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Abstract. Presented is a description of a Bayesian analysis framework for use with

interferometric gravitational radiation data in searches for binary neutron star inspiral

signals. Five parameters are investigated, and the information extracted from the

data is illustrated and quantified. The posterior integration is carried out using

Markov chain Monte Carlo (MCMC) methods. Implementation details include the use

of importance resampling for improved convergence and informative priors reflecting

the conditions expected for realistic measurements. An example is presented from

an application using realistic, albeit fictitious, data. We expect that these parameter

estimation techniques will prove useful at the end of a binary inspiral detection pipeline

for interferometric detectors like LIGO or Virgo.
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1. Introduction

Great effort is currently being expended in the search for gravitational radiation.

Detectors around the world [1, 2, 3, 4] are reaching sensitivities where an event may

be seen in the near future. The field of research has grown immensely since the first

prediction of gravitational radiation [5], or even from the time of the observations that

confirmed its existence [6]. The inspiral of compact binary objects may provide the

cleanest system for comparing observations with general relativistic predictions [7].

Observation of inspiral events could provide important information on the structure

of neutron stars [8, 9]. Even cosmological information can be extracted from the

observation of inspiral events [10, 11, 12, 13]. The characteristics of radiation in the

post-Newtonian regime will provide insight into highly non-linear general relativistic

effects, such as the observation of the formation of a Kerr black hole as the binary

system decays [12, 14, 15]. LIGO has recently conducted searches for signals from the
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inspiral of binary neutron star systems in science run data [16, 17].

Detection pipelines for binary inspiral signals [16, 18, 19] in interferometer data

will likely provide the first indication of detection. These pipelines provide parameter

estimation through various estimation techniques. Other techniques, like those that we

will describe in this paper, provide a means to examine the data and produce not just

point estimates of parameters, but provide more detailed information e.g. on accuracy

and correlations of parameters given the data at hand. The unique analysis methods

that we bring to the examination of LIGO data are computationally intensive MCMC

algorithms. Our method of parameter estimation is an exercise in Bayesian inference.

These Bayesian statistical techniques offer great promise in problems where the number

of parameters is large. Since its initial application in digital signal analysis [20] MCMC

methods have revolutionised many areas of applied statistics [21]. A distinct advantage

of the MCMC approach is that computational time does not grow exponentially with

parameter number, as it does for other methods [22]. After their introduction to

the cosmological parameter estimation problem [23, 24], MCMC methods were quickly

adopted and widely used with CMB data [25, 26, 27], including WMAP [28, 29]. We

anticipate a similar scenario with gravitational radiation; after initial detection attention

will be focused on parameter estimation and associated astrophysical information

extracted from the data. The techniques that we describe in this paper are intended

to be applied to interferometer data after an initial event has been registered by an

inspiral detection pipeline [16, 18, 19]; our MCMC method would allow the extraction

of information about the physical parameters. The technique we present here provides

parameter estimates from the data output of a single interferometer. An MCMC

technique using the coherent addition of signals from multiple detectors will be presented

in a future publication.

In the present paper we describe the MCMC routine we have developed to examine

interferometer data for binary neutron star inspiral signals. We have implemented

advanced MCMC methods in order to effectively and efficiently search a five-parameter

space, find the signal’s parameter values, and quantify and characterise them in detail.

There have been significant advances in the execution of the binary neutron star inspiral

MCMC routine since the publication of our previous method [30]; presented here is a

description of our routine, implemented in C, that employs advanced MCMC techniques

in order to increase efficiency and performance.

The outline of the paper is as follows. Section 2 describes our analysis strategy and

contains a description of Bayesian parameter estimation methods, and the techniques

we employ in the binary neutron star inspiral MCMC application. In Section 3 we

present an example application of our method using fictitious data; a binary neutron

star inspiral event is embedded within noise (that matches the LIGO design sensitivity).

We conclude the paper with a summary of our results, and a description of our intentions

to expand this work to more complex situations.
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2. Analysis strategy

2.1. Bayesian modeling and MCMC posterior simulation

Presented here is a short introduction to Bayesian inference, which is quite a different

way to approach problems like parameter estimation compared to more commonly used

“frequentist” methods, such as maximum likelihood estimation. The model setup in-

cludes the specification of a prior distribution for all involved parameters as well as

the sampling distribution for observed quantities. Inference is done via the derived

posterior distribution given the observed data; this allows one to make probabilistic

statements about parameters of interest by treating them as random variables. Due to

its setup the concept is sometimes dubbed full probability modeling. While the theory

behind Bayesian modeling is straightforward, its practical application for inference often

requires the use of numerical methods.

The sampling distribution is specified in terms of the corresponding probability

density function (PDF) p(y|θ), defining how the observations y come about given a

(fixed) parameter setting θ. Viewed as a function of θ, it also defines the likelihood

function. Many frequentist techniques, such as maximum likelihood estimation, are also

based on the likelihood function, which may be thought of it as ‘linking observations to

parameters’.

In the frequentist approach θ is viewed as fixed but unknown. In the Bayesian

paradigm, on the other hand, θ is treated as a random variable with a probability

distribution that reflects the researcher’s uncertainty about the parameters. In addition

to the likelihood a prior PDF p(θ) is used, reflecting the pre-experimental knowledge

and uncertainty about the parameters. The availability of both prior PDF p(θ) and

likelihood p(y|θ) then allows to derive the posterior PDF of θ conditional on the observed

data y

p(θ|y) =
p(θ) p(y|θ)

p(y)
∝ p(θ) p(y|θ) (1)

by applying Bayes’ theorem [31]. Note that the denominator p(y) =
∫
p(y, θ)dθ =

∫
p(y|θ)p(θ)dθ is a normalising constant that does not depend on θ, so the posterior

PDF p(θ|y) is essentially proportional to the product of prior PDF and likelihood

function.

The posterior PDF expresses the knowledge about the parameter(s) given model

(prior PDF and likelihood function) and data. Inference then aims at deriving

probabilistic statements about parameters (or related quantities) from the posterior;

one might for example be interested in posterior expectations, quantiles or marginal

PDFs of quantities of interest, or probabilities of certain events.

Note that the impact of the prior specification is limited, since asymptotic theory

shows that the importance of the prior disribution diminishes as the sample size

increases, so the posterior is eventually dominated by the likelihood [31, 32]. When

MCMC methods are used for posterior analysis as in this paper, the results (MCMC
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samples) yielded using a certain prior may easily be recycled to generate posterior

samples assuming different priors by using importance sampling [31].

Frequentist and Bayesian analyses are fundamentally different in their approach

to given problems; Finn [33] puts the difference as “guessing nature’s state” in case of

frequentist analysis as opposed to “learning from observation” for Bayesian analysis.

For more detailed discussions see e.g. [21, 33, 34].

For posterior computations we use a simulation-based approach as the posterior

distribution is high-dimensional and the calculation of marginal summaries like marginal

posterior means would require high-dimensional integration. The simulation-based

approach is to generate a sample from the posterior and then approximate the desired

integrals by sample averages. For example, the expectation of a random variable X

with PDF pX(x), E[X] =
∫
x pX(x) dx can be approximated through a sample average

x̄ = 1
N

∑N
i=1 xi where x1, . . . , xN are random draws from pX(x). Analogously, marginal

PDFs, quantiles etc. can be estimated from samples from the distribution of interest.

Markov chain Monte Carlo (MCMC) methods in general may be used to generate

random sequences of numbers that have a specified stationary distribution and in which

each random step in the sequence only depends on the previous stage of the chain.

The Metropolis-algorithm in particular can be applied if the target PDF is known

only up to a normalising constant. Note that this is the case in equation (1), as the

evaluation of the numerator p(y) would involve high-dimensional integration. While a

Metropolis sampler is guaranteed to function as the number of samples goes towards

infinity, its proper behaviour and efficiency within finite time heavily depends on the

sensible specifications of its starting point and proposal distribution [31].

2.2. Likelihood, signal templates & priors

The observed data are a (real-valued) time series of length N and sampling rate 1
∆t

indicating the phase shift between the two interferometer arms over time at evenly

spaced time points. In order to analyse a data set, it is Fourier-transformed, from

{z(t) ∈ R : t = 0,∆t, 2∆t, . . . , (N − 1)∆t} (2)

into

{z̃(f) ∈ C : f = 0,∆f , 2∆f , . . . , (
N
2
− 1)∆f}, (3)

where ∆f = 1
N∆t

and

z̃(f) = ∆t

N−1∑

j=0

z(j∆t) exp(−2πijf). (4)

The likelihood function depends on the data and a signal template, describing the theo-

retically derived detector response sϑ for a given parameter set ϑ. The likelihood of

some parameter set ϑ then is proportional to the sum of the squared and normalised
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differences between Fourier transforms of observed signal (z̃) and signal template (s̃ϑ)

over the discrete set of Fourier frequencies {(j × ∆f ) : jL ≤ j ≤ jU} [35, 36]:

p(z|ϑ) = K × exp

(
− 2

N∆t

jU∑

j=jL

|
data︷ ︸︸ ︷

z̃(j × ∆f )−
template
︷ ︸︸ ︷
s̃ϑ(j × ∆f ) |2

Sn(j × ∆f )︸ ︷︷ ︸
noise PSD

)
(5)

where jL ×∆f and jU ×∆f are the lower and upper bounds of the examined frequency

range, Sn(·) is the (estimated) noise power spectral density (PSD), N∆t is the length

of the analysed data segment, and K is a normalising constant.

The signal templates we use are 2.0-post-Newtonian stationary phase approxima-

tions of the Fourier-transformed inspiral waveform [37]. The model has five parameters:

the individual masses of the two involved companionsm1 andm2, the coalescence time tc,

the coalescence phase φ0 and the effective distance dE. The effective distance is not the

actual distance to the source, but also reflects the effect on the amplitude of the gravity

wave from other parameters and is in general greater than the actual distance. The

other parameters affecting the gravity wave amplitude are the binary inspiral system’s

sky position and orbital plane inclination angle, the interferometer orientation, and the

polarization of the wave. We also ignore any effects due to the spins of the compact

objects. The template is then defined in terms of total mass mt = m1 + m2 and mass

ratio η = m1m2

m2
t

as:

s̃ϑ(f) =

√
η m

5

6

t

dE

√
5 G

5

6

2
√

6 π
2

3 c
3

2

f−
7

6 exp
(
−i(ψ(f) + φ0 + 2πftc︸ ︷︷ ︸

phase evolution

)
)

(6)

where

ψ(f) :=
4∑

i=1

aiζi(f), (7a)

a1 =
3

128η
q−

5

3 , (7b)

a2 =
1

384η

(
3715

84
+ 55η

)
q−1, (7c)

a3 = − 1

128η
48πq−

2

3 , (7d)

a4 =
3

128η

(
15 293 365

508 032
+

27 145

504
η +

3085

72
η2
)
q−

1

3 , (7e)

ζ1(f) = f−
5

3 , ζ2(f) = f−1, ζ3(f) = f−
2

3 , ζ4(f) = f−
1

3 , and q = πGmtc
−3 [36, 37].

Priors are specified with respect to some preliminary considerations. The coa-

lescence time tc is assumed to be known in advance with a certain accuracy through

preprocessing of the data [16, 18, 19]; we set its prior to be uniform across ±5ms around

the true value (which of course is known for our simulated data). The prior for the

coalescence phase φ0 is uniform across its domain [0, 2π].
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The prior for masses m1, m2 and effective distance dE is set in order to reflect the

distribution of parameters of a neutron star inspiral given that it has been detected in

the first place. Initially, the prior for two companions’ individual masses (m1 and m2)

is uniform between 0.6 and 3.0 M� (solar masses: M� ≈ 2 × 1030 kg), which effectively

covers the range of values expected for binary neutron star systems. The prior for dE

is derived from the assumption that inspirals happen uniformly across space, so that

P(dE ≤ x) ∝ x3. So far, this leads to an improper PDF (that has an infinite integral).

For actual data, in order to be investigated at all, an inspiral event needs to emit a signal

that is strong enough to produce a trigger in an inspiral search routine [16, 18, 19], and

thus cannot originate from arbitrarily great distances. We incorporated this constraint

by downweighing the low-mass/great-distance inspirals according to their lower detection

probability. The probability of detection is assumed to depend simply on the signal’s

amplitude, which is affected by the inspiral’s masses and distance and is proportional

to:

α(m1, m2, dE) =
1

2
(log(m1) + log(m2)) −

1

6
log(m1 +m2) − log(dE) (8)

= log

( √
m1m2

(m1 +m2)
1

6 dE

)
= log

(√
η m

5

6

t

dE

)

(so α denotes the logarithmic amplitude; see also equation (6)). We could have set

a threshold amplitude below which neutron star inspirals would be assumed to be

undetectable, but favoured a ‘smoother’ transition that does not explicitly assign zero

probability to parts of the parameter space. We model the dependence between a given

(logarithmic) amplitude x and detection probability using a (sigmoidal) logistic function

of the form:

da,b(x) =
1

1 + exp(x−a
b

)
(9)

where a and b are set so that da,b(xU) = 1 − p and da,b(xL) = p for some 0 < p < 0.5

(e.g.: p := 0.1) and upper and lower reference points xU and xL. So xU denotes the

amplitude at which the detection probability reaches (1 − p), and xL is the amplitude

where the probability falls below p. In order to fit d through these points, its parameters

are set to:

a :=
xL + xU

2
and b :=

xU − xL

2 log( p

1−p
)
. (10)

So, given the above prior occurrence and detection probabilities, the resulting (proper)

joint prior PDF for individual masses m1 and m2 and distance dE is:

p(m1, m2, dE) ∝ I[0.6,3.0](m1) × I[0.6,3.0](m2) × d2
E × da,b(α(m1, m2, dE))(11)

where IA(x) :=

{
1 if x ∈ A
0 otherwise

is the indicator function for any set A. For the examples

given in this paper we have chosen values for the sigmoidal logistic function so that a

2-2M� inspiral would be detectable out to 90 and 95 Mpc with probabilities of 90% and

10% respectively. These values effectively produce a prior PDF for the effective distance
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that smoothly covers the values of interest, and then falls to zero as the distance gets

too large.

Fig. 1 shows estimates of the marginal prior PDFs of masses and effective distance,

in terms of individual masses (m1, m2) as well as in the alternative parametrisation of

chirp mass (mc = (m1m2)0.6

(m1+m2)0.2 ) and mass ratio (η = m1m2

(m1+m2)2
). Greater individual masses

individual masses (m1, m2)
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Figure 1. Marginal prior PDFs for masses and effective distance. The upper left

plot shows the PDF of individual masses (m1, m2), the lower plots show PDFs in the

alternative mass parametrisation of chirp mass (mc) and mass ratio (η).

are more likely to be observed since low-mass inspirals need to be close to be detectable,

while high-mass inspirals may as well originate from greater distances: a feature that

is also known as the Malmquist effect [38]. Note that the marginal prior PDF for dE

extends well beyond 95 Mpc, because the thresholds xL and xU were specified for 2-2M�

binary neutron star inspirals; inspirals involving greater masses still generate signals of

observable amplitudes when happening further out.

2.3. Technical details

The MCMC sampler is implemented in C. Data is imported from the Frame File format

using the Frame Library [39]. Before transformation, the data are low-pass-filtered and

downsampled (from 16 384 to 4096 Hz) [40]; required Filter coefficients are determined

by the ‘Parks-McClellan’-algorithm (see e.g. [41]), again using existing software [42]. The

Discrete Fourier Transform of the data (for both likelihood computation and spectral

density estimation) is carried out using the free FFTW library [43]. The noise spectrum

is estimated from a data section that is disjoint from the actually investigated data [44].

(Pseudo-) random numbers are generated using the Randlib library [45].

The frequency range over which the likelihood is computed (see equation (5)) was



Bayesian inference on compact binary inspiral signals... 8

set to 40–1800 Hz. In the original mass parametrisation of individual masses m1 and m2

the two masses showed high posterior correlation, making sampling from the posterior

difficult. In order to improve sampling we expressed the likelihood in terms of chirp

mass (mc) and mass ratio (η) instead. In addition we reparameterised the effective

distance from dE to log(dE), thus implicitly yielding an unbounded parameter space

and proposal step widths that are proportional to the distance (dE) itself.

Approximate posterior samples as starting values for the MCMC chains are

generated using importance resampling, by first generating a large sample from a

distribution covering the whole prior, and then drawing the actual sample out of these

with correspondingly assigned weights depending on the posterior PDF [31, 46]. The

Metropolis sampler’s proposal distribution was chosen to be a Multivariate Student-t

distribution. The t-distribution has a similar shape to the Normal distribution, but

posesses an additional degrees-of-freedom parameter ν, and for ν → ∞ approaches a

Normal distribution. It has ‘heavier tails’ than a Normal distribution, which means that

extreme values are more likely under a t-distribution than they were under a Normal,

making it a more robust choice as a proposal distribution [31]. The degrees of freedom

were set to ν := 3, the lowest possible integer value for which the distribution’s variance

is finite. Starting off from an initial setting, the covariance parameter of the proposal

distribution is recursively adapted to the sample covariance of generated samples during

an initial burn-in phase [47, 48]. The scale of the proposal covariance is set to 1
10

of the

sample covariance estimate, yielding a reasonable acceptance rate for the sampler.

Convergence of the Markov chains is monitored by using several chains that are

run simultaneously from different starting points, so one may e.g. verify whether these

eventually end up in the same mode [49]. In order to minimise the effect of correlated

draws from the MCMC output, only every 50th MCMC draw is written to a file which

is then imported into R, a statistical software, for eventual analysis [50]. The C code

generates some 2500 MCMC samples per minute on a 3.2 GHz Pentium 4 desktop PC.

The univariate marginal PDFs that are shown in this paper are kernel density estimates

(for more details about these see e.g. [51]).

3. Example application with simulated data

We illustrate the results of a run of the MCMC sampler on simulated data for which

the true parameter values are known. The signal analysed had an effective distance of

25 Mpc, and was embedded in Gaussian and stationary noise that had its noise power

spectral density match that of LIGO’s target sensitivity [52]. The embedded signal

had a signal to noise ratio of 10. Six parallel chains were run; the starting points of the

chains were generated by importance resampling of 100 000 draws, a number that proved

to yield enough eventual draws that were sufficiently close to the main posterior mode

to ensure reliable and fast convergence of the Metropolis algorithm. The first 30 000

iterations of each chain were considered the burn-in-phase, during which the iterations

15 000–30 000 were used to tune the proposal covariance. The code was then run for
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2 million iterations in total, which after thinning out of the samples and discarding the

burn-in yielded a sample of size 236 400 from the posterior. The ‘multivariate potential

scale reduction factor’ R̂p was close to 1 (R̂p = 1.0034), indicating convergence of all

chains [53].

Figures 2–5 illustrate estimates of marginal posterior PDFs, that is, univariate

PDFs with respect to one specific parameter, with all other parameters integrated out.

Firstly, Fig. 2 shows posterior PDFs for the five individual parameters. Most of them

exhibit a mode near the true parameter value (indicated by dashed lines). One can see
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Figure 2. Marginal posterior PDFs of the five parameters. Dashed lines indicate true

parameters.

that the relative precision of parameter estimation varies significantly between different

parameters. For example, the posterior of the chirp mass covers a range of about

0.006 M�, while the prior range initially was some 2.1 M� (cp. Fig. 1). The coalescence

phase’s posterior, on the other hand, still covers the complete prior domain.

Fig. 3 allows for some insight into joint PDFs of some of the parameters. The

joint PDF of chirp mass and mass ratio (3a) shows a positive correlation between the

two parameters. Fig. 3b shows interaction between two parameters (φ0 and η), and in

particular demonstrates that although the marginal PDF of φ0 alone is almost uniform

(see Fig. 2), this does not imply that its effect on the posterior was negligible.

The MCMC sampler internally works with chirp mass (mc) and mass ratio (η)

instead of individual masses (m1, m2). A posterior sample of the individual masses still

can easily be obtained by back-transforming each pair of (mc, η) samples. Fig. 4 shows
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Figure 3. Bivariate marginal posterior PDFs for two pairs of parameters. Dashed

lines indicate the true values, the true coalescence phase is φ0 = 0 (Histograms, the

greyscale plots show relative PDFs normalised to the mode).

these two marginal PDFs combined into one plot.
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Figure 4. Combined plot of marginal posterior PDFs of the two companions’ indi-

vidual masses (assuming m1 ≤ m2). Dashed lines indicate true parameters.

Analogously, other functions of the parameters can be derived and distributional

features investigated; if e.g. one was interested in whether the masses differ ‘significant-

ly’ or are ‘almost equal’, we can estimate: P(m2 > 3m1) = 0.11% or P(m2 < 1.5m1) =

4.84%. Fig. 5 shows the posterior PDF of the logarithmic amplitude α(m1, m2, dE)

(8). Comparing it to the prior PDF you can see that, since it is significantly above

the reference points xU and xL, the particular specification of the lower bound of the

parameter space does not affect our conclusions. Table 1 shows summary statistics of
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Figure 5. Posterior PDF of the signal’s logarithmic amplitude α(m1, m2, dE); the

dashed line indicates the true value. The prior PDF (dotted line) and xU and xL are

shown as well.

the posterior distributions of the inspiral’s parameters.

Table 1. Posterior estimates: Means, medians and 95% central posterior intervals for

several parameters.

parameter mean median 95% c.p.i. true unit

chirp mass (mc) 1.2161 1.2159 [1.2145, 1.2186] 1.2167 M�

mass ratio (η) 0.2174 0.2162 [0.1987, 0.2457] 0.2222

coalescence time (tc) 84.6174 84.6174 [84.6160, 84.6189] 84.6167 s

coalescence phase (φ0) — not meaningful — 0.0 radian

effective distance (dE) 26.28 25.99 [21.55, 32.68] 25.00 Mpc

mass 1 (m1) 0.980 0.964 [0.876, 1.229] 1.0 M�

mass 2 (m2) 2.062 2.085 [1.600, 2.327] 2.0 M�

4. Discussion

We have developed an efficient method for examining gravitational wave interferometer

data for binary neutron star inspiral signals. Our MCMC code investigates the five

parameters of an inspiral signal that is described by its two masses, effective distance,

time, and phase at coalescence. This code can be applied at the end of a binary

neutron star detection pipeline [16, 18, 19], thereby extracting detailed information

about parameters and related quantities.

We are extending our MCMC research on binary neutron star inspiral signals.

The power of MCMC methods is their ability to address complex signals with large

parameter numbers. We see MCMC methods being of great use for even more complex
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gravitational wave problems; an example would be inspiral signals from black hole–black

hole, or black hole–neutron star systems, and binaries with significant amounts of spin

for each mass. In order to address these signals higher order post-Newtonian terms are

necessary [54]. A current and promising research effort of our group is in incorporating

these high order PN terms, and to create an efficient MCMC search routine that will

find all of the signal parameters. Another on-going research project is in applying

MCMC methods to the multiple detector binary neutron star inspiral problem, where

sky position parameters can also be estimated. We expect that MCMC methods will

prove useful with more complex binary inspiral scenarios.
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