced model with 8 covariates. The main event of interest
was time to severe AKI (AKI stage 3) with prior death as the competing
risk. The respective cumulative incidence functions are shown in Figure 4a,
similar to Supplemental Figure 2 in Hardenberg et al. (2021). The results are
based on n = 223 patients, 70 of which experienced severe AKI during hospital
admission with 9 patients dying without prior severe AKI (the competing event).
Additionally, Figure 4b shows the cumulative incidence functions stratified by
gender.
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Hardenberg et al. (2021) used these competing risks models to estimate
cause-specific hazard ratios for potential risk factors for the development of
severe AKI, along with 95% CIs. Their results indicate that MV and a need
for vasopressors are especially strong potential risk factors for AKI development
in COVID-19 patients. For MV and based on the main model, we obtain an
estimated cause-specific hazard ratio of 8.17 with a 95% CI of [1.95,34.25]. For
vasopressors, the main model yields a hazard ratio of 3.23 with a 95% CI of
[1.28,8.15]. Further notable potential risk factors are a high leucocyte (white
blood cells) count, procalcitonin (a precursor of the hormone calcitonin) increase
and arguably hypertension. For hypertension the estimated cause-specific hazard
ratio was 1.86 with a 95% CI of [0.93,3.72] based on the main model and a
hazard ratio of 2.19 with a 95% CI of [1.12,4.29] for the reduced model. The
cause-specific hazard for leucocyte counts was estimated at 1.67 for the main
model with a 95% CI for [1.00,2.79] and the hazard ratio for procalcitonin was
estimated at 1.82 with a 95% CI of [1.11,2.97]. Data regarding leucocyte counts
and procalcitonin were not available in the meta-analyses by Cai et al. (2021).
The results above are summarized in Table 2.

In Section 3, we considered the potential impacts of mechanical ventilation,
vasopressors and hypertension on AKI development from an alternative viewpoint,
i.e. non time-to-event data. There we analyzed simple log odds ratios comparing
the occurrence of AKI in respective subgroups of COVID-19 patients. In this
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Table 2: Cause-specific hazard ratios and confidence intervals based on a com-
peting risks model from Hardenberg et al. (2021).

Risk Factor Hazard Ratio 95% CI
Mechanical Ventilation 8.17 [ 1.95, 34.25 ]

Vasopressors 3.23 [ 1.28, 8.15 ]
Hypertension 1.86 [ 0.93, 3.27 ]

Leucocyte count 1.67 [ 1.00, 2.79 ]
Procalcitonin 1.82 [ 1.11, 2.97 ]

chapter we consider time-to-event data and cause-specific hazard ratios in the
context of competing risks models. In both settings, MV, vasopressors and
hypertension are statistically significant and meaningful (based on effect size)
risk factors for AKI development in COVID-19 patients. The log odds ratios
tell us that there are more AKI injury cases in those patient subgroups that
received MV, vasopressors or that have hypertension compared to those that
did not. The cause-specific hazard ratios calculated from the competing risks
models additionally show that MV, vasopressors and the presence of hypertension
increase the hazard of severe AKI in COVID-19 patients.

Unfortunately we were unable to find other studies that analyzed a Cox
proportional hazards regression with competing risks that consider time-to-AKI
in COVID-19 patients with prior death as a competing event. Therefore we
could not apply the Bayesian approach outlined in Section 1 for the competing
risks setting.
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