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Abstract

Background: Random-effects meta-analysis is commonly performed by first deriving an estimate of the
between-study variation, the heterogeneity, and subsequently using this as the basis for combining results, i.e.,
for estimating the effect, the figure of primary interest. The heterogeneity variance estimate however is
commonly associated with substantial uncertainty, especially in contexts where there are only few studies
available, such as in small populations and rare diseases.

Methods: Confidence intervals and tests for the effect may be constructed via a simple normal approximation,
or via a Student-t distribution, using the Hartung-Knapp-Sidik-Jonkman (HKSJ) approach, which additionally
uses a refined estimator of variance of the effect estimator. The modified Knapp-Hartung method (mKH)
applies an ad hoc correction and has been proposed to prevent counterintuitive effects and to yield more
conservative inference. We performed a simulation study to investigate the behaviour of the standard HKSJ
and modified mKH procedures in a range of circumstances, with a focus on the common case of meta-analysis
based on only a few studies.

Results: The standard HKSJ procedure works well when the treatment effect estimates to be combined are of
comparable precision, but nominal error levels are exceeded when standard errors vary considerably between
studies (e.g. due to variations in study size). Application of the modification on the other hand yields more
conservative results with error rates closer to the nominal level. Differences are most pronounced in the
common case of few studies of varying size or precision.

Conclusions: Use of the modified mKH procedure is recommended, especially when only a few studies
contribute to the meta-analysis and the involved studies’ precisions (standard errors) vary.
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Background
Random-effects meta-analysis is most commonly per-
formed based on an underlying hierarchical model in-
cluding two unknowns as parameters: the effect µ,
which is the figure of primary interest, and the
between-study variance (heterogeneity) τ2, which is
a nuisance parameter. Inference then is usually done
sequentially, by first deriving an estimate of the hetero-
geneity variance, τ̂2, and then determining the effect
estimate µ̂ by conditioning on the estimate τ̂2 [1, 2].
A large number of different estimators for the hetero-
geneity variance is available (see e.g. [3–6]), and effect
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estimation may be done based on a simple normal ap-
proximation, or by utilizing a Student-t distribution [7]
with an additionally refined estimator of the variance
of µ̂ [8–12]. While the normal model may be moti-
vated by asymptotic arguments, in actual applications
the number of estimates to be combined is commonly
small [13, 14] and hence the estimation uncertainty in
the between-study variance τ2 is substantial, so that
an adjustment is appropriate and in fact improves op-
erating characteristics [7–12, 15].

The problem of deriving estimates from only a small
number of data sources is a common problem espe-
cially in fields of application where empirical infor-
mation is sparse due to the rarity of the condition in
question. The rarity of a disease is often accompanied
with a low (commercial) interest or incentive, which is
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why such diseases are also known as orphan diseases.
According to the European Commission, a disease is
designated orphan status when the prevalence is ≤ 5
in 10 000 [16]. While by definition any individual rare
disease has a low prevalence, there is a large number
of these, eventually affecting a substantial fraction of
an estimated 6–8% of the total population [17], and
with that posing a challenge to health care systems
worldwide.
The European Medicines Agency acknowledges the

particular obstacles in rare diseases research but
points out that there is no fundamental difference be-
tween rare and more common diseases and hence no
“paradigm change” when it comes to regulatory is-
sues. Because of the common small-sample settings,
the importance of sophisticated methods is empha-
sized, and meta-analyses of good quality randomised
controlled clinical trials are still considered the high-
est level of evidence [18]. The problems encountered
in rare diseases research often call for special statisti-
cal methods, especially with respect to study designs
[17, 19, 20]. Meta-analyses are particularly important
in this field due to the lack of large trials, while these
will commonly still be faced with the problem of small
numbers of available studies. Between-study hetero-
geneity then is anticipated, since the gathered pieces
of evidence are likely to differ with respect to study
designs, types of control groups or treatment alloca-
tion [17, 19–21]. Small studies have in fact epirically
been found to exhibit more heterogeneity than large
trials [22]. Consequently, the use of methods suitable
for few studies and marginally significant findings is of
crucial importance here.
With an estimated incidence of 2–20 cases per

100 000 population, juvenile idiopathic arthritis (JIA)
is an example of a rare disease [23]. In the following,
we will use a meta-analysis in JIA [24] as a case study
to illustrate the different methods discussed below.
In the following sections, we will first describe the

methods used, then show the results of a simulation
study, and demonstrate the different types of analyses
in an example data set, before closing with conclusions
and recommendations.

Methods
Random-effects meta-analysis
Meta-analysis is very commonly performed via a
random-effects approach, utilizing the normal-normal
hierarchical model. Here the data are given in terms
of a number k of estimates yi ∈ R that are associ-
ated with some uncertainty given through standard
errors si > 0 that are taken to be known without
uncertainty. The estimates are assumed to measure
trial-specific parameters θi ∈ R:

yi ∼ N(θi, s
2
i ) for i = 1, . . . , k. (1)

The parameters θi vary from trial to trial around a
global mean µ ∈ R due to some heterogeneity vari-
ance between trials that constitutes an additive vari-
ance component to the model,

θi ∼ N(µ, τ2) for i = 1, . . . , k, (2)

where τ2 ≥ 0. The model may then be simplified
by integrating out the parameters θi, leading to the
marginal expression

yi ∼ N(µ, s2i + τ2) for i = 1, . . . , k. (3)

Among the two unknowns in the model, the overall
mean µ, the effect, usually is the figure of primary in-
terest, while the heterogeneity variance τ2 constitutes
a nuisance parameter. When τ2 = 0, the model sim-
plifies to the so-called fixed-effect model [1, 2].
The “relative amount of heterogeneity” in a meta-

analysis may be expressed in terms of the measure I2,
which is defined as

I2 =
τ2

τ2 + s̃2
(4)

where s̃ is some kind of “average” standard error
among the study-specific si [25]. In the following sim-
ulation studies, we will determine s̃2 as the arithmetic
mean of squared standard errors.

Parameter estimation
If the value of the heterogeneity variance parameter τ2

were known, the (conditional) maximum-likelihood ef-
fect estimate would result as the weighted average

µ̂ =

∑

iwi yi
∑

iwi
(5)

with “inverse variance weights” defined as

wi =
1

s2i + τ2
for i = 1, . . . , k. (6)

A common approach to inference within the random-
effects model is to first estimate the heterogeneity vari-
ance τ2, and subsequently estimate the effect µ condi-
tional on the heterogeneity estimate. Note that the wi

are effectively treated as “known” while in fact both
the s2i as well as τ2 are only measured with some un-
certainty (that depends on the size/precision of the ith
individual study and the number of studies k). There
is a wide range of different heterogeneity estimators
available (see e.g. [3–6] for more details). In the fol-
lowing we will concentrate on some of the most com-
mon ones, the DerSimonian-Laird (DL) estimator, a
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moment estimator [26] with acknowledged shortcom-
ings [27], the restricted maximum likelihood (REML)
estimator [3, 28], and the Paule-Mandel (PM) estima-
tor, an essentially heuristic approach [29, 30]. Software
to compute the different estimates is provided e.g. in
the metafor and meta R packages [31, 32].

Confidence intervals and tests
Normal approximation
Confidence intervals and, equivalently, tests for the ef-
fect µ are commonly constructed using a normal ap-
proximation for the estimate µ̂. The standard error
of µ̂, conditional on a fixed heterogeneity variance
value τ2, is given by

σ̂µ =

√

1
∑

iwi
. (7)

A confidence interval for the effect µ then results via
a normal approximation as

µ̂ ± σ̂µ z(1−α/2) (8)

where z(1−α/2) is the (1−α/2)-quantile of the standard
normal distribution, and (1−α) is the nominal cover-
age probability [1, 2]. The normal approximation based
on a heterogeneity variance estimate τ̂2 usually works
well for many studies (large k) and small standard er-
rors (small si), or negligible heterogeneity (small vari-
ance τ2), but tends to be anticonservative otherwise
[8, 9, 33].

The Hartung-Knapp-Sidik-Jonkman (HKSJ) method
Hartung and Knapp [8, 9] and Sidik and Jonkman [10]
independently introduced an adjusted confidence in-
terval. In order to determine the adjusted interval, first
the quadratic form

q =
1

k − 1

∑

i

wi(yi − µ̂)2 (9)

is computed [8–10]. The adjusted confidence interval
then results as

µ̂ ± √
q σ̂µ t(k−1);(1−α/2) (10)

where t(k−1);(1−α/2) is the (1−α/2)-quantile of the
Student-t distribution with (k−1) degrees of freedom.
Note that qσ̂2µ is derived from a non-negative and
unbiased estimator of 1

∑

i
wi

[34]. Confidence inter-

vals based on the normal approximation may easily
be converted to HKSJ-adjusted ones [12]. The method
has also been generalized to the cases of multivariate
meta-analysis and meta-regeression [35].

The modified Knapp-Hartung (mKH) method
The HKSJ confidence interval (10) tends to be wider
than the one based on the normal approximation (8),
since the Student-t quantile is larger than the corre-
sponding normal quantile, while q will tend to be some-
where around unity. However, q may in fact also turn
out arbitrarily small, and if

√
q <

z(1−α/2)

t(k−1);(1−α/2)
, then

the modified interval will be shorter than the normal
one, which may be considered counter-intuitive. A sim-
ple ad hoc modification to the procedure results from
defining

q⋆ = max{1, q} (11)

[11] and using q⋆ instead of q to construct confidence
intervals and tests. This will ensure a more conserva-
tive procedure. The modification was originally pro-
posed in the meta-regression context, but the simple
meta-analysis here constitutes the special case of an
“intercept-only” regression.
Note that the PM heterogeneity variance estimator

is effectively defined by choosing τ̂2 such that q (equa-
tion (9)) is =1 (or less, if no solution exists) [29, 30], so
that for the PM estimator the corresponding q⋆ value
always equals q⋆=1.

Simulations
Since a (1−α) confidence interval is supposed to cover
the true parameter value with probability (1−α), the
calibration of such intervals may be checked by repeat-
edly generating random data based on known param-
eter values and then determining the empirical fre-
quency with which true values are actually covered
[36]. We performed such a Monte Carlo simulation
comparing the HKSJ and mKH approaches using the
setup that was introduced by IntHout et al. [12]. Data
were simulated on a continuous scale, according to
the random-effects model described above, with study-
specific standard errors si set to reflect certain scenar-
ios with respect to the relative size of studies and their
variation due to estimation uncertainty. Many meta-
analyses are based on (discrete) count data, where the
random-effects model assumptions only hold to an ap-
proximation that works well unless event probabilities
are very low. Alternative methods have been proposed
to deal with low event probabilities [37, 38], but low-
event-rate effects were not considered in the present
investigation.
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Figure 1 Coverage probabilities of HKSJ and mKH 95% confidence intervals. Probabilities are shown in dependence of the
number k of studies and the amount of heterogeneity I2. The four different scenarios A–D correspond to different amounts of
imbalance between the study-specific standard errors si. The DerSimonian-Laird (DL) method was used for estimation of the
heterogeneity variance τ

2.
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These simulations considered four different scenarios,
namely meta-analyses (A) with trials of equal size,
(B) with equally sized trials but including one small
trial, (C) with 50% large and small trials, and (D)
equally sized trials and one large trial. The sizes of
“small” and “large” trials (and hence, squared stan-
dard errors s2i ) here differ by a factor of ten, so that
the associated standard errors differ by roughly a fac-
tor of 3; for more details see [12, Appendix 2]. Num-
bers of studies k considered here are in the range
of 2–11, and the true levels of heterogeneity were
I2 ∈ {0.00, 0.25, 0.50, 0.75, 0.90}. At each combination
of parameters 10 000 meta-analyses were simulated.
All simulations were performed using R [39].

Results
Simulations

Figure 1 shows the estimated coverage probabilities of
the different confidence intervals based on the DL het-
erogeneity variance estimate. The corresponding figure
for REML and PM look essentially the same, which is
in line with the findings in [33, 40]. The HKSJ method
works very well when the analyzed studies are of equal
size (i.e., have equal standard errors), as can also be
shown analytically [41], but coverage decreases in more
imbalanced settings, especially for small numbers of
studies. For the case of no heterogeneity (I2 = 0) the
HKSJ method also works fine, but if τ2 was known
a priori, in this case the fixed-effect model should work
as well. The mKH procedure on the other hand is
rather conservative for small k, but does not tend to
inflate the type-I error substantially regardless of the
underlying study sizes or true heterogeneity. For both
methods, the dependence on the amount of hetero-
geneity is mostly a matter of whether τ2 is = 0 or > 0.
Application of the modification obviously tends to

widen the resulting confidence intervals. The ratio of

interval lengths (which is equal to
√

q⋆
√
q ) is shown in

Figure 2. Most notably, the effect is largest for small
heterogeneity and for few studies.
The modification eventually only makes a difference

in those cases where q turns out smaller than one. The
fraction of intervals affected by the modification ranges
between 31% and 82% for the DL heterogeneity vari-
ance estimator and for the scenarios investigated here,
with an overall average of 61%. For the other two esti-
mators the fractions are 29–82% with a mean of 62%
(REML), and 31–91% with a mean of 74% (PM).
Again, the differences between the different estimators
are rather small. With respect to the underlying simu-
lation scenario, the probability decreases with increas-
ing heterogeneity, since larger heterogeneity also leads
to larger values of q.

number of studies k

ra
tio

 o
f C

I l
en

gt
hs

5 10

1
2

5

I2 = 0.00
I2 = 0.25
I2 = 0.50
I2 = 0.75
I2 = 0.90
median
90% quantile

I2 = 0.00
I2 = 0.25
I2 = 0.50
I2 = 0.75
I2 = 0.90
median
90% quantile

Figure 2 Ratios of lengths of HKSJ and mKH confidence
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√
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√

q
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of the number k of studies and the amount of
heterogeneity I

2. Numbers are averaged over all 4 scenarios.
The DL method was used for τ2 estimation.
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Figure 3 Hinks et al. (2010) example data. A forest plot
illustrating the three estimated log odds ratios and 95%
confidence intervals for the example data due to Hinks et al.
[24]. The estimated amount of heterogeneity variance
(according to DL, REML and PM estimators) is zero here. At
the bottom the three alternative combined estimates based on
normal approximation, HKSJ and mKH approach are shown.

Application to JIA example data
Hinks et al. [24] studied the occurrence of a particular
genetic variant, CCR5, in juvenile idiopathic arthritis
(JIA) patients in comparison with the general popu-
lation. Their investigation included a meta-analysis of
a small number (k = 3) of available controlled studies
looking into the association of JIA with this partic-
ular biomarker. The analysis was based on logarith-
mic odds ratios; the three estimates along with their
standard errors are shown in a forest plot in Figure 3.
Here the largest standard error is 50% larger than the
smallest one. For these data, all three (DL, REML
and PM) heterogeneity variance estimates turn out
as τ̂2 = 0. A zero heterogeneity variance estimate is
not uncommon, even when the actual heterogeneity is
in fact substantial [14]. The associated q value is also
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small with q = 0.31 (
√
q = 0.55). The resulting three

confidence intervals based on normal approximation,
HKSJ adjustment and mKH method all differ in their
lengths. The mKH interval is longest, and includes the
zero log odds ratio (indicating no association between
genetic marker and disease), while the other two in-
tervals do not include zero. So the choice of procedure
directly affects conclusions in this example.
In this example, the three standard errors are rather

similar (the largest is 50% larger than the smallest),
but while the heterogeneity variance estimates τ̂2 are
all at zero, the 95% Q-profile confidence interval [42]
ranges up to τ2 = 0.332, corresponding to I2 = 0.90.
Within the context of our simulations (Fig. 1), we can-
not tell from the data which of the heterogeneity (I2)
scenarios we are in fact in, and as the standard errors
are not exactly the same, it remains a matter of bal-
ancing the potential consequences whether one would
rather risk losing on the side of (type I) error proba-
bility or power.

Discussion
The HKSJ procedure ensures the coverage probabil-
ity only when the included studies’ standard errors si
are similar; for unbalanced settings, the actual error
probability tends to exceed the targeted one. With
the standard definition of the correction factor q the
results may sometimes be counterintuitive, since the
corresponding CIs may turn out shorter than using
the simple normal approximation; in fact they may get
arbitrarily short. In case of no heterogeneity (τ = 0)
the HKSJ method also works well, however practically
this is of limited relevance, as one can rarely tell (or
convincingly argue) whether this condition holds.
The ad hoc modification of the mKH method aims

at fixing these shortcomings and results in type-I error
probabilities that are not grossly in excess of the pre-
specified ones. Especially when the standard errors si
are of dissimilar magnitude, the mKH method can
therefore be recommended. For few studies (small k),
the modified procedure however tends to be very con-
servative, with very small error probabilities especially
in the extreme case of meta-analysis of only k=2 stud-
ies. In this extreme case the choice of methods may
therefore be considered a matter of a power vs. type-I
error probability tradeoff.
While meta-analyses of few studies are a particular

problem in indications where there is only little evi-
dence available (such as rare diseases), such circum-
stances are not as uncommon as one might expect.
Turner et al. [13] and Kontopantelis et al. [14] investi-
gated the analyses archived in the Cochrane Database
and actually found a majority of them to be based on
as few as k = 2 or k = 3 studies; so these constitute

highly relevant cases for which the proper control of
error rates is crucial.
The properties of either unmodified or modified

method for the extreme case of k = 2 may be con-
sidered unsatisfactory, as it seems one has the choice
of either falling short of or exceeding the targeted er-
ror probability; the problem has in fact been regarded
as effectively unsolved [43]. The poor behaviour may
be explained by the fact that performing a random-
effects meta-analysis effectively means the estimation
of first- and second-order statistics, and it is not overly
surprising to find that this is a hard task when the
data consist of as few as two samples that are only
measured with uncertainty. Bearing this in mind, the
use of Bayesian methods [44] and the consideration of
external evidence on the likely magnitude of the het-
erogeneity [45] may be the way forward.

List of abbreviations
DL DerSimonian-Laird

HKSJ Hartung-Knapp-Sidik-Jonkman

JIA juvenile idiopathic arthritis

mKH modified Knapp-Hartung

PM Paule-Mandel

REML restricted maximum likelihood
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