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In Bayesian meta-analysis, the specification of prior probabilities for the
between-study heterogeneity is commonly required, and is of particular bene-
fit in situations where only few studies are included. Among the considerations
in the set-up of such prior distributions, the consultation of available empirical
data on a set of relevant past analyses sometimes plays a role. How exactly to
summarize historical data sensibly is not immediately obvious; in particular, the
investigation of an empirical collection of heterogeneity estimates will not target
the actual problem and will usually only be of limited use. The commonly used
normal-normal hierarchical model for random-effects meta-analysis is extended
to infer a heterogeneity prior. Using an example data set, we demonstrate how
to fit a distribution to empirically observed heterogeneity data from a set of
meta-analyses. Considerations also include the choice of a parametric distribu-
tion family. Here, we focus on simple and readily applicable approaches to then
translate these into (prior) probability distributions.
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1 INTRODUCTION

A range of statistical modeling approaches is available for random-effects meta-analyses; here we consider meta-analysis
within the common and general framework of the normal-normal hierarchical model (NNHM) where measurement
uncertainty as well as between-study heterogeneity are modeled based on normal distributions.1,2 The NNHM provides
a versatile framework for meta-analysis that is applicable in a wide range of cases where the data may be summarized
by a point estimate along with a measure of uncertainty (a standard error or confidence interval). Examples include
many types of endpoints, for example, (standardized) mean differences, (logarithmic) odds ratios, relative risks or haz-
ard ratios, prevalences, correlation coefficients, and many more. Analysis based on the NNHM and performed within a
Bayesian framework requires the assignment of prior distributions for the overall mean effect (𝜇) and the heterogene-
ity standard deviation (𝜏); while the former is commonly uncontroversial and a uniform (uninformative) specification
if often appropriate, the latter may require more care, in particular in cases where only few studies are included in the
meta-analysis.3-5

Generally speaking, the construction of prior distributions may be approached from a range of different angles,6-9

some of which include the consideration of empirical data. Besides the empirical evidence, a number of further aspects
may determine details of the prior distribution’s specification, such as tail behavior, robustness or conservatism.2,4
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Practical application eventually also requires priors to be reasonably simple, and easily motivated, communicated and
implemented.

Several authors have investigated empirical data on heterogeneity in meta-analysis applications previously.10-18 In
some instances, this resulted in a sample of heterogeneity estimates, which may provide a rough idea of plausible het-
erogeneity magnitudes. However, it may not provide immediate guidance in specifying a prior for the heterogeneity
parameter for practical application. On the other hand, Rhodes et al19 and Turner et al20 fitted comprehensive, fully
Bayesian models with a focus on prediction, and with the aim of yielding immediately applicable prior specifications. To
this end, Turner et al20 utilized a log-normal model for binary outcomes, while Rhodes et al,19 after considering several
alternatives, eventually settled on a log-Student-t5 model for standardized mean differences.

While the results from such previous analyses are immediately applicable for certain investigations, in some cases it is
desirable to perform an analogous investigation based on a specific selected data base; an example scenario also sketched
in the example application below is that of a health technology assessment (HTA) authority that may be interested in
evaluating the heterogeneity commonly encountered in a specific set of past analyses. The technical problem essentially
is that of a meta-analysis of heterogeneity estimates with a focus on the heterogeneity “population” and prediction of a new
(“future”) heterogeneity value. The heterogeneity estimates themselves each originate from a meta-analysis, and they are
usually not well summarized simply by a point estimate and a standard error. The relevant data basis hence is a complete
set of several meta-analyses (ie, their included effect estimates and standard errors); at least in the medical context, such
original data are quite commonly reported as required by the prisma statement.21

In the present investigation, we formalize the approach originally established by Rhodes et al19 and Turner et al20 in a
slightly more general way, including a range of parametric distribution families and suggestions on how to summarize the
resulting posterior distributions for communication and application. Modeling here includes choice of the random-effects
distribution, and the focus is on prediction. While we showcase the approach using a freely available example data set,
we also provide JAGS and R code to facilitate application of the same approach to other data sets.

The remainder of this article is structured as follows. In Section 2, we outline the problem in more detail and we
specify the statistical model employed to investigate and infer heterogeneity distributions. In Section 3, the approach is
showcased using a small example data set. Section 4 then concludes with a discussion.

2 MODELING HETEROGENEITY

2.1 Preliminary considerations

In the following, we consider the normal-normal hierarchical model (NNHM), in which estimation uncertainty as well
as between-study heterogeneity are accommodated using normal variance components. The magnitude of the heterogene-
ity component, which empirically manifests itself as excess variability beyond what could be attributed to uncertainty
alone, scales with the standard deviation 𝜏, which is generally unknown. In a Bayesian context, the specification of a
prior distribution for 𝜏 is then required.2,4 In some instances, non-informative priors may be specified; in particular, in
the context of a large number of studies included in a meta-analysis, varying the heterogeneity prior may be of little
relevance to the resulting effect estimates. In general, however, consideration of prior information in the analysis will
always be beneficial, and sometimes even necessary, for example, when dealing with less that about 10 studies only,
or when the focus is on computing marginal likelihoods. Prior distributions then may or may not involve empirical
information.4

In order to support an analysis by informing the prior choice using empirical data, first of all relevant, somehow
“representative” data need to be identified. How exactly to arrive at such a data set is beyond the scope of the present
investigation; here we assume an appropriate set of meta-analyses based on suitable effect measures to be given. In case
one set out to gather a set of relevant heterogeneity estimates (and the associated meta-analyses), some guidance is given
by the recommendations issued for meta-analyses in general, for example, the prisma statement.21 Inclusion criteria
should be defined, and restrictions might relate to characteristics like outcome (eg, mortality), effect measure (eg, odds
ratio) or comparators (eg, pharmacological vs. placebo), as was also done in the investigations by Rhodes et al19 and
Turner et al.20 An industrial investigator might consider a subset of their own sponsored trials, or an HTA institution
might consider their own meta-analyses, and one might want to include time constraints (eg, the past decade); either way,
a transparent specification of the selection process will (as usual) make the investigation more convincing. In contrast to
conventional systematic reviews (searches for studies to be pooled), the search for meta-analyses would usually need to
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have a wider scope and may commonly include different indications, different treatments, different controls, etc. In the
following, we discuss how such data may then be modeled and considered in a future analysis.

It should be noted, however, that empirical data still remain only one aspect of several to guide prior specification; con-
sideration of empirical data may in fact also be seen as “complementary” to other prior considerations. The heterogeneity
parameter refers to the amount of variability between studies, and, based on the context and the endpoint considered, it
is usually possible to provide a rough specification of what amounts are considered likely, or from which point on the
heterogeneity is deemed unreasonably large.4 An “empirical” prior distribution might also serve as a “sanity check”, for
example, in order to confirm whether some given prior specification appears too optimistic or otherwise unrealistic. Fur-
thermore, it will usually be possible to adapt a given prior distribution to make it “less informative”, “more conservative”
or “more robust” in a certain sense.4

If no concrete (eg, empirical) information is available, one can usually still constrain the plausible magnitude of the
heterogeneity to be expected, leading to weakly informative priors. Such priors aim to facilitate analysis by bounding the
heterogeneity in a conservative way; such specifications are also closely related to regularization approaches.22,23 Weakly
informative priors for the heterogeneity parameter have been explored previously, and in particular their scaling depends
on the context and the endpoint in question.4,24

2.2 Extending the NNHM

In order to infer a heterogeneity prior for use within the NNHM context, we specify an extension of the common NNHM
allowing to accommodate data from several meta-analyses at once, and including an additional model stage for the distri-
bution of the associated heterogeneity parameters across meta-analyses. Suppose the external data consist of a collection
of N meta-analyses, each of an individual size kj (j = 1, … ,N), and providing a set of kj estimates yij along with their
associated standard errors 𝜎ij (i = 1, … , kj). Depending on the effect measure considered, yij and 𝜎ij (as well as the 𝜇j and
𝜏j introduced below) are all expressed in the same units.

The eventual aim of the analysis will be to determine the (posterior) predictive distribution of a “future” heterogeneity
value (𝜏⋆); this distribution will be relevant as a heterogeneity prior for a subsequent random-effects meta-analysis.19,20,25

2.3 The normal-normal stage

Each meta-analysis has an underlying true effect 𝜇j and a heterogeneity 𝜏j associated. The jth meta-analysis is modeled
via the “usual” NNHM:

yij | 𝜇j, 𝜏j ∼ Normal(𝜇j, 𝜎
2
ij + 𝜏

2
j ) (i = 1, … , kj). (1)

Inference on different meta-analyses’ effect parameters 𝜇j is effectively stratified by assuming a vague prior

𝜇j | 𝜇p, 𝜎p ∼ Normal(𝜇p, 𝜎
2
p) (2)

for some “neutral” prior mean 𝜇p and some “large” (uninformative) prior standard deviation 𝜎p.2

2.4 The heterogeneity stage

If one now chose a common “noninformative” prior for 𝜏 across all N analyses, one would essentially recover the poste-
riors that would also result from independent, separate analyses of all meta-analyses individually. Instead, we specify an
additional model stage by defining a joint parametric (“prior”) distribution for the heterogeneity, whose (hyper-) param-
eters again are to be learned from the set of meta-analyses. The purpose of this additional model stage is to capture the
distribution of the heterogeneity (standard deviation-) parameters across the set of N meta-analyses.

For the heterogeneity parameters, a common parametric distribution is assumed, whose parameters in turn are to be
estimated. In general, we may express this as

𝜏j | 𝜃 ∼ P(𝜃) (3)
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where the heterogeneity distribution’s parameter(s) 𝜃 are assigned another hyperprior

𝜃 ∼ H. (4)

The predictive distribution of a “new” heterogeneity value (eg, in a future meta-analysis) is again defined through the
conditional expression

𝜏
⋆ | 𝜃 ∼ P(𝜃); (5)

its (prior or posterior) marginal distribution again results from marginalizing over the corresponding distribution of 𝜃.
To make the specification in (3) and (4) more concrete, a common setting in practice may be to assume a half-normal

distribution for 𝜏j, that is,

𝜏j | s ∼ half-Normal(s), (6)

where the common scale parameter s is unknown and is assigned another hyperprior, for example,

s ∼ Uniform(0, b) (7)

for some fixed “large” upper bound b (eg, a bound of b = 10 should generally be appropriate for a log-OR as effect
measure).

In the following, inference first of all aims at inferring the common heterogeneity distribution ((3) or (6) above) and
its parameters (𝜃 or s in the specifications above). The relevant aspect for informing future meta-analyses then is the
posterior predictive distribution of a “new” heterogeneity value 𝜏⋆.19,20 Here this means marginalizing over (6) based on
the scale parameter’s posterior distribution. In the above example, this posterior predictive distribution will hence be a
half-normal scale mixture.26

Many other sensible distributions may be conceivable instead of the half-normal specification in (6); the half-normal
distribution, however, is probably the most common one. Inclusion of a scale parameter in the distribution’s parametriza-
tion is often also sensible.4 Alternatives to the half-normal would for example, be exponential, half-Cauchy or log-normal
distributions. All these may be parameterized in terms of a scale parameter, the log-normal distribution in addition pos-
sesses a shape parameter. The use of gamma or inverse-gamma distributions is usually not considered appropriate.27 The
different prior distributions differ for example in their shapes, their tail behavior, or their complexity (number of param-
eters). For some guidance on their properties see for example, the extensive discussion by Röver et al (2021).4 Extensions
of the model’s heterogeneity stage may also be conceivable, for example, in order to accommodate categorical covariables
or time trends.

2.5 Inference

Inference on all unknowns in the model is easily implemented via Markov chain Monte Carlo (MCMC) methods,28 for
example, utilizing JAGS.29,30 The parameters of primary interest here are the heterogeneity distribution’s parameters (𝜃)
and the predictive distribution (𝜏⋆). Alternative model specifications (different heterogeneity distributions in (3) or (6))
may be investigated, and a formal model comparison may be implemented based on information criteria (such as the
deviance information criterion (DIC);31 see also the example below).

2.6 Summary and transfer

For any practical purpose, the “plain” MCMC samples alone (of 𝜃 or 𝜏⋆) would only be of very limited use. In order to
communicate and apply the predictive distribution as a prior in a subsequent analysis, the MCMC samples would ideally
be “condensed” into a simple parametric probability distribution. There are three obvious options:

1. Derive a point estimate (�̂�), and then use a single, “fixed” instance of (3) (ie, the conditional distribution p(𝜏⋆|�̂�))
as an approximation to the predictive distribution for later application. The point estimate here may also be chosen
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RÖVER et al. 2443

“conservatively” (eg, for a scale parameter, one may prefer the mean over the median, as this will usually be larger, or
one might also use some upper posterior quantile in order to be on the safe side).

2. Consider the parameter’s (or parameters’) uncertainty in addition. The predictive distribution results as a mixture
distribution (eg, a scale mixture in case of a scale parameter 𝜃). This may sometimes be approximated analytically based
on the parameter’s distribution’s shape.4

3. Fit a distribution (eg, by matching moments or ML fitting) to approximate the predictive distribution (of 𝜏⋆) directly.
Obvious choices for the distribution family may again be the heterogeneity model (3), or scale mixtures (or otherwise
overdispersed versions) thereof.

In the following, we will consider these three approaches for practical application. Note that the third approach is
essentially the one also implemented by Rhodes et al19 and Turner et al,20 or, in a related context, by Weber et al.32

When summarizing a posterior predictive distribution for practical application, the result will necessarily be a sim-
plification, and a simple distributional form (a common, simple parametric distribution, with parameters rounded to
reasonable accuracy) will foster applicability. On the other hand, care must be taken not to oversimplify matters, and when-
ever deviations are accepted, one may aim to ensure that discrepancies are on the “conservative” or “less informative”
side. Generally speaking, underestimation of heterogeneity is commonly considered more harmful than overestimation,
and consequently one may try and preferably push potential bias towards larger heterogeneity.4 In that sense, for example,
a stochastically larger distribution, a larger scale parameter, or a heavier-tailed distribution may be considered more
conservative.2,4

3 EXAMPLE APPLICATION

3.1 Example data set

As an example, we will utilize the meta-analysis data set compiled by Seide et al.16,17 This data set contains data from
40 meta-analyses and includes a total of 131 studies. The data were originally assembled as a realistic test bed for com-
paring different meta-analysis methods for binary data. Reports published by the German Institute for Quality and
Efficiency in Health Care (Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen, IQWiG) were individually
screened, and data from the first encountered meta-analysis utilizing a binary endpoint and not including zero counts
were extracted.16,17 In the following, we will consider logarithmic odds ratios (log-ORs) as effect measures. In this data
set, the individual meta-analyses may be considered independent, since all of them originate from different reports and
there is no overlap among the included studies. One might then consider the derived predictive distribution relevant as
a prior distribution for inference in a “future” report also employing a binary endpoint.

Selection of this particular data set was somewhat opportunistic, as it was readily available, realistic and of a suitable
size. However, one could easily imagine a very similar situation to come up in practice, where some health technology
assessment (HTA) authority would be interested in characterizing the amount of heterogeneity encountered in a more or
less confined subset of past analyses. In fact, an investigation of this kind is currently under way at the IQWiG; for more
detail, see also Section 4.

Before considering the empirical evidence in the following, it may be worthwhile reviewing what the corresponding
a priori expectations may be. Here it is important to note that the endpoint (log-OR) is defined on a logarithmic scale,
so that the additive variation implied by the between-study heterogeneity translates to a multiplicative offset for the asso-
ciated ORs. For example, if the heterogeneity was at 𝜏 = 1.0, this would imply study-specific effects within a range of
mostly 𝜇 ± 1.96 (with 95% probability) on the log-OR scale. On the OR scale, this corresponds to effects within exp(𝜇)

7.1
and exp(𝜇) × 7.1, potentially implying quite dramatic differences in effects between studies.33 By considering these effect
scales, one would commonly assume that 𝜏 would tend to be<1.0, for example by implementing a half-normal distribution
with scale 0.18,34 0.32,35 or 0.50.3 A half-normal prior distribution with scale 0.50 is commonly considered a conservative
choice for endpoints such as log-ORs, as first of all it rules out unreasonably large heterogeneity ranges.3-5

3.2 The analysis

The model described in Section 2, using a half-normal distribution for the heterogeneity 𝜏 (as in (6)), a uniform prior for
the scale parameter s (as in (7)) and a Normal(0, 1002) prior for the study-specific means was fitted using JAGS.29,30 The
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F I G U R E 1 Histograms of the posterior distribution of the half-normal scale parameter s (left panel) and of predictions 𝜏⋆ (right panel).

T A B L E 1 Summary statistics for the posterior distributions of scale parameter s and prediction 𝜃⋆ (see also Figure 1).

Scale s Prediction 𝝉⋆

Mean 0.22 0.17

Standard deviation 0.064 0.15

Median 0.21 0.14

95% quantile 0.33 0.46

99% quantile 0.41 0.66

JAGS code implementing the model is given in Appendix A. The resulting posterior distribution of the scale parameter s
and the predictive distribution of 𝜏⋆ are shown in Figure 1. Both distributions are also summarized using some descriptive
statistics in Table 1. The distribution of primary relevance for a “future” analysis is the predictive distribution of 𝜏⋆.
Subsequent inference hence needs to aim at roughly capturing its shape and relevant features.

3.3 Point estimation

An obvious and simple way of characterizing the predictive distribution is by simply deriving a “representative” point
estimate of the heterogeneity distribution’s parameter(s) (here: the scale parameter s) and consider the corresponding
conditional distribution. In the present case, we for example have a posterior mean scale of s = 0.22 (see Table 1). The
corresponding conditional half-normal distribution (p(𝜏⋆|s = 0.22)) is shown along with the original histogram as a red
line in Figure 2. Alternatively, one might also pick a more conservative (or “worst case”) point estimate, for example, the
upper 95% quantile of the scale parameter’s posterior instead.

3.4 Consideration of estimation uncertainty

Due to the uncertainty in the scale parameter s, the histogram of predictions 𝜏⋆ results as a (scale) mixture distribution26

that generally includes more extreme (both small and large) values than a half-normal distribution could accommodate.
An obvious example of a (half-) normal scale mixture is the (half-) Student-t distribution, so that this may also be a natural
choice for approximating the predictive distribution. The Student-t distribution arises as a scale mixture of a normal
distribution whose scale parameter (the normal standard deviation) follows a scaled inverse 𝜒-distribution.4 By matching
a scaled inverse 𝜒-distribution to the scale parameter’s distribution, we may then derive a corresponding half-Student-t
distribution as an approximation to the predictive distribution.

In the present case, the scale parameter has a mean of 0.22 and standard deviation 0.064 (see Table 1), corresponding to
a coefficient of variation of 0.29. The resulting scale mixture may hence be approximated by a half-Student-t distribution
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F I G U R E 2 Histogram of the heterogeneity predictions 𝜏⋆ along with two approximations to its distribution.

T A B L E 2 Summary statistics for the two approximations to the predictive distribution in comparison to the figures based on MCMC
(see also Table 1).

Quantiles

Mean Std.dev. 50% 95% 99%

Prediction 𝜏⋆ 0.17 0.15 0.14 0.46 0.66

Half-normal (0.22) 0.18 0.13 0.15 0.43 0.57

Half-Student-t𝜈=8.2(0.20) 0.18 0.15 0.14 0.46 0.67

with 𝜈 = 8.2 degrees of freedom and scale s = 0.20. This distribution is also shown in Figure 2 as a blue line, and one
can see that this yields an improved fit compared to the half-normal approximation. For details on fitting a Student-t
distribution as a normal scale mixture, see Appendix B.

3.5 Matching the predictive distribution

Instead of matching the predictive distribution based on the scale parameter distribution’s shape, the predictive dis-
tribution may also be fitted to the sampled 𝜏⋆ values directly. Different distribution families may be reasonable here;
more flexible (in particular: overdispersed) variations of the heterogeneity distribution (Equations (3) or (6)) are sensible
choices. In the present example, a half-Student-t distribution hence remains an obvious choice for the parametric family.
Deriving maximum-likelihood estimates for degrees-of-freedom and scale parameters is straightforward using statistical
software (via numerical optimization). Alternatively, one may also derive moment estimates; for the half-Student-t dis-
tribution, one may first solve for the degrees-of-freedom and subsequently for the scale parameter (see Appendix C for
more details). Another way to set up an overdispersed predictive distribution might be to fit a mixture distribution based
on a small number of components, say 2–4.32

For the present example, both maximum-likelihood as well as moment estimation again yield estimates of 8.2
for the degrees-of-freedom (𝜈), and of 0.20 for the scale (s) here; see also the corresponding distribution sketched in
Figure 2. Table 2 also contrasts summary statistics of the predictive distribution (based on MCMC) to the half-normal or
half-Student-t fits.

3.6 Model selection

Beyond consideration of common conventions or simplicity, selection of a parametric model to be fitted to the samples
may also be based on designated model selection approaches. For example, the deviance information criterion (DIC) may
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T A B L E 3 DIC values for the comparison of three alternative models based on the example data.

Predictive distribution (𝝉⋆)

Model DIC Mean Std.dev. 50% 95% 99%

Half-normal 163.8 0.17 0.15 0.14 0.46 0.66

Exponential 167.7 0.17 0.19 0.11 0.54 0.91

Log-normal 178.0 0.26 3.46 0.11 0.61 1.90

Half-Cauchy 212.8 0.08 1.10 5.46

Note: A lower DIC value indicates a better model fit. The corresponding predictive distributions are also summarized (in analogy to Table 2).

be computed from MCMC (JAGS) output in order to judge the goodness-of-fit or predictive performance of different
distribution families.31,36-39 However, such model selection approaches are usually computationally challenging, and it
may be questionable whether the often slight differences between a range of reasonable parametric distribution families
are in fact of substantial practical relevance. For example, sensitivity analyses shown by Röver et al4 seem to suggest that
analyses based on priors from different families yet with matching medians may commonly lead to barely distinguishable
results; this also seems to be confirmed by the alternative analyses shown in Section 3.9.

In the present example, we may compare a half-normal model with analogous ones utilizing an exponential, a
half-Cauchy or a log-normal distribution for the heterogeneity (instead of the specification in (6)). Table 3 shows DIC
values based on the example data; the half-normal model fits best here.

3.7 Considerations beyond empirical data

Empirical data will only ever be one among several aspects in the specification of a prior distribution.6,7,40 Other aspects
include operating characteristics and robustness,25,41 considerations of conservatism properties,2 features like lower-tail
and upper-tail behaviors,4 or simplicity42 (see also Section 2.6). In the present example, if simplicity is desired, the
half-normal approximation may be preferred to the Student-t model. If on the other hand there is some doubt about the
direct relevance of the empirical data to the given meta-analysis problem, a “more conservative” distribution (eg, a greater
scale parameter) might be specified..2

Another way to “robustify” a prior, or to reconcile several prior information sources, is by implementing a mixture
prior. The basic idea is that the prior information may be composed of several (mutually exclusive) components, for
example, besides the hypothesis that the historical data are of immediate relevance to the present analysis, one may want
to also consider the alternative that it is unrelated and hence some vague prior would apply. Both the “informative”
and “vague” priors may be combined by attaching probabilities to both options and using a two-component mixture
distribution of both as the eventual prior.25,43 Inference would eventually also consider to what extent the present data
appear consistent with one or another component; the effect is greater conservatism as well as a gain in robustness to
discrepancies between the historical and current data.

3.8 Example application

We continued the original search through IQWiG publications to find the subsequent “41st” qualifying meta-analysis to
apply the derived prior on.

Report N14-0444(fig.32, p. 233) reports on a meta-analysis involving two studies, and comparing endobronchial coil vs. no
therapy for lung volume reduction in severe pulmonary emphysema.45-47 The endpoint considered here is the log-OR of
overall mortality at 12 months. The relevant data are illustrated in Figure 3. The two studies yield very similar log-OR
estimates, while the standard errors differ. The (DL) heterogeneity estimate turns out as zero in this case, so that the
original (frequentist) analysis effectively was based on a “common-effect” estimate of a log-OR of 0.27 [−0.55, 1.08].44

Given that the half-normal model provides the best fit to the historical data (see Table 3) and that the half-Student-t
yields a slightly better approximation to the predictive distribution than the half-normal (see Figure 2), here we select
the half-Student-t𝜈=8.2(0.20) approximation for analysis. Some properties of this distribution are sketched in Figure 2 or
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study

REVOLENS (Deslee; 2016)

RENEW (Sciurba; 2016)

mean

treatment

4/50

10/155

control

3/50

8/157

estimate

0.31

0.25

0.27

95% CI

[−1.24, 1.86]

[−0.71, 1.21]

[−0.61, 1.14]

−1.0 0.0 1.0 2.0
log−OR (mortality)Heterogeneity (tau): 0.13 [0.00, 0.43]

F I G U R E 3 Forest plot illustrating the meta-analysis of log-OR estimates from a subsequent IQWiG report44 based on the heterogeneity
prior derived from previous, related meta-analyses (a half-Student-t distribution with 8.2 degrees of freedom and scale 0.20).

study

REVOLENS

RENEW

   half−Student−t(8.2; 0.20)

   half−Normal(0.22)

   Lomax(9.9; 1.5)

   log−Normal(−2.6; 1.7)

   half−Cauchy(0.10)

   half−Normal(0.50)

   Normal approx.

   HKSJ

   mKH

estimate

0.3092

0.2504

0.2675

0.2675

0.2674

0.2673

0.2674

0.2690

0.2666

0.2666

0.2666

95% CI

[−1.2420, 1.8603]

[−0.7070, 1.2077]

[−0.6083, 1.1436]

[−0.6062, 1.1416]

[−0.6092, 1.1443]

[−0.6462, 1.1813]

[−0.6437, 1.1789]

[−0.7761, 1.3159]

[−0.5481, 1.0813]

[−0.0675, 0.6007]

[−5.0151, 5.5482]

−4 −2 0 2 4
log−OR (mortality)

F I G U R E 4 Forest plot illustrating different (Bayesian and frequentist) analyses of the example data from Section 3.8.

in Table 2. The resulting pooled effect estimate is shown in Figure 3. The resulting credible interval is about 8% wider
than the originally reported frequentist interval due to the increased heterogeneity incorporated in the Bayesian model.
The heterogeneity posterior barely differs from its prior, as one can also see when comparing the heterogeneity estimate
shown in the bottom left of Figure 3 with the prior quantiles shown in Table 2 (prior and posterior densities are also
shown side by side in Figure E1 in the Appendix).

3.9 Variations of the example analysis

3.9.1 Alternative analyses

For comparison, we also analyzed the same data using several alternative approaches, including the alternative priors
mentioned in Section 3.6 that were derived based on differing distribution families for the heterogeneity, a Bayesian
approach with a common weakly informative prior, as well as three frequentist estimators.

Figure 4 illustrates the different results jointly in a forest plot. The first two (half-Student-t and half-normal) are the
ones also shown in Figure 2, and are based on assuming a half-normal distribution for the random effects. The follow-
ing three lines show the summary estimates resulting from assuming alternative models for the external data (see also
Table 4). The last four lines show common analyses not considering the external data; the half-normal heterogeneity prior
with scale 0.50 is commonly considered weakly informative for a log-OR endpoint, as in the present context.3,4 The fol-
lowing three confidence intervals correspond to common frequentist analysis methods and are based on a simple normal
approximation (which was also utilized in the original analysis44) and the Hartung-Knapp-Sidik-Jonkman (HKSJ) and
the modified Knapp-Hartung (mKH) intervals,48 which are both based on Student-t quantiles.

Use of the different approximations to the predictive distribution in the half-normal model (half-normal or
half-Student-t; see Figure 2) barely makes a noticeable difference for the eventual analysis. Assuming alternative
random-effect distributions instead of the half-normal model leads to slightly differing predictive distributions as
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T A B L E 4 Parametric fits to the distributions shown in Table 3.

predictive distribution (𝝉⋆)

Model Approximation Mean Std.dev. 50% 95% 99%

Half-normal Half-normal (0.22) 0.18 0.13 0.15 0.43 0.57

Half-normal Half-Student-t (8.2; 0.20) 0.18 0.15 0.14 0.46 0.66

Exponential Lomax (9.9; 1.5) 0.17 0.19 0.11 0.53 0.89

Log-normal Log-normal (−2.6; 1.7) 0.32 1.30 0.07 1.22 3.88

Half-Cauchy Half-Cauchy (0.10) 0.10 1.27 6.37

Note: The approximations for the exponential, log-normal and half-Cauchy models are based on maximum-likelihood estimates.

T A B L E 5 Predictive distributions (and their approximations) based on analyses of data subsets.

Predictive distribution (𝝉⋆)

Data Mean Std.dev. 50% 95% 99% Approximations

All 40 analyses 0.17 0.15 0.14 0.46 0.66 Half-normal (0.22) Half-Student-t (8.2; 0.20)

20 most recent analyses 0.25 0.24 0.18 0.71 1.13 Half-normal (0.31) Half-Student-t (4.3; 0.26)

10 most recent analyses 0.45 0.45 0.32 1.32 2.17 Half-normal (0.56) Half-Student-t (3.8; 0.44)

5 most recent analyses 0.65 0.90 0.38 2.14 4.28 Half-normal (0.82) Half-Student-t (2.7; 0.56)

heterogeneity priors (see also Section 3.6 and Table 3). Despite the differences apparent in the predictive distributions
(Table 3) and their corresponding parametric approximations (Table 4), all five resulting meta-analytic estimates still turn
out very similar here, so one might pragmatically choose the simple half-normal prior here. The Bayesian estimate based
on the weakly informative prior is more conservative, resulting in a wider interval (eg, 20% wider than for the half-normal
(0.22) prior).

The different frequentist approaches suffer from the small sample size of only k = 2 studies and appear to be either too
optimistic or overly conservative. Since the heterogeneity point estimate is zero here, the frequentist intervals effectively
correspond to “common-effect” analyses in this case. The HKSJ interval turns out roughly half as wide as the Normal
interval, which may be considered counterintuitive.48 The mKH interval on the other hand is extremely conservative
(about six times as wide as the Normal interval), which again is not so uncommon for a meta-analysis of two studies
only.5,49

3.9.2 Differing amounts of historical data

When embarking on an investigation of “historical” meta-analyses as in the present example, an obvious question is how
many meta-analyses would be required or sufficient. This is probably hard to answer in any generality, as it also very
much depends on the sizes (kj) of involved meta-analyses, but we may at least shed some light by investigating varia-
tions of the example discussed above. To this end, besides the “full” set of N = 40 studies, we restrict the data to smaller
subsets including the most recent 20, 10, or 5 studies. Table 5 shows the resulting predictive distributions and corre-
sponding approximations when considering increasingly smaller subsets of the total of 40 meta-analyses. One can see
that when considering fewer heterogeneity estimates, the restricted data essentially are not able to “rule out” larger het-
erogeneity ranges, and so the resulting predictive distributions have larger means, medians and other quantiles. From
the relative magnitude of mean and standard deviation (and the corresponding coefficient of variation) as well as from
the Student-t distributions’ degrees-of-freedom parameters, one can see that the predictive distributions also become
increasingly heavy-tailed. The cases where the degrees-of-freedom parameter is large are those where a half-normal
approximation may fit comparably well; when the degrees-of-freedom parameter is low, the half-Student-t distribution
may be substantially more accurate.

It is also worth noting that for few analyses (only 10 or 5 included), the corresponding half-normal approximation
conveys very little information — a half-normal prior with scale 0.5 is commonly already seen as a very conservative choice
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RÖVER et al. 2449

in this context,3,4 and so the subsets of only 5 or 10 meta-analyses, corresponding to half-normal priors with larger scale,
do not seem to add information beyond what may be assumed given already. Strictly speaking, such a-priori information
could also be implemented in the hyperprior (see equations (4) or (7) in the analysis, which should then result in an
implicit lower bound on the informativeness of the resulting predictive distribution. However, it may also be of interest
to consider the different information sources in separation.

4 DISCUSSION

In this paper, we described a method allowing to translate historical meta-analysis data into a prior distribution for the
heterogeneity parameter in a subsequent meta-analysis. The approach may serve to quantify plausible ranges for a het-
erogeneity parameter, or simply as a cross-check whether some given prior specification appears to be over-optimistic or
too conservative relative to historical data.

For illustration purposes, we considered the publicly available data set collected by Seide et al16,17 as a working
example. The inferred predictive distribution may be somewhat realistic, but should not be understood as a recommen-
dation of any generality. For example, while the data might be expected to be relatively homogeneous already, many of
the analyses related to mortality endpoints, which where also found to be the least heterogeneous type of outcome in the
related analysis of the Cochrane Database of Systematic Reviews (CDSR) by Turner et al.20 We expect the type of end-
point considered to possibly play a role for the choice of prior. Endpoint-specific priors might be set up, whereas, in view
of pragmatic considerations, it may also be possible to agree on a (simpler) common setting for different endpoints (eg,
odds ratios, relative risks, hazard ratios, or standardized mean differences).

The R code to reproduce the analyses shown here is included in the online supplement. We intend to subsequently
apply this method to a comprehensive collection of meta-analyses published by the German Institute for Quality and
Efficiency in Health Care (Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen, IQWiG) in order to system-
atically evaluate the empirical evidence on heterogeneity with respect to certain classes of effect measures or endpoints.
The present results suggest that a half-normal distribution may serve the purpose well, so that the investigation would
primarily yield estimates of half-normal scale parameters. These analyses could then form the basis for recommendations
regarding the choice of prior in Bayesian random-effects meta-analyses for applications in health technology assessment
(HTA).

While initially an obvious approach might have been to consider collections of heterogeneity point estimates for this
purpose, it soon became obvious that these would only yield a very coarse indication of plausible heterogeneity ranges; a
comparison of the predictive distribution and the distribution of point estimates for our example data is also illustrated in
Appendix D. We then set up a simple extension of the NNHM to accommodate a heterogeneity distribution and to infer
the predictive distribution that would be useful for prior specification. However, there may always be situations where
heterogeneity estimates are available while the original studies are not;15 in such cases, a collection of heterogeneity point
estimates may still provide a reasonable approximation to the predictive distribution, as observed in the example. Overdis-
persion and bias of the heterogeneity estimates relative to the predictive distribution may be less of an issue when the
original meta-analyses are reasonably large. Many model extensions or variations would be conceivable; for example, in
view of binary endpoints, a binomial-normal hierarchical model similar to the one implemented by Turner et al20 (which
would allow to dispose of the normal approximation at the first model stage), or a model accommodating subgroups of
studies as utilized by Rhodes et al19 or Turner et al.20

Although the heterogeneity prior plays an important role in the setup of a meta-analysis, many other details are at
least equally relevant, such as the study selection, choice of estimand, effect measure or the statistical model. Empiri-
cal information will usually only constitute one of several aspects to inform or contribute to prior specification; further
aspects to be considered include a prior’s tail behavior, or robustness or conservatism features.2,4 While the availability
of a coherent approach to accurately translate empirical data into a prior specification is convenient, we expect a rather
rough summary of the resulting predictive distribution to commonly be sufficient. Unlike in usual systematic reviews, an
exhaustive search may not be necessary and a smaller (but representative) sample may be sufficient.
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APPENDIX A. JAGS CODE

The code shown in Table A1 defines the JAGS implementation of the model described in Section 2.29,30 The data, a total of
N effect estimates from n meta-analyses are provided in terms of the vectors of effect estimates y and variances (squared
standard errors)v. Individual studies are allocated to meta-analyses via the vector of index variablesid. The effects’ vague
prior is given through its mean effectPriorMean and standard deviation effectPriorSD.
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T A B L E A1 JAGS code implementing the model described in Appendix A.

model {

# the normal-normal hierarchical model (NNHM):

for (i in 1:N) { # loop over (N) individual studies:

y[i] ∼ dnorm(mu[id[i]], pow(v[i]+pow(tau[id[i]], 2), -1))

}

for (i in 1:n) { # loop over (n) meta-analyses:

mu[i] ∼ dnorm(effectPriorMean, pow(effectPriorSD, -2))

}

# the heterogeneity prior:

for (i in 1:n) { # loop over (n) meta-analyses:

# half-normal distribution for tau:

tau[i] ∼ dnorm(0.0, pow(tauScale, -2)) T(0,)

}

tauScale ∼ dunif(0.0, tauScalePriorMax)

tauPrediction ∼ dnorm(0.0, pow(tauScale, -2)) T(0,)

}

The model for the heterogeneity standard deviations tau is eventually specified in the final loop; here this is a
half-normal distribution with a scale parameter (tauScale). The scale parameter is estimated from the data after spec-
ification of a vague prior, a uniform distribution with upper bound tauScalePriorMax. Eventually, samples from the
predictive distribution (tauPrediction) are also generated along the way.

APPENDIX B. SCALE MIXTURE PARAMETRIZATION

B.1 Normal scale mixture
Suppose a half-normal distribution’s scale parameter s has mean 𝜇(s), variance 𝜎2(s) and coefficient of variation cv(s) =√
𝜎2(s)
𝜇(s)

. Then the resulting mixture distribution may be approximated by a half-Student-t distribution by assuming that the
scale followed a scaled inverse 𝜒 distribution with matching moments.4

The matching half-Student-t distribution’s parameters (degrees-of-freedom 𝜈t and scale st) then depend on cv(s) and
𝜇(s). First, the degrees-of-freedom may be solved for numerically based on the coefficient of variation cv(s) by equating
the scaled inverse 𝜒 distribution’s coefficient of variation (which does not depend on its scale parameter) to match cv(s).
Then the half-Student-t distribution’s scale results as st = 𝜇(s)

EInv-𝜒 (𝜈t ,
√
𝜈t)

, where EInv-𝜒 (𝜈t,
√
𝜈t) is the expectation of a scaled

inverse 𝜒 distribution with degrees-of-freedom 𝜈t and scale
√
𝜈t.4

B.2 Exponential scale mixture
Suppose an exponential distribution’s scale (or inverse rate) parameter s has mean 𝜇(s), variance 𝜎2(s) and coefficient
of variation cv(s) =

√
𝜎2(s)
𝜇(s)

. Then the resulting mixture distribution may be approximated by a Lomax distribution by
assuming that the scale followed an inverse gamma distribution with matching moments.4

The Lomax distribution is parameterized in terms of shape 𝛼 and scale 𝜆, with expectation 𝜆

𝛼−1
and variance 𝜆

2
𝛼

(𝛼−1)2(𝛼−2)
.

The corresponding parameter values follow from cv(s) and 𝜇(s) and are given by 𝛼 = 2 + 1
cv(s)2

and 𝜆 = 𝜇(s)(1 + 1
cv(s)2

).4

B.3 Log-normal distribution
Another obvious and common distribution for the heterogeneity 𝜏 is the log-normal distribution, resulting from modeling
the logarithmic heterogeneity parameter (log(𝜏)) based on location (𝜇) and scale (𝜎). In the context of the other models
discussed here, it is useful to consider an alternative, less common parametrization of the log-normal distribution, namely,
based on the exponentiated mean parameter 𝜗 = exp(𝜇). Re-writing the log-normal density f (x) in this form, it becomes
apparent that 𝜗 constitutes a scale parameter here, while 𝜎 is a shape parameter:
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f (x) = 1
𝜗

1
(x∕𝜗) 𝜎

√
2𝜋

exp(−
(
log(x∕𝜗)

)2

2𝜎2 ). (B1)

This allows to treat the log-normal distribution analogously to the other distributions discussed for example, in Section 2.
In this parametrization, the distribution is characterized by

Median 𝜗

Mean 𝜗

√
exp(𝜎2)

Variance 𝜗
2 exp(𝜎2)

(
exp(𝜎2) − 1

)

Standard deviation 𝜗

√

exp(𝜎2)
(
exp(𝜎2) − 1

)

Coefficient of variation
√

exp(𝜎2) − 1

When heterogeneity is modelled using a log-normal distribution in the extended NNHM (see Section 2), the same
distribution may also be a reasonable choice for approximating the (usually more dispersed) predictive distribution (of 𝜏⋆).
While a scale mixture of log-normal distributions does not have a simple analytic form, this may still be motivated by
considering the logarithmic scale: implementing uncertainty in 𝜇 = log(𝜗) using an additive normal term again leads to a
log-normal distribution (with a larger 𝜎 parameter). Strictly speaking, the predictive distribution for a normal distribution
with unknown mean and variance is a Student-t distribution,28 however, fitting a three-parameter distribution may well
be an exaggeration in the present context.

Log-normal distributions have been used for modeling predictive distributions for example, by Turner et al20 Similarly,
Rhodes et al19 used a log-Student-t-distribution, albeit with a pre-specified, fixed degrees-of-freedom parameter (𝜈 = 5).

APPENDIX C. MOMENT ESTIMATION FOR THE HALF-STUDENT-T DISTRIBUTION

The first two moments (expectation and variance) of a half-Student-t distribution with degrees-of-freedom 𝜈 and scale 𝜎
are given by

E[X] = 2𝜎
√
𝜈

𝜋

Γ( 𝜈+1
2
)

Γ( 𝜈
2
) (𝜈 − 1)

(for 𝜈 > 1) (C1)

and

Var(X) = 𝜎2

(

𝜈

𝜈 − 2
− 4𝜈
𝜋 (𝜈 − 1)2

(
Γ( 𝜈+1

2
)

Γ( 𝜈
2
)
)2
)

(for 𝜈 > 2). (C2)

Its coefficient of variation hence results as50

√
Var(X)
E[X]

=

√
√
√
√𝜋 (𝜈 − 1)2

4 (𝜈 − 2)
(
Γ( 𝜈

2
)

Γ( 𝜈+1
2
)
)2 − 1 (for 𝜈 > 2), (C3)

which is independent of the scale 𝜎 and>
√

𝜋

2
− 1 ≈ 0.75. A half-Student-t distribution’s moment estimates may hence be

computed by first matching the coefficient of variation (given that it is greater than 0.75) to yield a degrees-of-freedom esti-
mate, and subsequently matching the expectation for a scale estimate. Solving equation (C3) for the degrees-of-freedom 𝜈

may be done numerically.
For example, suppose a coefficient of variation of 0.8 and an expectation of 0.5 were aimed for. Numerically solving

equation (C3) (eg, utilizing R’s “uniroot()” function) yields a degrees-of-freedom estimate of �̂� = 13.6. A half-Student-t
distribution with 𝜈 = 13.6 degrees of freedom (and scale 1) would have an expectation of 0.85. The scale’s moment
estimator then equals �̂� = 0.5

0.85
= 0.59, that is, the half-Student-t distribution with 𝜈 = 13.6 and 𝜎 = 0.59 has an expectation

of 0.5 and coefficient of variation 0.8.
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APPENDIX D. COMPARISON TO FREQUENTIST POINT ESTIMATES

Since a heterogeneity estimate is associated with additional variance due to estimation uncertainty, one would expect the
distribution of estimates to be overdispersed relative to the distribution of true values. Figure D1 contrasts the predictive
distribution (of 𝜏⋆, as also shown in Figure 2) with the distributions of 40 heterogeneity estimates from the example data.
The DerSimonian-Laird (DL) and Paule-Mandel (PM) estimates behave similarly here, a seizable fraction turns out as
zero, and the overall picture appears to confirm the expected behavior; in particular, in becomes evident that consideration
of a mere collection heterogeneity estimates is of only limited use for prior specification. For example, the median 𝜏 value
would be at zero, while the average would be at 0.21 (for both DL and PM) and would to a large extent be dominated by
a single outlier.
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F I G U R E D1 Comparison of predictive distribution vs. the empirical distribution of 40 heterogeneity point estimates for the example
data set.

APPENDIX E. ANALYSES OF EXAMPLE DATA

Figure E1 illustrates the prior and posterior densities corresponding to the analysis also shown in Figure 3. As to be
expected, the posterior is very similar to the prior (a half-Student-t distribution with 8.2 degrees of freedom and scale 0.20)
in this case of only k = 2 studies.

heterogeneity �

0.0 0.2 0.4 0.6 0.8

prior density
posterior density

F I G U R E E1 Prior and posterior densities for the analysis shown in Figure 3. The vertical line indicates the posterior median, and the
dark grey area shows the 95% credible interval.
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