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Abstract

The trace plot is seldom used in meta-analysis, yet it is a very informative plot.

In this article we define and illustrate what the trace plot is, and discuss why it is

important. The Bayesian version of the plot combines the posterior density of � , the

between-study standard deviation, and the shrunken estimates of the study effects as

a function of � . With a small or moderate number of studies, � is not estimated with

much precision, and parameter estimates and shrunken study effect estimates can

vary widely depending on the correct value of � . The trace plot allows visualization

of the sensitivity to � along with a plot that shows which values of � are plausible

and which are implausible. A comparable frequentist or empirical Bayes version pro-

vides similar results. The concepts are illustrated using examples in meta-analysis

and meta-regression; implementaton in R is facilitated in a Bayesian or frequentist

framework using the bayesmeta and metafor packages, respectively.
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1 INTRODUCTION

Much progress has been made in encouraging people to go
beyond a fixed-effect (FE) model (also known as common-
effect model) to a random-effects (RE) model in meta-
analysis.1 However, most RE models do not take into account
the uncertainty in estimates of the standard deviation of true
effects (commonly called tau, and symbolized as �), and the
effect that this uncertainty has on other aspects of the analysis,
such as the shrunken estimates of true effect sizes. When the
number of studies is large, � is estimated with enough preci-
sion that the effects on shrunken estimates is not worrysome;
but that is not the case when the number of studies is small or
even moderate (say, a dozen).2,3

The problem occurs with methods based on heterogeneity
point estimates, such as DerSimonian and Laird, and even with
empirical Bayes methods, which go part way towards a fully
Bayesian solution.4 On the other hand, many practitioners do
not understand the Bayesian approach, in which the mathemat-
ical derivations can be taxing. In this article we show that using

graphical methods, and conceptual explanations of Bayesian
models, everyone can benefit from the Bayesian approach
without worrying about derivations of the results.

A range of graphical tools have been established to aid in
the interpretation or diagnosis of meta-analysis data and mod-
els, such as forest plots, funnel plots, L’Abbe plots, radial
plots, or drapery plots.5,6,7 One particular type of graphical
display that (to our knowledge) was originally introduced by
Rubin (1981)8 is the trace plot, illustrating conditional esti-
mates over a range of plausible heterogeneity values, and by
that facilitating valuable insights into the inner workings of a
random-effects model, in particular the role of the heterogene-
ity parameter �. This display seems to have been rarely picked
up in the meantime; it used to be implemented in DuMouchel’s
“hblm” S-PLUS software package,9,10 but besides some theo-
retical or instructional treatments4,11,12,9,13 we are only aware
of few (published) applications of this kind of display.14,15

The trace plot of Rubin (1981) (see supplementary
Figure C3)8 has been reproduced in several sources, includ-
ing Gaver et al. (1993)11 and Gelman et al. (2013), although
the latter has separate plots for the shrunken estimates and the
posterior distribution of �.12 Raudenbush and Bryk (1985)4
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included plots similar to Rubin’s, and added lines for param-
eter estimates and a 95 percent confidence interval for those
estimates. A variation of trace plots, with the posterior den-
sity of � plotted below the trace lines, appeared in Zucker et al
(1997).14

DuMouchel (1994)9 developed software for producing such
plots, but it was written in S-PLUS and was not completely
compatible with R. Supplementary Figure D4 shows a trace
plot of the SAT coaching data produced by the hblm pro-
gram of DuMouchel (see DuMouchel, 19949). The posterior
distribution of � is plotted for 9 values. Because DuMouchel
uses unequal spacing when picking quadrature points for �,
although the height of the posterior plot bars represent proba-
bility correctly, these do not reflect the posterior density. Thus
this plot is somewhat misleading compared to a continuous
plot. The density would be the probability divided by the bin
width; bin widths in this plot are shorter for smaller values of �.

The predecessor to the trace plot is a plot that has the raw
estimates on one side (sometimes left vs. right, sometimes top
vs. bottom) and empirical Bayes estimates on the other side,
with straight lines connecting them; such a display is a special
case of a parallel coordinates plot.16 These plots show only
the two values of �: raw estimates, with � = ∞, and shrunken
estimates, with � being at its point estimate. An example of
such a plot is in Efron and Morris (1975; p. 315).17

We believe that the trace plot provides a very intuitive access
to the inner workings of the random-effects model (also called
the normal-normal hierarchical model, NNHM) that is com-
monly applied for meta-analysis, and may aid practicioners in
the interpretation of meta-analytic inferences. In the follow-
ing, we will first introduce a motivating example in Section 2,
followed by a brief introduction of the random-effects model
for meta-analysis in Section 3. Use of the trace plot is then
extensively demonstrated using several example applications
of meta-analyses and meta-regressions in Section 4. A frequen-
tist variation of the trace plot is introduced in Section 5. We
conclude with a discussion in Section 6.

2 THE SAT COACHING EXAMPLE DATA

Rubin (1981)8 discussed an application case involving what
used to be called the Scholastic Aptitude Test (SAT); these are
regularly given to support college admission decisions. While
the SAT is designed to be resistant to short-term preparation
exercises, this particular example dealt with the effectiveness
of coaching programs to prepare students for the SAT. The
data set includes the results of eight randomized experiments
(performed in eight schools), in which the adjusted effects on
SAT-V (“SAT-verbal section”) scores in response to a coaching
scheme were evaluated. The effect size is the mean difference

school
A

B

C

D

E

F

G

H

estimate
28.4

7.9

−2.8

6.8

−0.6

0.6

18.0

12.2

std. error
14.9

10.2

16.3

11.0

9.4

11.4

10.4

17.6

95% CI
[−0.8, 57.6]

[−12.1, 27.9]

[−34.7, 29.2]

[−14.7, 28.4]

[−19.1, 17.8]

[−21.7, 23.0]

[−2.4, 38.4]

[−22.3, 46.7]

−20 0 20 40

mean difference

FIGURE 1 Forest plot for the SAT coaching example data
introduced in Section 2.8 For each of the 8 schools (labelled
A–H), an estimate yi of the coaching programme’s effective-
ness is given along with a standard error si. A positive effect
estimate (i.e., an observed increase in the SAT-V score) sug-
gests a successful programme.

in SAT verbal scores among those coached versus those not
coached in each of the eight randomized experiments. Figure 1
shows the data in a forest plot. Effect estimates tend to be on
the positive side, suggesting successful coaching programmes;
however, uncertainty is large, and none of the eight experi-
ments was able to convincingly demonstrate effectiveness on
its own. In addition, it is not obvious whether there are any dif-
ferences between schools, i.e., whether for example the school
that appeared to show the largest treatment effect (school A)
did in fact do better than the others. While the observed
experimental outcomes might also be consistent with a com-
mon effect across schools, it is also conceivable that effects
may vary between schools. A hierarchical (or random effects

(RE)) model allowing for potential heterogeneity between esti-
mates was proposed for analysis, as described in the following
section.8

3 TRACE PLOTS IN META-ANALYSIS

3.1 The analysis model

A simple but useful and commonly applied meta-analysis
approach is given through the normal-normal hierarchical

model (NNHM), which captures the analysis problem based on
normal distributions for both the measurement errors as well as
for the between-study heterogeneity. The model is sketched in
Figure 2; a more technical treatment is provided e.g. by Röver
(2020).18

The NNHM is characterized by an overall mean parame-
ter �, that denotes the “average” effect across all studies, and
the heterogeneity � ≥ 0, denoting the (dis-)similarity of effects
in different studies. The data that are the basis for inference
here are the effect estimates yi, and their associated standard
errors si (which are treated as known). In mathematical terms,
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FIGURE 2 Illustration of the normal-normal hierarchical

model (NNHM) that is at the basis of many meta-analyses.
Several studies (here: i = 1, 2, 3) have slightly differing (het-
erogeneous) treatment effects �i; their underlying distribution
is shown in blue at the top of the figure, and it is character-
ized by its center (or “overall mean”) �, and the degree of
(dis-)similarity is denoted by the heterogeneity parameter �.
When a study is conducted, we only ever get to know its true
effect �i with some amount of uncertainty, which is quantified
through the standard error si. The eventual data, the effect esti-
mates yi, are hence more or less offset from the true values �i,
depending on the magnitudes of the si.

the model may be expressed as

�i ∼ Normal(�, �2), (1)

and yi ∼ Normal(�i, s
2
i
) (i = 1,… , k) (2)

(see also Figure 2), meaning that study-specific means �i may
exhibit a certain amount of variation (of scale �) around their
common mean �, while the data yi measure the effects �i
only with a limited accuracy, which is expressed through the
associated standard errors si.

Figure 2 illustrates the model graphically; equation (1) is
represented by the blue density at the top that generates (here:
three) different true effects �i, one for each study. According to
equation (2), each study then yields an effect estimate yi that
tends to be some distance from �i, as indicated by the green
densities. The data eventually observed are the estimates yi
and their standard errors si; the �i as well as � and � are
unknowns. The overall mean � is often the figure of primary
interest; generally it may be interpreted as the average effect

across studies, in the special case of � = 0, the mean � as well
as the study-specific �i all collapse to a single common effect.

In the statistical analysis, one then needs to learn the
unknown model parameters (overall mean effect �, hetero-
geneity �, and study-specific effects �i) based on the data given
in terms of the effect estimates yi and standard errors si. As
one might imagine, the data may sometimes only convey a
rather vague idea of the underlying true parameter values, for
example in a case of only few estimates, as in the sketch in
Figure 2.

Use of a normal distribution for the measurement uncer-
tainty (2) may often be motivated via the central limit theorem
(i.e., “large” sample sizes within studies); the normal distri-
bution at the first model stage is mostly a convenient (albeit
obvious) choice. The simple NNHM may be extended to a
meta-regression model considering study-level covariables in
addition.19 For example, when each study i also provides a
covariate xi, the common overall mean � may be replaced by
an expression �0+�1xi to account for the (potential) effect of xi
on the outcome. With covariates in the model, � now represents
the residual standard deviation; that is, the amount of variation
not accounted for by the covariates (and standard errors).

3.2 Marginal and conditional posteriors

In a Bayesian context, the information extracted from a data
set is formulated in terms of probability distributions, express-
ing what parameter values or ranges are more or less probable
given the data at hand.12 Depending on the problem, the data,
and the assumptions implemented, these so-called posterior

distributions may convey more or less precision or ambiguity,
and these may often roughly resemble the shape of a normal
distribution, or may also look quite different.

In the present context, we will first of all consider the
posterior distributions of the heterogeneity parameter �, and
of the study specific effects �i or their overall mean � (see
Section 3.1). A special variety of a posterior distribution is
the so-called conditional posterior. For example, the poste-
rior of � conditional on � (denoted as “�|�”) depends on the
value of � that we insert on the right-hand side, and it reflects
the inference on � if we happened to know that � was the
actual true heterogeneity value. By varying the � value, we
may then get an impression of how our inferences depend on
our information about �. In the particular case of the NNHM,
the conditional posteriors are all simply normal distributions,
so that they are readily characterized through their associated
(conditional) mean and variance parameters.

The conditional posterior distributions have analogous (and
to some extent analytically identical) counterparts in the
context of frequentist/likelihood inference; a given � value
defines the conditional likelihood, and with that, conditional
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FIGURE 3 Trace plot for the SAT coaching example data (see
Sections 2 and 4.1).8

maximum likelihood (ML) estimates and associated standard
errors.4,20

3.3 The trace plot

While the heterogeneity � is commonly considered a nuisance
parameter, the trace plot aims to illustrate how our conclusions
depend on this value, while also indicating the relevant plau-
sible range of � values. The x-axis in a trace plot corresponds
to different � values (with � ≥ 0). The y-axis shows first of all
the inferred values (conditional posterior means) of the study-
specific effects �i, as well as model parameters such as the
overall mean � (or regression parameters �j , or linear com-
binations of these). The trace plot is sometimes also called a
conditional means or conditional shrinkage plot.

A trace plot for the example data from Section 2 is shown
in Figure 3 and is introduced and discussed in detail in the
following section.

4 EXAMPLE APPLICATIONS

4.1 SAT coaching meta-analysis

Figure 3 shows a trace plot for the SAT coaching example data
(Rubin, 1981)8 introduced in Section 2. Meta-analysis was per-
formed using uniform priors for � and �. These “flat”’ priors
are essentially uninformative and conservative specifications
for both parameters.18,21

At the bottom of the trace plot, the posterior distribution
of the heterogeneity � is illustrated; its most likely value is

at � = 0, but a range of positive values also remains plausible.
The posterior median is at 5.2, which is indicated by a verti-
cal grey line, and the 95% credible interval (CI), reflecting the
most likely region for the true parameter value, ranges from 0

to 17.3, and is shown by the grey shaded area.
The top section of the plot shows the conditional means (�i)

for the eight schools, as well as for the overall mean �. On the
far left, the case of � = 0 corresponds to the “homogeneous”
(or “fixed-effect”) case where all schools’ effects collapse into
a common effect (of about 7.9). As soon as one considers
positive � values, the estimated (conditional) effects tend to
be a compromise between the estimated overall mean � and
the observed (empirical, apparent) effect yi. Technically, the
conditional posterior means (E[�i|�]) shown in the trace plot
result as a weighted mean of the (conditional posterior) overall
mean estimate (E[�|�]) and the sample estimates (yi).

18,22 The
attraction towards the overall mean vanishes with increasing �.

This so-called shrinkage of individual effects towards each
other (or towards their common mean) is an example of the
classical “regression towards the mean” effect.23,24,9 This may
be illustrated by considering one of the more extreme exam-
ples; consider the case of school A which appeared to demon-
strate the greatest coaching effect (of 28.4 points; see Figure 1).
When this datum is not considered in isolation, but in the con-
text of the remaining observations, it appears to be a “lucky”
outlier to some extent. Assuming � = 0, the homogeneous
case at the left of the trace plot, one must conclude that the
observation of 28.4, somewhat above the probable mean of 7.9,
was due to measurement error alone (which is not implausible
given the standard error and the fact that this happened to be
the maximum out of 8 measurements).8 Once some positive
heterogeneity is allowed for, the reasoning changes only grad-
ually; the fact that school A measured the greatest effect quite
naturally is attributed to some degree to be due to an outlying
(“lucky”) measurement, while at the same time, once differ-
ing effects between schools are permitted, school A is likely to
have the largest effect among the eight schools.

Supplementary Figure A1 illustrates the “shrinkage” esti-
mate for school A in a bit more detail; in addition to the
conditional mean, the conditional credible intervals (CIs) for
school A and for the overall mean � are shown. While the
shrinkage estimate for school A is above the overall mean,
the CIs are largely overlapping, which also makes sense when
considering that the between-study heterogeneity � is esti-
mated to most likely be smaller than the individual estimates’
standard errors si (see Figure 1). Consideration of such shrink-
age estimates has important applications e.g. in the context
of clinical trials, where a meta-analysis of “historical” data
may contribute to the prior information considered in a new
trial.25,22
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The shrinkage of individual studies’ effect estimates goes
along with a certain precision gain; for finite � values, the
conditional standard errors are always smaller than the orig-
inal si values,26 and for � = 0 all estimates are completely
“pooled”.

While the trace plot shows the conditional means and allows
for some insights into the role of the heterogeneity, eventual
inference will focus on marginal estimates (e.g., means, medi-
ans or modes of marginal distributions), i.e., consideration of
(conditional) estimates integrated (marginalized) over the het-
erogeneity posterior distribution shown at the bottom of the
trace plot. With most probability concentrated at low hetero-
geneity values, we may expect substantial shrinkage, and a
corresponding gain in precision.

Supplementary Figure B2 shows a forest plot indicating
marginal shrinkage estimates as well as the overall mean along
with the data. Marginal shrinkage estimates are substantially
more precise than the original data estimates, and in all cases
we see a sizeable shift towards the common mean estimate. For
example, the marginal estimate (of �1) for school A is at 10.5
(95% CI [−3.3, 29.9]), and the associated posterior standard
deviation amounts to only 56% of the original s1. The posterior
standard deviation for the overall mean � is at 5.2, and with
that substantially smaller than any of the si provided with the
data.

As a historical digression, we include the original trace plot
from Rubin (1981)8 in supplementary Figure C3. Essentially
the same plot also appears in Gaver et al. (1992, Sec. 3.3),11

and the example (including slightly different plots) is also dis-
cussed in a general hierarchical modeling context in Gelman
et al. (1995, Sec. 5.5).12 Using DuMouchel’s original S-PLUS

code9,10 and porting it to R, we generated a trace plot for this
data set, shown in supplementary Figure D4.

4.2 Aspirin meta-analysis

The next example shows the utility of the trace plot for
checking model assumptions and locating violations of those
assumptions. The data are from the widely-used meta-analysis
of studies on the effect of aspirin on prevention of a sec-
ond myocardial infarction (heart attack).27 Figure 4 shows a
trace plot based on a simple random-effects meta-analysis of
the log-odds ratios (log-ORs) for myocardial infarction when
comparing aspirin to placebo. Note that (as in the previous
examples) the trace lines level off towards large values of �
— the limiting values are in fact the yi values, and their arith-
metic mean. In Figure 4 the limiting values are included at the
right-hand side (dotted lines) at the “�=∞” x-axis tick mark.

At the left-hand side, for values of � near zero, estimates of
true effect sizes are at or near the overall average, but the pos-
terior distribution of � shows that zero is an unlikely value of �.

lo
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0
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−
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0
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GAMSUK−2PARIS

AMIS

overall mean

heterogeneity τ
0 0.2 0.4 0.6 0.8 ∞

FIGURE 4 Trace plot for the Aspirin example data.27

For values of � that are more likely to be true, the trace lines
of shrunken estimates diverge into two parts: The first part is a
group that have similar (negative) values of the effect size, and
the second part is a single study (the AMIS trial) that diverges
from the main group. The single outlier not only diverges from
the main group, it has an effect that is positive (suggesting
that aspirin was harmful), while the others are strongly nega-
tive (see also the forest plot in supplementary Figure E5). The
heterogeneity’s posterior median is at � = 0.20, and the pos-
terior distribution largely covers � ranges in which rather little
shrinkage is taking place.

The data were subsequently analyzed to investigate poten-
tial sources of heterogeneity, but with limited success; adjusted

mortality estimates seemed more homogeneous, and differ-
ences were found in short-term vs. long-term follow-up out-
comes.28 A substantial fraction of the empirical heterogeneity
may be attributed to the outlying AMIS study; the posterior
median for � is reduced to only 0.094 (from 0.20) when the
AMIS study is omitted; this sensitivity analysis shows that it
is the AMIS study driving the heterogeneity estimate towards
larger values where less shrinkage is implied.

4.3 Meta-regression using binary covariables

DuMouchel (1994)9 meta-analyzed nine studies that examined
the relationship between nitrogen dioxide (NO2) exposure and
the development of respiratory illness in children. The results
had originally been compiled by Hasselblad et al. (1992);29

supplementary Figure E6 presents the original data as a for-
est plot, and Figure 5 shows the trace plot for a “simple”
meta-analysis of the data. DuMouchel utilized a weakly infor-
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FIGURE 5 Trace plot for the NO2 example data.9

mative prior distribution for the heterogeneity here;9,18 the
prior density (dashed line) is shown along with the posterior
density (solid line) at the bottom of the plot. In this case,
one can clearly see the differing shrinkage that comes with
different standard errors (see also the forest plot in supple-
mentary Figure E6): the study with the largest si (“Keller79”)
has substantial shrinkage even for very large � values, whereas
the estimates with greater precision (“Ware84”, “Melia77”,
“Melia79”) only tend to shrink towards the common overall
mean for small � values. Note the differing appearance when
comparing the “Keller79” study with the case of the AMIS trial
in the previous example: an outlying estimate that also has a
large standard error associated has a very different effect on the
analysis.

The studies’ one-to-one comparability, however, seemed to
be questionable, and a number of distinguishing features were
noted. For example, some studies reported estimates that had
been adjusted for gender, while others hadn’t. One may imag-
ine that if the chances for respiratory illness differ between
girls and boys, then an analysis of the NO2 effect may reduce
bias, gain precision, and avoid confounding effects if gender is
adjusted for. Such study-level covariables may be considered
in a meta-regression analysis; when each study’s adjustment
status (xi = 0 if the ith study did adjust for gender, xi = 1

if it failed to adjust) is provided, one may specify a model fit-
ting two parameters (�0+�1xi) rather than a single “intercept”
parameter (�) only.30,19

Figure 6 shows the trace plot for a meta-regression consid-
ering gender adjustment as a covariable. Rather than showing
the (conditional) estimates of � as in a “simple” meta-analysis,
one may now include estimates of the regression parameters

lo
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FIGURE 6 Trace plot for the NO2 example data; meta-
regression with a single binary covariable (adjustment for
gender, y/n).9

(�j), or of linear combinations of these in the trace plot. With
the binary coding for gender adjustment as suggested above,
the estimates of �0 and �0 + �1 then correspond to the mean
treatment effects of adjusted and unadjusted studies, respec-
tively. �1 here corresponds to the (possible) bias due to failure
to adjust for gender. In the trace plot, it becomes evident that
the estimated heterogeneity is substantially reduced (compared
to the previous analysis shown in Figure 5); it is essentially the
difference of about 0.2 between the two group means that is
explained by the covariable and that in turn reduces the hetero-
geneity from a posterior median of 0.065 to 0.025. The individ-
ual studies’ shrinkage estimates now behave quite differently;
instead of converging to a common effect for zero heterogene-
ity at the left of the plot, each study now shrinks towards one
out of the two subgroup means. Based on the two group’s mean
effects, the use of gender adjustment within a study seems to
result in a larger estimated effect of NO2 exposure.

The importance of this meta-analysis was that it actually
investigated three sources of methodological diversity31 by
coding various ways that the studies could be subject to con-
founding, and therefore could estimate the effect size for a
study that had none of those sources, even if there were no such
study. There was one such study, but the others added infor-
mation about the target effect, as well as information about the
bias introduced by each potential source of bias. To do this,
DuMouchel fit a model with three binary dummy variables,
namely gender (whether the quoted estimate had been adjusted
for gender, y/n), smoke (whether the estimate was adjusted
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FIGURE 7 Trace plot for the NO2 example data,9 three binary
covariables (adjustment for gender, smoking, and mode of NO2

measurement).

for patents’ smoking status, y/n), and no2 (whether NO2 lev-
els were measured directly (y/n), or presence of a gas stove in
the household was used as a proxy); see also the forest plot in
supplementary Figure E6 for the original data.

These variables were all coded 1 if the study had failed to
control for a condition, and 0 if it did. Thus the intercept esti-
mated the effect size of a study that was zero on each dummy
variable, and thus had none of the three possible sources of
bias. This is similar to a suggestion of Rubin (1992)32 that
meta-analysis should be a response surface analysis, such that
the main quantity estimated is the effect in an “ideal” study,
rather than the average study.

Figure 7 shows the trace plot for the meta-regression anal-
ysis including all three covariables. Looking at the trace plot,
one can see that the posterior distribution of � is highest at
zero; the maximum-likelihood (ML) estimate would likewise
be zero. Further, in an ML-approach the regression parame-
ters would be estimated conditioning on the estimate of zero
for �. But the distribution of � is spread over a rather large
range, meaning that moderate non-zero values are also plau-
sible. At those larger plausible values, the shrunken estimates
would diverge some from the fully shrunken values at � = 0,
but not to an extreme.

Conditional estimates for five linear combinations of the
regression coefficients (�j) are also illustrated in the plot,
namely, corresponding to the cases where all three covari-
ables (xi1, xi2, xi3) equaled 0 (studies with adjustment for all
3 covariables), studies without adjustment, and the three cases
where one of the covariables is adjusted for. One can again

see that each study shrinks towards an individual mean value,
depending on its associated combination of covariates; those
studies sharing the same combination then shrink towards a
common mean. Consideration of covariates then allows us to
investigate potential differences in effects for different study
designs; it appears that a study meeting all three criteria (like
the “Neas91” study) would yield the largest effect estimate (of
about 0.3). Also, a study without any adjustment has an esti-
mate near zero, so an unadjusted study misleadingly suggests
no deleterious effect.

Using only nine studies to fit four regression parameters
(some of which are not clearly different from zero) implies a
lot of uncertainty in the model fit, which is also reflected in the
heterogeneity’s posterior. With a greater number of degrees of
freedom in the model, the likelihood is not able to constrain
the heterogeneity as much, leading to a posterior that is closer
to its prior, and with that, a larger heterogeneity estimate. In
general, one of course needs to be cautious in balancing the
number of parameters estimated against the number of studies
included in order to avoid overfitting; on the other hand con-
sideration of known effect moderators may also be considered
essential, and the use of informative effect priors might help
here.

4.4 Meta-regression involving a continuous
covariable

Karner et al. (2014)33 performed a systematic review and
meta-analysis to investigate the effects of tiotropium, a medica-
tion used in the management of chronic obstructive pulmonary

disease (COPD). A total of 22 randomized placebo-controlled
trials were found; among the primary endpoints was the odds
ratio (OR) of exacerbation; the raw study data (with effects in
terms of log-ORs) are shown in a forest plot in supplemen-
tary Figure E7. A meta-analysis of the data, using a weakly
informative half-normal prior with scale 0.5 for the hetero-
geneity,21 yields an estimated log-OR of −0.25, indicating a
beneficial effect of the treatment (i.e., a reduction of exacerba-
tions). A trace plot for the analysis is shown in Figure 8. The
half-Normal(0.5) heterogeneity prior (implying a prior median
and 95% quantile of about 1

3
and 1, respectively, for �) is a

conservative specification in the context of endpoints on a log-
arithmic scale.21 The heterogeneity’s posterior distribution is
much narrower than the prior; it shows that � is not likely to
be zero, but also is not likely to be larger than about 0.3, while
the prior appears effectively uniform across the relevant range.
Over the range of plausible values of �, the shrunken effect
size estimates vary, but most are in a range indicating that
the drug is effective. Two outliers are apparent (the studies by
Verkindre (2006) and Sun (2007)), which were the two most
extreme effect estimates, and at the same time were also based
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FIGURE 8 Trace plot for the COPD example data.33 Meta-
analysis without covariables.

on the smallest sample sizes. With their large standard errors,
these two are still consistent with the remaining data (i.e., the
intervals shown in the forest plot (Figure E7) are still mutu-
ally overlapping), and their estimates are shrunk considerably
towards the remaining studies.

With some heterogeneity evident in the data, and a number
of study characteristics recorded, it is interesting to investi-
gate potential sources of heterogeneity. For example, studies
were of differing duration (a case of methodological diver-

sity31), and it is quite conceivable that the treatment effect
(OR) may differ for shorter or longer follow-up periods.34 A
meta-regression including a binary covariable distinguishing
“short” and “long” studies (defined as follow-up times up to
1 year or more than 1 year) is shown in Figure 9. Unlike in the
previous example (Section 4.3), from the data it is not quite
clear whether there actually exists a difference between the
two groups, and the heterogeneity’s posterior distribution is
virtually unaffected by the inclusion of the covariable.

Another relevant determinant of the treatment effect may
be the study participants’ disease severity. A common mea-
sure of disease severity is the forced expiratory volume in

1 second (FEV1), which is determined through spirometry, and
which quantifies a patient’s breathing capacity. This amount is
reduced with increasing COPD severity.35 For the present data
set, the population averages (at inclusion) are available for all
22 studies. As this covariable relates to differences between
study populations, this would be a case of clinical diversity.31

Figure 10 shows a trace plot for the meta-regression consid-
ering the FEV1 value as a covariable (via an intercept / slope

parametrization).

lo
g

−
O

R

−
1

.0
−

0
.8

−
0

.6
−

0
.4

−
0

.2
0

.0
0

.2

Bateman2010a
Bateman2010b

Beeh2006
Brusasco2003
Casaburi2002

Chan2007Cooper2010

Covelli2005
Dusser2006

Freeman2007

Johansson2008

Magnussen2008

Moita2008
NCT00144326
Niewoehner2005

Powrie2007

Sun2007

Tashkin2008

Tonnel2008

Trooster2011

Verkindre2006

Voshaar2008

short

long

heterogeneity τ
0.0 0.1 0.2 0.3 0.4 0.5

FIGURE 9 Trace plot for the COPD example data.33 Meta-
regression using a single binary covariable (“short” vs. “long”
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FIGURE 10 Trace plot for the COPD example data.33

Meta-regression using a single continuous covariate (baseline
FEV1).

On the left-hand side the effects are fully shrunken to the
predicted effect size for the covariate value of that study. There
is a great deal of spread in these values, indicating that the
covariate is important. Many of the lines are flatter than in
the other two plots, indicating less shrinkage being necessary
than for the other models. Also, most of the lines are not as
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steep over the range of plausible values, indicating less sen-
sitivity to the value of �. Further, the posterior distribution
of � has moved to smaller values, because more variabil-
ity among studies is accounted for. The posterior median is
at about 0.12, while the range of predicted values covers
multiples of that, illustrating how a substantial fraction of
heterogeneity is explained by the FEV1 value.

The traces for conditional effects at three selected FEV1 val-
ues are also shown in the plot (for FEV1 between 1.0 and 2.0,
roughly covering the range of population means encountered
in the data); one can see that larger FEV1 values correspond
to larger effects, suggesting that treatment benefit is greater in
less severe cases.

5 FREQUENTIST TRACE PLOTS

Trace plots may also be motivated based on frequenstist rea-
soning. The conditional distributions of effects (study-specific
effects, overall effects or linear combinations of regression
coefficients) have their analogues in so-called best linear unbi-

ased prediction (BLUP). When considering uniform priors
for effects (� or �i), the conditional posterior expectations
and standard deviations correspond to frequentist conditional
point estimates and standard errors.4,20,36 While in a frequen-
tist framework it is not possible to assign (prior or posterior)
probabilities to heterogeneity (�) values, one may still mark
confidence interval bounds or consider different � values or
ranges in the spirit of a sensitivity analysis. While there are
similarities and analogies between the Bayesian and frequen-
tist approaches, care needs to be taken regarding the differing
interpretation, e.g., of credible and confidence intervals (in
the Bayesian and frequentist contexts, respectively), but these
issues are beyond the scope of the present investigation.37,38

Figure 11 shows a trace plot for the COPD example data
(see also Figure 8) based on functions from the metafor pack-
age.39 The plot’s bottom panel shows the Q-test statistic as a
function of the heterogeneity � considered as the (point) null
hypothesis. The grey area indicates the central 95% region
based on a �2 distribution with (k − 1) degrees of freedom
(with k denoting the number of studies); the points where the
Q-statistic exceeds these bounds then constitute a confidence
interval for �, shown in dark grey. This bottom panel hence
essentially illustrates the construction of a (Q-profile) con-
fidence interval for �.40 The dashed vertical line shows the
heterogeneity point estimate (here: the restricted ML estimate
�̂REML = 0.14). Analogous plots can be generated based on
other test statistics, e.g., the likelihood ratio (or deviance).

The plot highlights the differences between common fre-
quentist and Bayesian treatments of the inference problem. In a
Bayesian approach, effect estimates (for the overall mean � or
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FIGURE 11 Trace plot for the COPD example data33, analo-
gous to Figure 8, but based on a frequentist analysis. The
bottom panel illustrates the Q-test statistic as a function of the
heterogeneity, and the resulting Q-profile confidence interval
for �; the dashed line indicates the point estimate for �.

for shrinkage estimates �i) result by averaging (marginalising)
over the heterogeneity’s posterior distribution (shown e.g. at
the bottom of Figure 8). A common frequentist approach on the
other hand is to treat the heterogeneity estimate �̂ as if this was
known to be the true value (i.e., to condition on �̂) and derive
effect estimates by considering the corresponding vertical
“slice” of the plot’s top half. This is a reasonable approximation
when � is estimated with good accuracy, but otherwise it leads
to overconfidence in the resulting effect estimates. Another
approach at propagating heterogeneity uncertainty through to
the effect estimates is by using adjusted standard errors and
Student-t quantiles as in the Hartung-Knapp-Sidik-Jonkman

(HKSJ) method.41

6 DISCUSSION

The trace plot is a little-used plot that conveys a great deal
of useful information. Usual methods of analysis, both fixed-
(common-) and random-effect as well as empirical Bayes,
commonly ignore uncertainty in the estimation of �. Bayesian
methods take it into account, but average over values of �, thus
hiding the extra cause of variability. The trace plot shows both
the uncertainty in our knowledge of �, but also the effect of that
uncertainty on our knowledge of study effects and parameter
estimates. In addition, the plot allows us to see more clearly
the presence of outliers or hidden subgroups of studies. It is
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most useful for meta-analyses with small to moderate num-
bers of studies, because as the number of studies grows, our
knowledge of � becomes stronger, and there is little variation in
parameter or shrinkage estimates within reasonable ranges of
estimates of �. Furthermore, with many studies the trace lines
can appear too tangled, making interpretation more difficult.

If the trace lines are relatively flat over the area where the
posterior of tau is appreciable, there is no sensitivity of the
estimates to �. If the lines are not flat, there is sensitivity to �.
Thus the plot gives valuable information about the sensitivity
to the estimate of �. This is especially important for likelihood
or empirical Bayes meta-analysis, which rely on the estimate
of � to be precise for inference about the mean (or regression
parameters).

While trace plots provide insights regarding the interplay of
heterogeneity and effect and shrinkage estimates, they do not
help much in judging the appropriateness of a prior. Choice of
sensible priors depends on the scale of the endpoint and the
context of the analysis, and varying prior shape or scale is part
of sensitivity analyses in a Bayesian framework.21,18 Varying
priors will only affect the trace plot’s bottom panel, while the
top remains unaffected (besides possible changes in the range
of � values considered), as the effect estimates are conditional

on the heterogeneity.
We can produce analogous plots from a frequentist perspec-

tive based on the best linear unbiased predictions (BLUP).
Figure 11 was produced using results from the metafor pack-
age.20 The bottom panel of the trace plot illustrates the infer-
ence on the heterogeneity, showing the point estimate as well
as the Q-profile confidence interval along with the underlying
Q-statistic.

The trace plot is easy to produce in bayesmeta using the
“traceplot()” function that is applied to the object returned
by the analysis function (bayesmeta() or bmr()).42,18,19 For
those who use metafor,20 we provide code for that package
in the Appendix. It also used to be available in the hblm pack-
age,10 but that has never been officially released for R, and the
S-PLUS version is no longer on the web, nor would it work in R

without modification.
The general ideas underlying the trace plot should be

generalizable beyond the normal-normal hierarchical model
(NNHM) discussed here. An obvious example would be
network meta-analyses (NMAs); as long as these may be
expressed as special cases of a simple meta-regression (e.g.,
when only pairwise comparisons are included), these would
be tractable using the tools shown in Section 4 already.19 In
principle, as long as there is only a single heterogeneity param-
eter involved, the same approaches should generally still work
for NMAs, and these might be straightforward to implement,
e.g., based on existing functions in the netmeta R package.43

However, while computations are straghtforward (and mostly

analytical) in “simple” normal models, technical calculations
would be more demanding, e.g., in the case of a binomial-
normal model; and these might in fact be easier in a frequentist
framework compared to a Bayesian one.
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HIGHLIGHTS

What is already known:

• heterogeneity is a critical aspect in the interpretation of
a meta-analysis

• a number of plots have been proposed to illustrate
and diagnose the results of meta-analyses and meta-
regressions (such as forest plots, L’Abbe plots, . . . ).

What is new:

• the trace plot has been proposed (originally in the 1980s
already) to illustrate the interplay of effect estimates and
(estimated) heterogeneity.

• it is useful in the context of (“simple”) meta-analyses or
meta-regressions, and may be derived in the context of
Bayesian as well as frequentist approaches.

Potential impact for readers outside the authors’ field:

• similar plots illustrating (conditional) shrinkage effects
might be useful in other contexts, as well as in more
general settings.
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APPENDIX

A TRACE PLOT FOR SAT COACHING DATA
WITH CREDIBLE INTERVALS

Figure A1 shows a trace plot for the SAT coaching example
data from Section 4.1;8 the plot is analogous to Figure 3), but
includes (conditional) credible bounds.

B FOREST PLOT FOR SAT COACHING
DATA WITH ESTIMATES

Figure B2 shows the data from Section 4.1 in a forest plot
along with shrinkages estimates (�i), overall mean (�) and pre-
diction (�∗) based on an analysis with uniform priors. The
eventual (marginal) shrinkage estimates result from averaging
the conditional shrinkage estimates over the heterogeneity’s
posterior distribution.

quoted estimate shrinkage estimate
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H
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FIGURE B2 Forest plot for the SAT coaching example data,
including overall mean and (marginal) shrinkage estimates.8

C RUBIN’S 1981 PLOT

Figure C3 shows a trace plot for the SAT coaching example
data from Section 4.1 as shown in Rubin’s original publica-
tion.8
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FIGURE C3 Trace plot for the SAT coaching example data
from the original publication (Rubin, 1981)8 (Figure cap-
tion:“Estimates of treatment effects as functions of S∗ with

likelihood of S∗ superimposed.”, where S∗ corresponds to the
heterogeneity standard deviation � here).

D THE HBLM PLOT

Figure D4 shows a trace plot for the SAT coaching example
data from Section 4.1 as generated by the hblm S-PLUS pack-
age (actually: a code version ported to R). Note the odd scaling
of the (discretized) x-axis, and the very different appearance
compared to Figure 3.
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E FOREST PLOTS FOR EXAMPLE DATA

Figure E5 illustrates the data of the Aspirin example from
Section 4.2.

Figure E6 illustrates the data of the NO2 example from
Section 4.3.
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FIGURE E7 Forest plot for the COPD example data.33

Figure E7 illustrates the data of the COPD example from
Section 4.4.

F EXAMPLE R CODE

R code to reproduce a simple trace plot (Fig. 3), using the
bayesmeta R package:

# load "bayesmeta" R package:

library("bayesmeta")

# load example data:

data("Rubin1981")

# perform meta-analysis (uniform priors):

bm <- bayesmeta(y=Rubin1981[,"effect"],

sigma=Rubin1981[,"stderr"],

labels=Rubin1981[,"school"],

tau.prior="uniform")

# show meta-analysis results (Fig. B2):

forestplot(bm)

# show trace plot (Fig. 3):

traceplot(bm)
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