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Abstract

The normal-normal hierarchical model (NNHM) constitutes a simple and widely

used framework for meta-analysis. In the common case of only few studies con-

tributing to the meta-analysis, standard approaches to inference tend to perform

poorly, and Bayesian meta-analysis has been suggested as a potential solution. The

Bayesian approach, however, requires the sensible specification of prior distribu-

tions. While noninformative priors are commonly used for the overall mean effect,

the use of weakly informative priors has been suggested for the heterogeneity param-

eter, in particular in the setting of (very) few studies. To date, however, a consensus

on how to generally specify a weakly informative heterogeneity prior is lacking.

Here we investigate the problem more closely and provide some guidance on prior

specification.
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1 INTRODUCTION

In meta-analysis, researchers commonly encounter a certain amount of variability between experiments, to a degree going
beyond what could be attributed to measurement error alone. Hierarchical models are commonly used in order to account for
such (“between-study”) heterogeneity.1,2 In the present paper, we focus on the special simple case of meta-analysis within the
framework of the normal-normal hierarchical model (NNHM). The NNHM approximates estimates from separate sources and
their standard errors via normal distributions, and implements heterogeneity at a second level using another normal variance
component. In meta-analysis applications, the NNHM provides a good approximation for many types of endpoints or effect
measures.3,4 The normal approximation has its limitations,5 some of which are less of a problem in a Bayesian context.6 A
small number of studies tends to pose a problem especially for frequentist methods, in particular regarding the construction of
confidence intervals (CIs) with good coverage properties.7,8,9,10 A common convention is to exercise extra caution when the
number of studies is small.9

Bayesian approaches to meta-analysis have been advocated for quite a while,11,12,13,14,15,16,17 and analyses may technically be
performed using MCMC methods1 or semi-analytical integration.18 Within the R software, for example the bayesmeta19,20 or
bmeta21 packages are available. Performing a Bayesian analysis is not technically challenging; computations are straightforward
and valid for any number of studies, although less data will mean that results are more sensitive to prior specifications (especially
when it comes to variance parameters). A crucial condition is that the explicitly implemented normal approximation needs to
hold, which may break down e.g. for meta-analyses of small studies.5,6 While for large numbers of studies, the choice of prior
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2 C. RÖVER, ET AL.

distributions usually has little impact, for few studies the exact form of the prior distributions chosen may become crucial, as
one cannot rely on the prior information being overruled by the data in that case. At least part of this problem may be considered
“shared” for frequentist and Bayesian methods as long as one tries to get by without using a proper, informative prior.22 Some
supposedly noninformative prior distributions can probably be argued to be less influential than others, but ultimately these are
unlikely to be the best choice in few-study problems. Beyond meta-analysis, the use of informative priors for regularisation in
the estimation of certain parameters is also common.23 Especially for few studies, this may be a promising approach.24 The
case of “few” studies is hard to define; there is no obvious threshold, and in fact there may actually be no need to distinguish:
use of an informative prior will not be harmful for analyses of “many” studies. Indeed, a proper prior is necessary irrespective
of the number of studies in case the analysis requires the calculation of marginal likelihoods. In the present manuscript, we will
investigate examples ranging in size between 2 and 5 studies. These are the cases where the use of an informative prior will
make the greatest difference, and such situations have been discussed in the context of up to 4,9, 3–10,7 or only 2 studies.8

Heterogeneity priors have been investigated previously from different angles; some discussed general considerations for vari-
ance parameters15,25,26 while others motivated particular settings for specific example cases27,28 or investigated commonly used
settings in a systematic literature review.29 The aim of the present investigation is to provide general guidance for judging and
deriving weakly informative heterogeneity priors, and to suggest consensus examples for some common types of effect measures.
This may also aid in the design and justification of prior settings, or the prospective pre-specification of Bayesian meta-analyses30

and it may help avoid (suspicion of) post-hoc tweaking of prior assumptions.
The remainder of this article is structured as follows. In the next section, the normal-normal hierarchical model (NNHM) along

with its parameters and prior distributions are formally introduced. Section 3 discusses prior distributions for the heterogeneity
parameter and some general motivating considerations and implications. Section 4 motivates heterogeneity priors for a selection
of common types of endpoints and effect measures based on the previously discussed ideas. In Section 5, examples of meta-
analyses with different endpoints are introduced, and analyses are performed using the suggested prior settings. Section 6 closes
with conclusions and recommendations.

2 THE STATISTICAL MODEL

2.1 The normal-normal hierarchical model (NNHM)

The normal-normal hierarchical model (NNHM) represents measurements yi from k different sources using two hierarchy levels.
Along with the estimates, their associated standard errors �i need to be available. The �i are assumed to be fixed and known
(which commonly is only an approximation.5,31) Each estimate yi is assumed to measure an underlying true value �i, which is
not necessarily identical across all k measurements; (“between-study”) variability among the �i is accounted for by an additional
variance component whose magnitude is given by the heterogeneity � ≥ 0:

yi|�i ∼ N(�i, �
2
i
), (1)

�i|�, � ∼ N(�, �2) for i = 1,… , k, (2)

where the estimates yi (as well as the �i) are modelled as exchangeable. The overall mean effect � is often the figure of primary
interest. By marginalizing over the �i values, the model may be written in simplified form:

yi|�, � ∼ N(�, �2
i
+ �2). (3)

This is a random-effects model, which in the special case of � = 0 simplifies to the common-effect model (also known as the
fixed-effect model).3,4,20,32 The NNHM provides a good approximation for many types of effect measures where the estimates
as well as between-study variability may be assumed to be (approximately) normally distributed.5

While often the aim of a meta-analysis is estimation of the overall mean �, it is sometimes useful to also infer the study-specific
means �i or a prediction �k+1. The amount of information gained on �i or �k+1 through the joint meta-analysis depends very
much on the amount of heterogeneity �. If there was no heterogeneity (� = 0), then we would have �1 = �2 = … = �k+1 = �,
and all data would essentially contribute to the estimation of a single common parameter. If, on the other hand, � was very
large, then different parameters �i would only be very loosely connected (2), and consideration of additional data would only
add very little to the estimation of any particular �i or to a prediction �k+1. In between, for moderate � values, estimates of �i
are somewhat “shrunk” towards the overall mean �, and the prediction �k+1 is also more tightly constrained. Estimation of the
heterogeneity � hence also has distinct effects on the so-called “shrinkage estimates” �i as well as predictions �k+1.

20,33
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2.2 Prior distributions

2.2.1 Effect and heterogeneity priors

In the NNHM, there are two unkowns requiring prior specification, namely the overall mean effect � and the heterogeneity �. In
the following, we will assume that the prior may be factored into p(�, �) = p(�) ×p(�), implying prior independence of � and �;
note though that one may also argue in favour of a dependent prior.22,34 In a sense, dependence is often implicitly implemented
e.g. in the case of log-transformed effect scales: on the back-transformed (exponentiated) scale, the amount of heterogeneity
then scales with the value of the effect.

The effect prior p(�) may often, also for technical convenience, be taken to be (improper) uniform or normal.20 In case a
proper, informative effect prior is used, this may also have implications for the heterogeneity prior; in particular the prior variance
of � may be relevant when considering reasonable � values (see also Section 3.4.2 below).

Here we are first of all concerned with the prior distribution for the heterogeneity, p(�). A number of priors have been proposed
that may be considered “noninformative” in particular senses (e.g., improper uniform or Jeffreys priors, which may be motivated
using invariance or information-theoretic arguments),20 Sec. 2.2 but these usually cause problems especially when the number of
studies (k) is sufficiently small, or when the computation of marginal likelihoods (or Bayes factors) is desired. In the following,
we will hence be concerned with proper, (weakly) informative priors.

2.2.2 Different views of prior specification

There may be different perspectives on the role or purpose of prior specification within a Bayesian analysis; we sketch three
aspects here:

(i) Epistemic point-of-view: The posterior distribution depends on the prior via Bayes’ theorem; the prior inevitably needs to
enter inference, reflecting the state of information beyond the data at hand.1,35 Prior assumptions simply add to the line
of other assumptions being made, like a normal likelihood, independence, known standard errors, etc.

(ii) Regularisation point-of-view: The aim is to introduce “weakly informative priors, which attempt to let the data speak

while being strong enough to exclude various ‘unphysical’ possibilities which, if not blocked, can take over a posterior

distribution in settings with sparse data” (Gelman; 2009).36 This perspective is closely connected to regularisation or
penalization approaches in general.37 While in the likelihood framework it may sometimes be perceived as a rather ad hoc

fix, it constitutes a transparent, readily interpretable model component in the Bayesian case.

(iii) Pragmatic point-of-view: The resulting estimates may be judged solely based on their operating characteristics (which
may be frequentist or Bayesian,1 Sec. 4.4) without worrying about their exact theoretic underpinning.

The first viewpoint is probably the most “constructive” one here, in the sense of providing guidance on sensible prior choices.
An example of a regularisation approach in the NNHM context is given by the procedure proposed by Chung et al. (2013),38

where regularisation is used to implement preference for positive � values. Alternatively, one may also give preference to small
� values, as these imply a less complex model, which is the idea behind penalized complexity priors39 (and which here would
lead to an exponential prior). Comparisons of operating characteristics (also including frequentist approaches) were done e.g.
by Friede et al. (2017).7 There are probably more perspectives beyond or between these three (e.g.,40,41). For example, meta-
analyses may be thought of as constituting draws from a “population” whose associated heterogeneities are reflected in the prior
distribution — an “aleatory” interpretation of (prior) probability, which may lend a somewhat frequentist flavour to the analysis.
An important point to stress is that there is not necessarily a single “correct” prior: the use of different priors may be seen as
basing inferences on different preconditions, and the choice of prior depends on which information one is willing to incorporate
into the analysis; different analysts may hence draw different conclusions from the same data, when these are founded on differing
prior beliefs.42 In a sense, the posterior inherits its meaning from the prior to some extent.43 Other common shortcuts taken or
approximations and asymptotics relied upon may in fact often be potentially more influential and relevant than the choice among
the (usually limited) set of reasonable prior distributions (see, e.g., Jackson and White (2018)5).

2.2.3 Implications for interval estimation

While (frequentist) confidence intervals aim to provide coverage of the true parameter uniformly, independent of the actual
current parameter value, this is generally not the case for (Bayesian) credible intervals. In some cases, it is possible to specify
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(often improper) priors leading to posterior distributions that also provide proper frequentist coverage, but usually such a prior
is not available.44 Credible intervals are calibrated and yield proper coverage on average across the prior distribution; for the
point-wise coverage this means that there may be overcoverage in certain regions of parameter space and undercoverage in
others.20,45,46,47 For example, in the present case this may mean that long-run coverage may be above the nominal level if data
were repeatedly generated based on heterogeneity values from the lower end of the prior range, and below the nominal level
otherwise.

3 HETEROGENEITY PRIORS

3.1 Aim

For meta-analyses involving many studies (large k), the choice of prior distribution often has little impact, and an (improper)
uniform prior for � may be a good choice, not least due to its invariance property.20,25 Here we are concerned first of all with
the case of few studies (small k); a uniform prior may not actually be an option here, as it requires k ≥ 3 studies in order to
yield a proper, integrable posterior,25 and it may otherwise generally be considered overly conservative.7,8,25 Similar problems
arise also with the Jeffreys prior for the NNHM model;20 Sec. 2.2 this kind of issue is common in Bayesian analysis.23 Another
case where a proper, weakly informative prior may be required (not only for few studies) is when marginal likelihoods or Bayes
factors are of interest.

While the availability of a “noninformative” prior comes with a certain convenience (one less issue to worry about), in the
present case its failure to provide reasonable estimates in certain instances will often appear somewhat contradictory to common
sense. The introduction of an informative prior then may entail a trade-off of the introduced regularisation versus simplicity and
robustness. On the other hand, the explicit consideration of relevant prior information may also be seen as an advantage.

From a merely “technical” perspective, a heterogeneity prior must (in order to ensure integrability of the posterior) have a
shorter-than-uniform upper tail (an eventually decreasing, integrable density function) and also an integrable density towards
zero. In that spirit, it may also make sense to consider near-origin- and upper-tail-behaviours separately. While an (improper)
uniform prior may be considered noninformative for several reasons (e.g., due to its scale-invariance property20 Sec. 2.2), its
overly heavy upper tail may also be considered “anti-conservative”.48 On the other hand, it may be possible to “rescue” some
of the desirable behaviour and robustness e.g. by the use of heavy-tailed priors.49 Besides upper-tail considerations, priors may
also behave quite differently near zero; for example, depending on whether the prior density approaches zero, a finite value,
or infinity. A finite prior density may ensure a near-zero behaviour roughly like a uniform prior, while a zero density may be
useful e.g. in bounding maximum-a-posteriori (MAP) point estimates away from zero;38 in particular from the regularisation
perspective, the prior density’s derivative near zero may also be of interest (as it determines how small � values may be pushed
towards or away from zero).

While the concept of “weak informativeness” remains somewhat elusive (just like that of a “noninformative” prior), the
information content (or “vagueness”) of a prior is commonly related to its variance, its entropy,50 or its associated effective
sample size (ESS).51,52 In many cases it is also helpful to consider the informativeness of a prior relative to a reference,53 for
example, a unit information prior.26,54 Since the posterior draws its interpretation in part from the prior, it is important to make
the prior specification plausible and transparent. Following the parsimony principle (Ockham’s razor), it may be contructive to
seek the (in some sense) simplest prior distribution within any relevant constraints.55 Possible approaches to implement such
a notion in practice may work, e.g., via maximization of the entropy,50 pre-specification of an effective sample size,51,52 or
matching of moments.

Despite the aim of a weakly informative formulation, one should also anticipate the case where the data have little information
to add, so that the posterior closely resembles the prior and hence the analysis results are largely determined by the prior settings.
This may happen especially in cases of few studies and is also suggested in some of the examples that will be discussed below
(see Figure 8); such cases highlight the importance of a transparent and convincing prior specification.

In the remainder of this section, we aim to facilitate a structured approach to interpreting heterogeneity and specifying hetero-
geneity prior distributions by pointing out relevant perspectives and highlighting consequences of certain heterogeneity settings.
Similar ideas are to some degree also utilized in prior elicitation in general.56,57 A set of guiding questions is eventually suggested
in Table 6.
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3.2 General properties of the NNHM

When considering prior distributions for the heterogeneity �, it is useful to recall that � ≥ 0 is a scale parameter, and that its
square �2 denotes a variance component within the NNHM. Immediate associations of variance priors useful in a simple normal
model however may be misleading: inverse-gamma (or inverse-�2) distributions are usually not recommended, as these arise
as conjugate distributions only in related, yet distinctly different circumstances. An inverse-gamma distribution is conjugate in
the simple case of estimating the variance of a normal distribution with known mean.1 In such a case, an unequal pair of two
data points for example implies that the variance must be positive (a zero variance would have a zero likelihood); in the present
NNHM context, however, unequal yi values may be consistent with zero heterogeneity (� = 0), so that such priors are not a
natural choice here, and their use is generally discouraged.2,25,58,59 Supposedly noninformative settings based on inverse-gamma
distributions commonly tend to result in sensitivity to specification details,25 and often too much probability is allocated to very
large heterogeneity values.60

For uniform or normal effect prior distributions, the resulting conditional effect posterior p(�|�, y) again is normal. While
for increasing � the (conditional) posterior mean of � shifts from the inverse-variance weighted mean towards the unweighted
average of the estimates yi, the (conditional) posterior variance of � is proportional to �.20 At the same time, larger heterogeneity
values also imply wider prediction intervals and less shrinkage16,20,61,62,63 (see also Section 2.1). Varying � between zero and
infinity essentially also means varying between the extremes of pooled and separate analyses of individual studies. In a sense,
overestimation of � may hence often be considered a “conservative” or “less harmful” form of bias. In that spirit, one might argue
that —within reasonable limits— a prior that is stochastically larger than another is also more conservative.64 A simple way to
implement stochastically ordered distribution families is by using parametisations that include a scale parameter.65 Sec. VII.6.2
Use of a scale parameter does not actually impose a restriction; if not already included in the parametrisation, it may easily be
introduced. Note that simple re-scaling of a prior distribution p(�) then also implies a (re)scaling of the corresponding marginal
prior predictive distributions p(�i|�) by the same factor. In general, stochastically ordered priors also imply the same ordering
for the resulting posteriors.63,66,67 Consideration of stochastically ordered alternative priors may hence also offer a framework
for sensitivity analyses (see also Appendix D.4).

3.3 Reasonable (proper) distributional families

A simple way to implement the “technical” requirements (as suggested in Section 3.1) may be to require roughly uniform
behaviour near zero (implying indifference among small heterogeneity values on the � scale and ensuring integrability in the
lower tail), and a monotonically decaying tail with increasing heterogeneity values (implying decreasing probability for increas-
ing � values and ensuring integrability in the upper tail). This may be achieved e.g. by using half-normal, half-Student-t,
half-Cauchy, half-logistic, exponential or Lomax distributions. A sample of such distributions is sketched in Figure 1. Note that
for comparability, the distributions in the figure are all scaled such that they have a common median of 1; their corresponding
parameters are also listed in Table 4 below. In particular, half-normal, half-Student-t, or half-Cauchy distributions have been
recommended as appropriate families within the NNHM, also due to favourable frequentist properties.2,25,58 The half-Student-t
distribution (including the half-Cauchy as a special case, and the half-normal as a limiting case) may be derived as conditionally
conjugate distributions in an extended parametrisation of the NNHM.2 Sec. 19.6 The exponential distribution might be moti-
vated as the maximum entropy distribution for a pre-specified prior expectation,50 or as the penalised complexity prior.39 The
half-logistic distribution combines a zero derivative (implying near-uniform behaviour) at the origin with an upper tail behaviour
close to that of an exponential distribution.

Half-Student-t and Lomax distributions here may be considered as heavy-tailed variants of the half-normal and exponential
distributions, respectively. In the spirit of a contaminated prior, encompassing priors “close to an elicited one”,68 69 Sec. 3.5.3
these may also be motivated as scale mixtures, where the (exponential or half-normal) scale parameter is associated with some
variability or uncertainty. The scale mixture connection is also derived in detail in Appendix C below. The special case of
a Lomax(� = 1) distribution also coincides with the form of prior distribution suggested by DuMouchel (a log-logistic prior
for �).70,71 Similarly, the exponential distribution may also be motivated as a scale mixture of a half-normal distribution with
Rayleigh-distributed scale. The use of heavy-tailed prior distributions has the advantage of ensuring some degree of robustness
against prior misspecification (or prior/data conflict)49 at the cost of sacrificing some of its “regularisation” power. Another
simple way of implementing some degree of robustness is by combining “informative” and “heavy-tailed” elements in a two-
component mixture distribution.72,73
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Another simple and common prior distribution is the (proper) bounded uniform distribution defined on an interval [0, a]. It
inherits certain qualities from the (improper) uniform distribution, but it introduces a sharp cutoff at the upper bound a, which
may be hard to motivate or justify. Although, if the bound is large enough, then it may be very reasonable (e.g. for log-ORs).

Among the above examples, the Student-t and Lomax distributions possess “shape” parameters in addition to scale param-
eters, which here essentially regulate the degree of heavy-tailedness. If considered desirable, more complex prior assumptions
may be implemented using more complex distributions, e.g., using folded non-central Student-t distributions with a non-zero
mode,2,25,58 however, additional degrees of complexity would probably require solid justification to be convincing. In the context
of a penalisation interpretation of the prior, a mode at zero also implies a corresponding “penalty term” that is monotonically
increasing in �; this applies e.g. for a penalized-complexity prior39 that aims to give preference to sparse models. In empirical
investigations based on meta-analyses archived in the Cochrane Database of Systematic Reviews, log-Normal and log-Student-t5
distributions have been fitted to empirical data.74,75 The log-normal and log-t distributions here were found to fit the predic-
tive distributions best, however, only few alternatives (log-normal, log-t5 and inverse-gamma,74 or log-normal, inverse-gamma
and gamma distributions75 for �2) were considered as candidates in these comparisons. Some properties of the distributions
discussed here are also listed in Appendix B.

In practice, the half-normal distribution is quite commonly used; the reasons for its popularity are probably its simple and
familiar form, its near-uniform behaviour at the origin along with a reasonably quickly decaying upper tail, as well as consid-
erations of numerical stability. In the following, we will focus mostly on half-normal distributions. In our experience, minor
differences between similar prior densities are of rather minor practical relevance, while it is most important what heterogeneity
ranges the bulk of prior probability is assigned to.

When eventually formulating prior assumptions in terms of a parametric prior probability distribution, it is first of all necessary
to be able to judge the meaning and implications of certain heterogeneity settings; these issues will be discussed in the following
section.

3.4 Interpreting heterogeneity values

3.4.1 Units of �

Informative priors naturally always need to be considered in the context of the endpoint under consideration. In order to specify
a sensible prior for �, it is important to recapitulate its role in the NNHM (see Section 2.1). The heterogeneity � is a scale

parameter that relates to the probable size of differences (between-study differences) in effects (�i and �; see equation (2)). With
that, the units of measurements (yi), effects (�i, �) and heterogeneity (�) are the same; if the effect is measured, say, in metres,
then so is the heterogeneity. Or both may be dimensionless, as e.g. in the case of log-transformed ratios (like log-odds-ratios

heterogeneity (τ)

de
ns

ity

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

half−normal
half−Student−t (ν = 4)
half−Cauchy
half−logistic
exponential
Lomax(α = 6)
Lomax(α = 1)

FIGURE 1 A selection of potential probability densities for the heterogeneity. All distributions are scaled so that their prior
median is at unity (�=1, dashed line; see also Table 4).
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(log-ORs), log-incidence-rate-ratios (log-IRRs), log-hazard-ratios (log-HRs),. . . ) or standardized mean differences (SMDs). One
may in fact argue that the nature of the effect scale is the most important aspect to consider for prior specification.24 In case the
effects yi have been transformed prior to analysis, then it is often useful to consider implications on the back-transformed scale.
Transformations are usually introduced to achieve a better fit to the normality assumptions within the NNHM; for example,
using logarithmic or arcsine transforms.3,4,76 In such cases, also considering the back-transformed (exponential or sine) effect
scales is often instructive.

In case the effect scale has definite upper and lower bounds (which is often the case e.g. for endpoints measured as scores),
this also provides information on the plausible (and possible) between-study variability. In case of bounded scales, it may for
example be useful to consider the extreme cases of a continuous uniform distribution across the considered range (which would
have standard deviation b−a√

12
=

b−a

3.46
, where a and b are the lower and upper bounds, respectively), or a discrete distribution with

probabilities of 1

2
concentrated at both margins a and b (which would have standard deviation b−a

2
). Such considerations may

define absolute “worst-case” settings for the heterogeneity. Any normal approximation employed on a bounded parameter space
with a standard deviation of, say, > b−a

4
would inevitably have substantial overlap with out-of-domain values; any heterogeneity

value that is not ≪ b−a

4
should raise suspicion and might actually call for a different approach (e.g., transformation to a different

parameter space).

3.4.2 Magnitudes of other effects

Relevant hints may originate from considering the magnitude of other (known or plausible) effects of interventions or covariates.
The reasonable range for the overall mean effect � may also have implications for the expected range of study-specific means �i;
in case an informative prior for � is used (or is at least plausible), its variance may help constraining also the between-trial
variability. Heterogeneity may often be attributed to differences in the composition of the populations underlying each estimate,
and the distribution of relevant covariates within (which may be observed or unobserved). If the observed heterogeneity is
assumed to be due to different constitutions of populations, then the heterogeneity relates to accumulated effects of associated
covariates. With that, within- and between-study variability in effects are related to within- and between-study differences among
subjects and the plausible magnitude of covariates’ effects. For example, if a treatment effect is known to differ between males
and females by a certain amount, this difference between genders may help judging or motivating plausible magnitudes of effect
differences between studies. In case the variability between centers within the same study has been investigated, this may also
provide a hint on between-study variability (which will then most likely be larger).

3.4.3 Implications of a fixed heterogeneity value

Specific values of the heterogeneity � may be judged and compared based on the implied distribution of true effects �i, which is
given by the (conditional) prior predictive distribution p(�i|�, �) (see equation (2)), where � defines the distribution’s standard
deviation. The effects �i (conditional on �) then vary within a range of � ± 1.96� with 95% probability. For a randomly picked
pair of effects (�i and �j), their difference (�i−�j) follows a N(0, 2�2)-distribution (2), and their absolute difference |�i−�j| then
has a median of 0.95�. Quite commonly, the effects �i are transformed prior to analysis, so that it may be helpful to consider
the implications on the back-transformed scale. A very common example is the logarithmic transformation, which is often used
for analyses involving e.g. odds ratios (ORs), relative risks (RRs) or hazard ratios (HRs), and where the inverse transform is the
exponential function. 95% predictive intervals and median differences are shown for a range of � values in Table 1 along with
the corresponding exponentiated figures.

An extensive discussion of these conditional distributions is given in Spiegelhalter et al. (2004).15 Sec. 5.7 By working out
what range of �i values is expected, or what difference between a randomly picked pair of �i values is expected, corresponding
plausible ranges of � values may be determined. Based on such considerations, Spiegelhalter et al. (2004)15 categorized ranges
of � values in the context of log-ORs as “reasonable”, “fairly high” or “fairly extreme” as shown in Table 2. Such investigations
may help judging what � values are reasonable or unrealistic and with that may help specifying e.g. the heterogeneity prior’s
tail quantiles.

For example, Prevost et al. (2000)27 Sec. 4 aimed to constrain the predictive interval (exp(�i − �)) to a range of [0.5, 2.0],
which is achieved for � = 0.35. Considering this range as extreme and unlikely, a half-Normal prior with scale 0.18 (implying
P(� ≤ 0.35) = 0.95) was eventually suggested for a log-RR. R code to illustrate these arguments using Monte Carlo sampling
and exact calculations is provided in Appendix D.1.



8 C. RÖVER, ET AL.

3.4.4 Implications of a heterogeneity distribution

Besides considering the conditional distribution for fixed � values (p(�i|�, �), see previous subsection), one may also investigate
the marginal prior predictive distribution p(�i|�), marginalized over a particular heterogeneity prior, which technically results
as the integral p(�i|�) = ∫ ∞

0
p(�i|�, �) p(�) d�. Since p(�i|�, �) is normal (2), the marginal p(�i|�) is a normal (scale) mixture

distribution. Its form may usually either be derived numerically,18,19,20 or it may easily be explored using collapsed Gibbs

sampling, that is, generating a Monte Carlo sample by repeatedly sampling from the heterogeneity prior (p(�)), and subseqently
from the conditional predictive distribution (p(�i|�)). Investigating the marginal prior predictive distribution may help judging
the prior scale or distributional family.

Table 3 illustrates a range of prior predictive distributions for a set of half-normal priors that differ in their scale. The implied
probabilities for the (log-OR) categories shown in Table 2 are also given. Note that a simple re-scaling of the heterogeneity
prior implies proportional scaling of mean and quantiles for � as well as �i (as can be seen in Table 3). In this spirit, Dias et al.

(2013)28 for example proposed a half-normal(0.32)-prior for a log-OR based on the implied prediction interval for exp(�i−�) of
[0.5, 2.0]. R code to illustrate these arguments using Monte Carlo sampling and exact calculations is provided in Appendix D.2

TABLE 1 Implications of certain fixed heterogeneity values � on the probable ranges of true effects �i (conditional prior
predictive distributions) and the corresponding exponentiated ranges (the latter are relevant for log-transformed effect scales).

95% predictive interval random pair |�i − �j |

� �i − � exp(�i − �) median exp(median)

0.1 [-0.20, 0.20] [0.82, 1.22] 0.10 1.10
0.2 [-0.39, 0.39] [0.68, 1.48] 0.19 1.21
0.5 [-0.98, 0.98] [0.38, 2.66] 0.48 1.61
1.0 [-1.96, 1.96] [0.14, 7.10] 0.95 2.60
2.0 [-3.92, 3.92] [0.020, 50.4] 1.91 6.74

TABLE 2 Categories of heterogeneity and corresponding � ranges in the context of log-ORs, according to Spiegelhalter et al.

(2004).15 Sec. 5.7

category range

“reasonable” 0.1 < � < 0.5

“fairly high” 0.5 < � < 1.0

“fairly extreme” � > 1.0

TABLE 3 Implications of a range of half-normal heterogeneity priors p(�) on probable values of heterogeneity � and predicted
effects �i (marginal prior predictive distributions). The three rightmost columns show the corresponding probabilities for the
three categories from Table 2.

heterogeneity � 95% predictive interval category probability (%)

p(�) median mean 95% quant. �i − � exp(�i − �)
reason-

able
fairly
high

fairly
extreme

half-normal(0.1) 0.07 0.08 0.20 [-0.22, 0.22] [0.80, 1.24] 32 0 0
half-normal(0.2) 0.13 0.16 0.39 [-0.44, 0.44] [0.65, 1.55] 60 1 0
half-normal(0.5) 0.34 0.40 0.98 [-1.09, 1.09] [0.34, 2.98] 52 27 5
half-normal(1.0) 0.67 0.80 1.96 [-2.18, 2.18] [0.11, 8.89] 30 30 32
half-normal(2.0) 1.35 1.60 3.92 [-4.37, 4.37] [0.013, 79.0] 16 19 62
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TABLE 4 Implications of a range of heterogeneity priors p(�) from different families on probable values of of heterogeneity � and
predicted effects �i (marginal prior predictive distributions). For comparability, the different priors are all scaled to a common
median of 1.0. Except for the exponential distribution, which is commonly parameterized by its rate (or inverse scale), all
distributions have a scale parameter.

heterogeneity � 95% predictive interval

p(�) scale median mean 95% quant. �i − � exp(�i − �)

half-normal(1.48) 1.48 1.00 1.18 2.91 [-3.24, 3.24] [0.039, 25.5]
half-Student-t�=4(1.35) 1.35 1.00 1.28 3.75 [-3.85, 3.85] [0.021, 46.8]
half-Cauchy(1.00) 1.00 1.00 12.7 [-10.10, 10.10] [0.000 041, 24 371]
half-logistic(0.91) 0.91 1.00 1.26 3.33 [-3.55, 3.55] [0.029, 34.7]
exponential(0.69) 1.44 1.00 1.44 4.32 [-4.33, 4.33] [0.013, 75.9]
Lomax�=6(8.17) 8.17 1.00 1.63 5.29 [-5.04, 5.04] [0.0065, 155]
Lomax�=1(1.00) 1.00 1.00 19.0 [-14.74, 14.74] [0.000 000 40, 2 520 157]

Similarly, Table 4 illustrates a range of prior predictive distributions for a set of heterogeneity priors from different distribu-
tional families; what they have in common is the prior median of 1.0 for �. Quantiles or mean of � or �i for other scalings of
p(�) may be derived by proportional re-scaling (as in Table 3). For example, a half-Cauchy distribution that has its median het-
erogeneity matched to that of a half-normal distribution requires a scale parameter that is smaller by a factor of ≈ 2∕3. From the
table, one can also read off the ratio of 95% quantile over the median, which may be a useful indicator of the heavy-tailedness
of the different distribution families. The distributions from Table 4 are also illustrated in Figure 1. Some additional properties
of these distributions are provided in Appendix B.

Different distributional families for the prior p(�) imply differing marginal prior predictive distributions p(�i|�, �). Concrete
prior information on p(�i|�, �) then may help constraining the shape of p(�), however, the prior family may also be selected
based on considerations of heavy-tailedness, near-zero behaviour, or simplicity.

3.4.5 The role of the unit information standard deviation (UISD)

Consider the simple case of an effect measure that for each study is determined as an average of independent identically
distributed observations. In such a case, the associated standard error is simply of the form

�i =
�

1√
ni

, (4)

where ni is the sample size, and �
1

is the common “population” standard deviation of each single observation that was averaged
over. This figure describes the population-, or within-study-standard deviation,54 which for the moment we take to be constant
across studies. This figure is also called the unit information standard deviation (UISD), as it relates to an observational unit’s
contribution to a study’s likelihood. One may now relate the heterogeneity � to �

1
and ask whether the between-study vari-

ability (�) is likely to exceed the within-study variability (�
1
), or what ratios of these two are plausible. Figure 2 illustrates the

relationship of within-study and between-study standard deviations �
1

and �. Usually, one would expect �≪�
1
, implying that

while study means (�i) may differ to some degree, the distributions of subjects within studies will still be largely overlapping
(see Figure 2, left panel). In that sense, the UISD �

1
may constitute an important “landmark” on the heterogeneity continuum

and thus may help constraining the range of plausible heterogeneity values.26

This concept of within-study standard deviation may be extended to other types of effect scales — for example, the standard
error of a log-OR derived from a 2×2-table is approximately given by �i =

4√
ni

, so that, heuristically, the UISD here equals �
1
=4

per subject (at least).20 Appendix A.1 Sometimes it may also make more sense to define UISDs not per subject but rather per

event (see also Appendix A.3 for an example), but care also needs to be taken in order not to confuse these two figures. For
a given set of log-OR estimates, the UISD may alternatively also be investigated by inverting equation 4 (see also (6) and the
examples in Section 5.3 below).

Another link may be drawn between �
1

and � via shrinkage estimation (see Section 2.1) and the consideration of prior effective

sample sizes.52,77 Consider the case where a meta-analysis of k studies is available, and a new (k+1th) study is conducted. The
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FIGURE 2 Illustration of the relationship of between-study heterogeneity � and unit information standard deviation (UISD) �
1
.

The left panel (a) shows the commonly expected setup, in which the heterogeneity � is relatively small compared to the within-
study standard deviation (�≪�

1
). The right panel (b) shows that a larger � would imply that the distributions of subjects from

different studies were eventually barely overlapping. Note that the eventual estimates (yi) resulting from the different studies
then may have different standard errors �i =

�
1√
ni
< �

1
associated, depending on the studies’ sample sizes ni.

TABLE 5 Correspondence between prior maximum sample sizes (n⋆
∞

) and the magnitude of the heterogeneity (�) relative to
the unit information standard deviation (UISD) (�

1
) (see (5)).77

�∕�
1

0 1/16 1/8 1/4 1/2 1 ∞

n⋆
∞

∞ 256 64 16 4 1 0

previous meta-analysis of course provides (prior) information on the new study’s estimate �k+1, the exact amount of which is
determined by the number of studies k, their sample sizes ni, the UISD �

1
, but also by the amount of heterogeneity.33,72 If � is

large, then separate studies are only loosely related and the previous data add little information. If on the other hand � is very small
(i.e., studies are almost homogeneous), then they may contribute a lot of information. With that, the amount of heterogeneity
is related to whether studies should rather be pooled or viewed as essentially independent pieces of information. One may then
consider the idealized limiting case of infinitely many (k → ∞) infinitely large (ni → ∞) studies as the previous data source, so
that the amount of contributed information solely depends on �. In that case, the historical data may be thought of as effectively
contributing a number of n⋆

∞
additional subjects to the k+1th study. This prior maximum sample size then relates to �

1
and � as77

�

�
1

=
1

√
n⋆
∞

. (5)

Table 5 illustrates this relationship. For example, if in the ideal case (i.e., k = ∞, ni = ∞) the additional data should add
information equivalent to at most 16 subjects, then this would correspond to � amounting to at most a quarter of �

1
. If one

has an idea of how much information a meta-analysis may (or should) contribute to a single study’s shrinkage estimate (in the
idealized case of very many very large studies), then such considerations may help constraining probable magnitudes of �, or
associating probabilities with ranges of � values.

Note that a number of priors have been proposed which are defined relative to the magnitude of the �i values (or their harmonic
mean), e.g., the Jeffreys, DuMouchel or uniform shrinkage priors.20 Sec. 2.2 In view of the above arguments, it might also make

sense to define priors relative to the UISD, or its estimated value. Inverting (4) yields �
1
=

√
ni �

2
i

for a single study, and based
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on a given data set we suggest the more general empirical estimate

s
1

=

√
n̄ s̄2

h
=

√√√√
∑k

i=1
ni

∑k

i=1
�−2
i

(6)

where n̄ =
1

k

∑k

i=1
ni is the average (arithmetic mean) sample size, and s̄2

h
=
( 1

k

∑k

i=1
�−2
i

)−1
is the harmonic mean of the squared

standard errors (variances). This estimator is defined so that in the special case of a common-effect analysis (i.e., assuming
� = 0), the overall mean estimate’s variance (which then is given by

(∑k

i=1
�−2
i

)−1
) consistently also equals

s2
1∑
i ni

.

3.4.6 Empirical information on �

Empirical data, e.g. from earlier investigations in a related area,78 may also contribute to a-priori information. Informative
priors based on empirical information have been derived for standardized mean differences (SMDs) and log-ORs in medical
applications by investigating large numbers of meta-analyses published in the Cochrane Database of Systematic Reviews by
Rhodes et al. (2015)74 and Turner et al. (2015).75 Additional evidence for certain types of effect scales may be found e.g. in
the works by Pullenayegum (2011),34 Turner et al. (2012),79 Kontopantelis et al. (2013),80 Steel et al. (2015),81 van Erp et al.

(2017),82 Seide et al. (2019),83,84 and Günhan et al. (2020).85 Note that some references provide information directly on the
heterogeneity parameter, while others summarize estimates of heterogeneity.

Empirical information often entails the question of how representative the external information is for the study at hand, or
what may be the relevant data subset, or what to do if no such sample may be available. In terms of the epistemic view discussed
in Section 2.2.2, the inclusion of empirical evidence in the prior specification affects the interpretation of the prior, and with
that, of the posterior. Empirical data may then often be seen as a somewhat complementary source of evidence. When there is
doubt about the immediate applicability of empirical information for the problem at hand, this may also be reflected e.g. in a
robustified two-component mixture prior.72,73

3.5 Guiding questions

In order to summarize the above arguments, Table 6 lists some guiding questions that may aid in structuring the specification
of a prior for the heterogeneity. These are mostly based on the arguments laid out in Sections 3.3 and 3.4. Firstly, plausible
heterogeneity magnitudes (in terms of � or �i ranges) need to be be determined. These reflections may then also help choosing a
parametric family for the prior, or the distributional family may also be selected based on considerations of near-zero behaviour,
heavy-tailedness or simplicity. Beyond the mere type of endpoint or effect measure, the context also may determine whether
smaller or larger amounts of heterogeneity are to be expected, e.g., depending on whether studies’ designs and populations were
similar. Special considerations in the context of specific common types of effect scales are discussed in detail in Section 4. These
are then illustrated using actual data examples in Section 5.

TABLE 6 Some guiding questions for judging reasonable prior distributions for the heterogeneity parameter �.

Prior information:

(i) What is the effect scale, what (between-study) differences are expected or plausible?
(ii) What is the magnitude of other known (or plausible) effects? Do these provide guidance?

Is an informative effect prior used? If so, what is its variance? Does it provide guidance?
(iii) Is a plausible “unit information standard deviation (UISD)” available? Does it provide guidance?
(iv) Is relevant external empirical information on heterogeneity available? Should it be considered

in the analysis?

Translation into a prior probability distribution:

(v) Does the prior information help pinpointing prior quantiles (of �)?
(vi) Does the prior information help pinpointing prior predictive quantiles (of �i)?
(vii) Does the prior information suggest particular properties for the prior (-density)?

(Monotonicity? A non-zero mode? A heavy tail? Certain near-zero behaviour? . . . )
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4 MOTIVATING HETEROGENEITY PRIORS IN VARIOUS SETTINGS

4.1 Means and mean differences

This general case covers endpoints measured on absolute scales, hence it is not possible to give universally applicable advice
on a plausible prior scale. For example, the same analysis may require different scalings of the prior depending on whether an
endpoint is expressed, say, in terms of hours or minutes. In particular, in case of effects that are defined as averages, the UISD
(see also Section 3.4.5) may provide some guidance; if standard errors �i scale with sample size (�i ≈

�
1√
ni

, see also equation (4)),
then �

1
(or an estimate s

1
, (6)) may provide some orientation based on the considered (or other related) data. Relating effects

to “within-population standard deviations” is actually an approach that is also formalized in the case of standardized mean
differences (SMDs); see the following section.

Mean differences are another very common special case. These are often used in order to “normalize” outcomes; for example,
in controlled clinical trials, each study’s treatment group is usually related to a control group in order to express the treatment
effect relative to the unexposed group. In the simplest case, the study’s outcome then is defined as yi = x̄2;i − x̄1;i, where x̄1;i
and x̄2;i are the ith study’s averages from control and treatment group, respectively. When considering UISDs, the relevant
sample size will then result as the sum of the two treatment groups’ sizes (ni = n1;i + n2;i). In the simple case of two equally-

sized groups (n1;i = n2;i =
ni

2
) and equal variances within groups (so that Var(x̄1;i) = Var(x̄2;i) =

�2
w

ni∕2
) the UISD simply results

as �
1
=
√

2�2
w

, where �2
w

is the within-group variance.

Again a special case arises when considering paired differences.86 In general, analogous considerations apply for un-paired
as well as for paired differences; only for the latter case the UISD �

1
may be expressed as �2

1
= Var(x1;ij) + Var(x2;ij) −

2Cov(x1;ij , x2;ij) where j is the index identifying the jth pair of observations in the ith study. We can see how the individual
(paired) observation’s variance contribution results as a sum of the two observations’ marginal variances and their covariance.
Now, since any pair of observations (y1;ij and y2;ij) is usually positively correlated (Cov(y1;ij , y2;ij ) > 0), the sum of individual
variances (Var(x1;ij) + Var(x2;ij)), if known, may provide an upper bound on �

1
.

Finally, there are generic cases of parameter estimates that are reported along with a standard error, but which do not
necessarily have a “sample size” (ni) associated, as is sometimes the case, e.g., for laboratory experiments.87

4.2 Standardized mean differences

Standardized mean differences (SMDs) aim to compare mean differences measured on different scales by normalizing them
through their population standard deviation. Effectively, these measure by how many standard deviations the two study groups
differ; SMDs are always dimensionless. Their aim is to estimate �i =

�2;i−�1;i

&i
, where �2;i and �1;i are the two groups’ true

means and &i is the within-group standard deviation (which may be defined with respect to one or the other or both treatment
groups, or which may also be externally informed). Note that &i here bears some similarity to the UISD �

1
(when considering

the latter with respect to the unstandardized differences). Slightly differing, but essentially similar approaches are given e.g. by
the “Cohen’s d”, “Hedges’ g” or “Glass’ Δ” estimators, which differ in details like bias correction or standardization terms.3,4

Essentially, these aim to estimate the mean difference (�2;i−�1;i) by the difference of averages (x̄2;i− x̄1;i), and also the standard
deviation by an empirical one. SMDs (along with the correlations treated below) are somewhat different here from the “general”
mean differences, in that they are explicitly designed and utilized in order to compare endpoints measured on different scales,
which are not directly comparable. A heterogeneity of � = 0 may hence be considered particularly unlikely. A value of � = 1

would mean that the between-study heterogeneity (among �i values) was equal to the within-group variability &i. Closely related
to SMDs are standardized regression coefficients, which are re-scaled as if both the regressor’s as well as the response’s variance
were normalized to unity.88 Similar arguments would apply for analyses involving standardized regression coefficients, and
arguments applicable to correlation coefficients (see Section 4.5 below) may also be relevant.

Effects on the SMD scale have been categorized as 0.2=“small”, 0.5=“medium”, 0.8=“large”,89 Sec. 2.2.3 where an extension
has recently been proposed to include the grades of 0.1=“very small”, 1.2=“very large”, and 2.0=“huge”.90 Consequently, such
a ranking might be utilized in order to bound between-study effects to mostly non-extreme values, e.g. by anticipating mostly
up to “large” heterogeneity and hence formulating a bound on P(� ≤ 1). Neglecting estimation uncertainty for the denominator,
and for simplicity assuming equal sample sizes for each of the ith study’s groups, leads to a UISD of �

1
= 2 (see Appendix A.1).

Empirical evidence on heterogeneities between SMDs based on an analysis of studies archived in the Cochrane Database of

Systematic Reviews is given by Rhodes et al. (2015);74 for a general healthcare setting (not restricted to a particular outcome
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type), a log-Student-t distribution with parameters � = −1.72, � = 1.295, and 5 degrees of freedom was derived (implying a
median and 95% quantile of 0.18 and 2.43, respectively). Heterogeneity estimates reported in studies published in the Psycho-

logical Bulletin are provided by van Erp et al. (2017);82 the 189 �-estimates for SMDs that were quoted in 32 publications had
a median and 95% quantile of 0.20 and 0.66, respectively.

4.3 Log-transformed odds, rates and effect scales

Many outcomes are commonly analyzed on a logarithmic scale, which may be advantageous for several reasons; firstly, the
domain of positive numbers is mapped to the complete real line, which makes strictly positive scales tractable for normal models
like the NNHM, which is often convenient. Secondly, additive effects on the log-scale translate to multiplicative effects on the
original scale. Symmetry of the normal distribution (2) on the log-scale then implies a “symmetric” treatment of multiplicative
factors and their inverses (since exp(� + x) = exp(�) × exp(x) while exp(� − x) = exp(�) ×

1

exp(x)
). This is useful, e.g, when

dealing with outcomes like rates, odds, rate ratios, odds ratios, relative risks, hazard ratios or concentration measurements. An
offset of, say, 0.1 on the log-scale translates (approximately) to a change of 10% on the back-transformed (exponentiated) scale,
regardless of the original value. Thirdly, the normal approximation to the likelihood that is used in the NNHM (1) may provide
a better fit on the logarithmic scale.

When considering heterogeneity values on the logarithmic scale, a more intuitive approach is usually to examine the cor-
responding implications on the back-transformed scale. Note that a normal model on the log-scale actually corresponds to a
log-normal model on the original scale. In a sense, an analysis on the logarithmic scale may also be viewed as an implementation
of a dependent joint prior for effect and heterogeneity22,34 on the original (exponentiated) scale. The consequences of certain
heterogeneity values or heterogeneity distributions were already investigated in some detail in Sections 3.4.3 and 3.4.4; the
important issue to judge is what relative (multiplicative) difference between studies is deemed plausible; see also the extensive
discussion by Spiegelhalter et al. (2004).15 Sec. 5.7

A common type of effect are log-transformed odds (or logits).91,92 For example, in epidemiology or at the design stage of a
clinical trial it may be of interest to infer the magnitude and variability of the prevalence of a certain condition, or historical
information may be utilized to support the control group in a clinical trial.72 The prevalence may be expressed in terms of
the probablity p ∈ [0, 1] or the odds p

1−p
∈ [0,∞], while for meta-analysis purposes it then makes sense to move to the

log-odds scale log
(

p

1−p

)
∈ R. Rather than viewing this as a case of a logarithmic transformation of the odds, one might as

well consider this as a logit transformation of probabilities, mapping the interval [0,1] to the real line via the logit function
f (p) = log

(
p

1−p

)
. Besides considerations of what ratios the odds may plausibly be spanning, here it may be helpful to consider

a uniform distribution in proportions as an extreme case; for the log-odds, this implies a logistic distribution that has a standard
deviation of �√

3
= 1.81. The UISD in this case amounts to (at least) �

1
= 2 (see Appendix A.2). Similarly, event rates (based

on a Poisson model) are commonly combined in meta-analyses based on a log-transformation.
Similarly to the cases of means and mean differences discussed earlier, a log-transform is also commonly applied in the

context of two-group comparisons, for example, for log-OR, log-IRR, log-RR or log-HR effect measures. Logarithmic ORs
are a natural extension of the log-odds case above, since the logarithmic ratio of odds is simply a difference of log-odds; other
pairwise group comparisons generalize similarly from single-group estimates. UISDs for log-ORs and log-RRs are derived in
Röver (2020),20 and for log-IRRs in Appendix A.3; the corresponding figures for log-HRs are discussed by Spiegelhalter et al.

(2004).15 Sec. 2.4.2 When discussing UISDs for count outcomes, it is important to clearly indicate whether these relate to
subjects or events (e.g., for ORs the numbers are 4 per subject20 and 2 per event15).

Empirical evidence on the magnitude of heterogeneities within meta-analyses published in the Cochrane Database of Sys-

tematic Reviews is given by Turner et al. (2015).75,79 For example, for a log-OR effect in a general healthcare setting (without
restricting to a specific type of outcome), a log-normal distribution with �=−1.28 and �=0.87 was derived, implying a median
and 95% quantile of 0.28 and 1.16, respectively (see also Table 3). Similarly, Günhan et al. (2020)85 in a re-analysis of data
from the Cochrane Database of Systematic Reviews determined a 95% quantile of heterogeneity estimates of 1.05 for analyses
based on binary data and log-ORs.

Consider for example the common case of a meta-analysis of log-OR estimates. If we want to restrict prior probabilities
mostly to “reasonable” to “fairly high” heterogeneity levels (according to Table 2 in Section 3.4.3), one could use a half-normal
prior with scale 0.5, implying P(� > 1.0) = 4.6% and assigning 52% and 27% probability to the “reasonable” and “fairly high”
categories, respectively. Figure 3 illustrates the half-normal(0.5) prior along a half-normal(1.0) prior, and the prior proposed by
Turner et al. (2015)75 (log-normal with � =−1.28 and � = 0.87). The heterogeneity categories from Table 2 are marked, and
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FIGURE 3 Comparison of the heterogeneity prior proposed by Turner et al. (2015)75 for log-ORs in a general setting (a log-
normal distribution with �=−1.28 and �=0.87, shown in blue) with half-normal priors (with scales 0.5 and 1.0). The bottom
plots especially contrast the implied prior probabilities for the heterogeneity categories proposed by Spiegelhalter et al. (2004)15

Sec. 5.7 (see also Tables 2 and 3).

at the bottom, the probabilities for the categories are shown. The probabilities assigned by the half-normal(0.5) prior and the
“empirical” prior are roughly in agreement, while the half-normal(1.0) prior would assign more or less equal probabilities to the
“reasonable”, “fairly high” and “fairly extreme” categories, and leave only 8% probability for smaller values. Similar arguments
hold also for other log-transformed effect scales.

4.4 Regression slopes

Very closely related to mean differences is the more general case of meta-analysis of regression parameters (slopes or interac-
tions) and their standard errors.93 In the special case of a single binary covariate, the regression effectively reduces to a two-group
comparison, and consideration of additional covariates then may allow for some “adjustment”. When the covariate is continu-
ous, however, extra care needs to be taken, since not only the endpoint’s scaling is relevant (the regression’s “y variable”), but
also the regressor’s scaling (the regression’s “x variable”). Whether the regressor is expressed in, say, days or weeks, affects
the resulting slope parameter (and its standard error) by a corresponding re-scaling by a factor of seven. The regressor’s scaling
will then similarly also affect the scale of the anticipated heterogeneity: when combining estimated (linear) regression coeffi-
cients, which are to be interpreted as “the expected change in y for a one-unit change in x”, the heterogeneity between estimates
depends on the units of x. For example, the variability expected among temporal changes that are expressed on a per-week scale
rather than a per-day scale should be seven times as large.

The immediate question then is what increment in the regressor to base heterogeneity considerations on; what is eventually
needed is a statement of the form “for a change in the regressor by a difference of Δx, the associated effects are anticipated to

vary by a magnitude of �”, and that difference Δx needs to be specified. Sometimes there may be obvious “natural” units to be
used, for example in the common case of a binary (zero/one) coded covariate (e.g. for treatment vs. control or males vs. females);
the obvious difference to consider here is an increment of Δx = 1. Otherwise the width of the regressor’s distribution may be
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relevant.94 Consider again the case of a binary covariate and a balanced setup; the standard deviation of the binary variable will
then be 1

2
, so that twice the standard deviation might generally be a sensible scale to consider. Note though that this is by no

means universally applicable, as such scales may be affected by many factors (e.g., inclusion criteria in clinical trials) and might
also be very different between studies. Note that the Δx value needs to be the same across the considered studies.

Once the “reference” increment Δx has been determined, a prior for the associated heterogeneity may be formulated. In case
the actual analysis then is done with respect to a differing scaling, the prior needs to be re-scaled accordingly. For example, if a
prior with scale swas determined for a per-week increment, but the actual analysis is based on the per-day regression coefficients,
then their prior should have scale s

7
. The UISD �

1
then also scales proportionally.

Note that the above arguments extend beyond simple linear regressions with continuous outcomes, for example, logistic
regressions, Poisson regressions or survival analyses, in which regression parameters then relate to log-ORs, log-IRRs or log-
HRs. Once a reference increment Δx has been determined, the arguments regarding log-transformed endpoints discussed earlier
in Section 4.3 apply, and potential re-scaling issues still need to be considered. A way to circumvent considerations of regressor’s
or response’s scales may be to move to standardized regression coefficients instead, which are unitless and are somewhat similar
to SMDs (see also Section 4.2) or correlations (see Section 4.5).88. Depending on the exact type of regression analysis and the
standardization technique (e.g., in case of a logistic regression, and when standardization is done based only on the regressor’s
scale),95,96,97 arguments relevant for log-transformed endpoints might also apply.

4.5 Correlation coefficients

Estimated correlation coefficients (Pearson’s r) are commonly quoted and summarized for studies dealing with paired observa-
tions.3,4,98 Correlation coefficients are restricted to the domain [−1, 1], with values of |r| = 1 indicating perfectly linear (positive
or negative) correlation, and r = 0 indicating uncorrelatedness.99 Due to the problems with bounded parameter spaces, corre-
lation coefficients are commonly analyzed after an appropriate transformation using Fisher’s z transform, which is defined as
zi =

1

2
log

(
1+ri

1−ri

)
= arctanh(ri). This transformation maps the original domain to the real line, and in particular, it is also a vari-

ance stabilizing transformation; the (approximate) standard error of the transformed zi value only depends on the ith study’s
sample size ni and is given by 1√

ni−3
. Correlation values within the range−0.5 < ri < 0.5 are little affected by the transformation,

which makes more of a difference for more extreme values.
An upper limit to the expected heterogeneity may be specified by considering a uniform distribution of �i values across the

range of correlation coefficients as a “worst case”. For plain (correlation r) values, this would imply a variance of 1

3
= 0.582.

On the scale of z-transformed values, this implies a distribution with probability density function p(z) =
2

(exp(−z)+exp(z))2
, that

has a zero mean and a variance of �2

12
≈ 0.912 (these moments might actually motivate a prior for the overall effect �, too).

The standard error of zi values after transformation (see above) implies a UISD of approximately �
1
= 1.0. With that, it should

usually be safe to expect heterogeneity values well below � = 1.0.
If � values near unity (or 0.91) already imply rather extreme heterogeneity, the question remains what constitutes “large”,

yet reasonable heterogeneity. For that, we may consider the somewhat more moderate cases of r ∼ Uniform(−0.5, 0.5) or
r ∼ Uniform(0.0, 0.8). Both these cases happen to lead to similar variances of Var(z) = 0.302 on the transformed scale, so that
� = 0.30 may already be considered “large” heterogeneity.

While the use of “plain”, un-transformed correlation values within the NNHM framework is a bit problematic due to the
bounded parameter space that is not reflected in the model, it is not uncommon. We have already seen some hints of what
amounts of between-study variance for plain correlations may be possible or plausible in the considerations above; a value of
� =

1√
3
= 0.58 (corresponding to a uniform distribution in r) would already be extreme; one would most likely expect values

way less than even half as much.
Van Erp et al. (2017)82 collected heterogeneity estimates reported in studies that were published in the Psychological Bul-

letin. Although the figures were not identified as being based on Fisher-z transformation or not (apparently a mix of both was
encountered), these numbers may provide some empirical motivation. Among the observed heterogeneity estimates for correla-
tion endpoints in 539 analyses from 25 studies, a median and 95% quantile of 0.12 and 0.29, respectively, were found. Similarly,
Steel et al. (2015)81 quote heterogeneity estimates from 292 management-related meta-analyses in the range of 0.0 to 0.4, with
a median of 0.16.
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5 EXAMPLE APPLICATIONS

5.1 Mean differences

Grande et al. (2015)100 Analysis 1.5 investigated the effect of physical exercise (vs. no exercise as control) on the duration of
acute respiratory infections (ARIs). Four studies were jointly considered in a meta-analysis, the endpoint of interest was the
mean difference in the number of symptom days per episode. The relevant data are shown in Table 7.

The outcome here is measured in units of days (change in symptom duration for treated patients relative to the control group).
For the purpose of the present analysis, ARIs were defined as “infections of the respiratory tract that last for less than 30 days”,100

while ARI durations generally are substantially shorter, lasting of the order of a week.101,102 With that, the reduction in symptom
days cannot be more than (roughly) a week. ARIs may be caused by bacterial or viral pathogens; the effect of antibiotic treatment
is in a shortening of the order of one day.103 From the data (Table 7), we can derive estimates of the UISD, which here is at an
average of s

1
= 3.9.

The treatment effect may be expected to be of the order of days (anything below 1 day would probably not be considered
clinically meaningful), and a similar magnitude may be expected for the heterogeneity. Values � > 1 would make the between-
study heterogeneity larger than the effect of antibiotics, which seems implausible. Variations in treatment effects of the order of
several days would probably imply that the effect was several times larger in some studies than in others.

A � value of 1.0 would imply a median difference in true effects of ≈ 1 day for a random pair of studies (see Table 1), which
might be at the upper end of the plausible range. A half-normal(0.5) prior would imply P(� ≤ 1) ≈ 95%, and considering the
corresponding prior predictive distribution (see Table 3), we can see that this implies a 95% prior predictive interval of roughly
±1 day around the overall mean effect.

For the present example, we would hence suggest a half-normal(0.5) prior. Note that this is a common, well-researched
condition. For more uncertain cases, one might want to go for a heavier-tailed prior. A meta-analysis based on the half-
normal(0.5) prior is illustrated in Figure 4. Among the four studies considered, one suggests a stronger effect than the others,
however, due to its relatively small size and correspondingly large associated standard error, it is still consistent with the remain-
ing three. The estimated heterogeneity (the median and 95% credible interval (CI) are shown in the bottom left of the forest plot)
here has barely changed from the a priori anticipated amount (see Table 3). The heterogeneity’s posterior is also illustrated in
Figure 8; prior and posterior are very similar in this case. The resulting combined estimate then also suggests a more moderate
effect, namely, a reduction of the order of one symptom day, with an uncertainty of about a factor of two. The estimated hetero-
geneity is relatively low compared to the width of the overall mean’s CI, and so the prediction interval is only slightly longer,
and the shrinkage intervals show substantially greater precision than the original estimates. Sensitivity to other prior choices is
also investigated for this example in Appendix D.4.

5.2 Standardized mean differences

Aalbers et al. (2017)104 Analysis 1.1 investigated the short-term effect of music therapy on depression symptoms; four studies
comparing music therapy plus treatment-as-usual (TAU) versus TAU alone were found. Within these four studies, differing
clinician-rated symptom scores were utilized in order to quantify depression severity: the Hamilton rating scale for depression

TABLE 7 Mean difference (MD) example data due to Grande et al. (2015).100 x̄, s and n denote the treatment and control groups’
empirical means, standard deviations and sample sizes. The yi are the derived MDs and �i the associated standard errors that
eventually go into the analysis (see Section 2.1). Here, mean differences are on the scale of days (change in disease duration).
Negative estimates yi indicate a beneficial effect.

treatment group control group MD

i study x̄1;i s1;i n1;i x̄2;i s2;i n2;i yi �i

1 Nieman (1990) 3.60 2.97 18 7.00 5.94 18 -3.40 1.57
2 Çiloğlu (2005) 5.15 1.56 60 6.10 1.00 30 -0.95 0.27
3 Barrett (2012) 9.30 5.13 47 11.40 5.75 51 -2.10 1.10
4 Sloan (2013) 5.30 1.50 16 6.30 2.20 16 -1.00 0.67
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TABLE 8 Standardized mean difference (SMD) example data due to Aalbers et al. (2017).104 x̄, s and n denote the treatment
and control groups’ empirical means, standard deviations and sample sizes. The yi are the derived SMDs and �i the associated
standard errors that eventually go into the analysis (see Section 2.1). The original data are based on different depression symptom
scores that are measured on different scales. Negative estimates yi indicate a reduction in symptom severity.

treatment group control group SMD

i study x̄1;i s1;i n1;i x̄2;i s2;i n2;i yi �i

1 Chen (1992) -98.23 15.19 34 -67.06 15.19 34 -2.03 0.30
2 Radulovic (1996) -16.50 10.00 30 -10.60 10.00 30 -0.58 0.26
3 Albornoz (2011) -8.17 5.89 12 -3.83 5.31 12 -0.75 0.42
4 Erkkilä (2011) -10.70 8.40 30 -6.05 8.06 37 -0.56 0.25

MD example (Grande, 2015)
quoted estimate shrinkage estimate

study

Nieman (1990)

Ciloglu (2005)

Barrett (2012)

Sloan (2013)

mean

prediction

estimate

−3.40

−0.95

−2.10

−1.00

−1.16

−1.15

95% CI

[−6.47, −0.33]

[−1.48, −0.42]

[−4.25, 0.05]

[−2.30, 0.30]

[−2.03, −0.44]

[−2.50, −0.05]

−5 −4 −3 −2 −1 0
mean differenceHeterogeneity (tau): 0.29 [0.00, 0.87]

SMD example (Aalbers, 2017)
quoted estimate shrinkage estimate

study

Chen (1992)

Radulovic (1996)

Albornoz (2011)

Erkkilä (2011)

mean

prediction

estimate

−2.03

−0.58

−0.75

−0.56

−0.97

−0.97

95% CI

[−2.61, −1.44]

[−1.10, −0.07]

[−1.57, 0.08]

[−1.05, −0.07]

[−1.69, −0.26]

[−2.48, 0.52]

−2.5 −2 −1.5 −1 −0.5 0
standardized mean differenceHeterogeneity (tau): 0.57 [0.18, 1.08]

FIGURE 4 Forest plots for the two examples discussed in Sections 5.1 and 5.2. In both cases, a half-normal(0.5) prior for the
heterogeneity � was used. Besides the intervals based on the quoted estimates, the shrinkage intervals are shown in grey. At the
bottom, the credible interval for the overall mean (�) is shown along with the prediction interval for a “new” additional study
effect �k+1. The estimated heterogeneity (�) is quoted in terms of the posterior median and shortest 95% credible interval.

(HAM-D), considering potentially differing numbers of items between studies, as well as the Montgomery-Åsberg depression
rating scale (MADRS). In order to facilitate a joint analysis, the meta-analysis was based on SMDs (here: Hedges’ g); the relevant
data are shown in Table 8.

The outcome measured on the SMD scale means that a unit change in yi corresponds to a one standard deviation change in
the symptom severity score. Considering e.g. the Albornoz (1992) study,105 which was measuring change in symptom severity
using the 17-item HAM-D scale with a within-group standard deviation of about 5 (see Table 8), a difference of 1 on the SMD
scale here would roughly correspond to a 5-point change in HAM-D score.106,107,108,109 In terms of SMD, this would already
be considered a “large” effect.89,90 The UISD for SMDs is predicted at �

1
= 2, while from the present data here we get a very

similar empirical average of s
1
= 2.2.

For the between-study differences, we would assume that they would be mostly in the “small” to “medium” range (≪ 1) —
otherwise effects would be differing by a standard deviation or more between studies, and also the studies’ confidence intervals
(which are roughly of the size �i ≈

�
1√
ni
=

2√
ni

) would be unlikely to have any overlap. Rhodes et al. (2015)74 in their empirical

investigation based on the Cochrane Database of Systematic Reviews predicted a median and 95% quantile of 0.18 and 2.43 for
the heterogeneity � (where the large upper quantile appears rather extreme, based on the above arguments). Similarly, van Erp
et al (2017)82 inferred a median and 95% quantile of 0.20 and 0.66, respectively, based on heterogeneity estimates within a
smaller data base.

A value of � = 1.0 would imply a median difference of ≈ 0.95 (“large”) for a random pair of true study means �i (see
Table 1), which already appears like a rather extreme amount; values of � = 0.5 (implying mostly “medium” sized between-
study differences) or below seem to be more plausible. A half-normal(0.5) prior would cover this range and would imply a prior
median (for �) slightly above the magnitude suggested the empirical investigations (see also Table 3).
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For the present example, we would then suggest a half-normal(0.5) prior as a slightly conservative choice, in order to reflect
the potential heavy-tailedness suggested by Rhodes et al. (2015),74 and to account for the fact that the empirical data might be
of limited relevance for the present example data. A meta-analysis based on the half-normal(0.5) prior is illustrated in Figure 4.
Among the four studies, three consistently indicate estimates in the range 0.5 – 0.8, while the first one shows a huge effect
estimate of the order of 2.0; a positive amount of heterogeneity appears to be present (the CI for � is in a strictly positive range;
see also Figure 8), and the eventual combined estimate indicates a “small” to “very large” average effect. Given the pronounced
heterogeneity one might discuss whether the estimation of a pooled effect is meaningful. Nevertheless, we use this example to
illustrate the use of Bayesian methods in heterogeneous situations, where heterogeneity cannot be explained and good reasons
are available to perfom a quantitative meta-analysis despite of large heterogeneity. The large estimated heterogeneity here results
in a wide CI for the overall effect, a very wide prediction interval, and also very little shrinkage for the estimated study-specific
effects �i.

5.3 Log-transformed effect scales

5.3.1 Log odds ratio

A systematic review was performed by Crins et al. (2014)110 to investigate the effect of Interleukin-2 receptor antagonists
(IL2-RA) on recovery of pediatric patients following liver transplantation. One aspect of interest was the occurrence of acute

rejection (AR) reactions as a common adverse event. Two randomized controlled trials reporting such data were found, the event
counts along with the corresponding (logarithmic) odds ratios and standard errors are shown in Table 9. Both studies indicated
a reduction in the chances of an AR event for the treatment group.

The treatment effect is expressed and analyzed on a logarithmic scale here. A heterogeneity magnitude of � = 1.0 would
imply that any random pair of studies would be expected to exhibit effects differing by a factor of 2.6 (see Table 1), which seems
quite extreme already; values like � = 0.5 or below seem more plausible. In a simular investigation involving 14 studies and
based on adult patients (Goralczyk et al.; 2011),111 a mean treatment effect (log-OR) of −0.26, corresponding to an OR of 0.77,
was found. The UISD for a log-OR is at �

1
≈ 4 per subject, while for the present data here we get an estimate of s

1
= 5.4. An

empirical study based on a large number of meta-analyses predicts a median (95% quantile) of 0.28 (1.16) for the heterogeneity
(Turner et al.; 2015),75 and an investigation of heterogeneity estimates found a median (95% quantile) of 0.00 (1.05) (Günhan
et al.; 2020).85 In the data from the closely related meta-analysis by Goralczyk et al. (2011),111 the heterogeneity is estimated
at 0.12 (0.38).

A half-normal(0.5) prior would mostly cover values � < 1.0 (up to “fairly high” heterogeneity according to Table 2) with an
expectation and median below 0.5 (see also Table 3). The resulting 95% prior predictive interval would still include effects within
a factor of 3 around the overall mean log-OR �. For the present investigation, we would then suggest a half-normal(0.5) prior
as a reasonably conservative choice, which also agrees roughly with the empirical evidence (see Fig. 3). A meta-analysis based
on this prior is shown in Figure 5. In this example we have two studies only, demonstrating the somewhat speculative nature of
infering heterogeneity based on sparse data, and higlighting the value of considering a-priori probabilities. In the present case,
the two studies involved are not very large, and their resulting CIs are overlapping, which makes the data consistent with a wide
range of heterogeneity values, from homogeneity (�=0) up to magnitudes of �=10 or �=20. Including the weakly informative
heterogeneity prior, and effectively down-weighting unreasonably large heterogeneity values, then leads to an estimate of −1.81
for the log-OR, corresponding to a reduction in the odds of an AR event down to exp(−1.81) = 16%. While the uncertainty

TABLE 9 Log-OR example data.110 a and n1 as well as c and n2 denote the event counts and total numbers of patients in
treatment and control groups, which together summarize the trial outcome in terms of a 2×2 table. The yi are the derived
logarithmic odds ratios and �i are the associated standard errors that eventually go into the analysis (see Section 2.1). Negative
values here indicate a reduction of the event odds, i.e., a beneficial treatment effect.

treatment group control group log-OR

i study events (ai) total (n1;i) events (ci) total (n2;i) yi �i

1 Heffron (2003) 14 61 15 20 -2.31 0.60
2 Spada (2006) 4 36 11 36 -1.26 0.64
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Odds ratio example (Crins, 2014)

quoted estimate shrinkage estimate

study
Heffron (2003)

Spada (2006)

mean
prediction

estimate
−2.31

−1.26

−1.81
−1.81

95% CI
[−3.48, −1.13]

[−2.52, −0.00]

[−2.91, −0.71]
[−3.30, −0.31]

−3 −2 −1 0
log−ORHeterogeneity (tau): 0.33 [0.00, 0.94]

Incidence rate ratio example (Anker, 2018)
quoted estimate shrinkage estimate

study

FAIR−HF (2009)

CONFIRM−HF (2015)

EFFICACY−HF (2015)

FER−CARS−01 (2018)

mean

prediction

estimate

−0.82

−0.39

0.09

−0.14

−0.49

−0.49

95% CI

[−1.53, −0.12]

[−0.96, 0.19]

[−1.55, 1.72]

[−2.64, 2.36]

[−1.10, 0.15]

[−1.49, 0.56]

−3 −2 −1 0 1 2
log−IRRHeterogeneity (tau): 0.24 [0.00, 0.75]

FIGURE 5 Forest plots for the two examples discussed in Sections 5.3.1 and 5.3.2. In both cases, a half-normal(0.5) prior for
the heterogeneity � was used.

still is large (ranging roughly from 5% up to 50%), the analysis clearly indicates a substantial reduction in AR events here.
The heterogeneity’s posterior density is also shown in Figure 8; here we can see that for the present example constellation, the
posterior is very similar to the prior. With the very uncertain original estimates (due to the small sample sizes), the overall
mean’s CI is wide, but the additional width of the prediction interval is limited due to the (prior and empirical) information on
the heterogeneity, and a noticeable shrinkage effect is also observable.

5.3.2 Log incidence rate ratio

Four studies investigating the effect of ferric carboxymaltose vs. placebo in heart-failure patients with iron deficiency were jointly
analyzed by Anker et al. (2018).112 The main outcome was the incidence rate ratio (IRR) with respect to the composite endpoint
of recurrent cardiovascular (CV) hospitalisations or CV death. The relevant available data are shown in Table 10. The eventual
analysis is based on the logarithmic ratio of the event rates (per 100 patient-years of follow-up) of treatment over placebo group.

As in the previous example, the outcome is analyzed on the logarithmic scale, so that many arguments apply essentially anal-
ogously here. Regarding empirical evidence on previously encountered amounts of heterogeneity, there are no studies available
that would be directly applicable for log-IRRs, however, odds ratios and rate ratios have quite some similarity, so that these find-
ings also have some bearing here. The UISD here is at �

1
= 2 per event (see Appendix A.3); with a total of 114 events observed

among a total of 839 patients112 Tab. 4 (a rate of ≈ 0.14 events per patient), this would correspond to �
1
≈

2√
0.14

= 5.4 per

patient. For the present data, we empirically get an average of s
1
= 6.6.

For this example, we would again suggest a half-normal(0.5) prior. A meta-analysis based on this prior is shown in Figure 5.
While the data look homogeneous (all intervals have some overlap, also because some studies are very small and intervals
are correspondingly wide), we would still anticipate the possibility of heterogeneity — since from experience we know that
heterogeneity is frequently present, and because we know that heterogeneous circumstances are still likely to produce data that
may still “look homogeneous”.7 Compared to our a-priori expectations of � values up to 0.98 (see Table 3), the posterior then
suggests a slightly lower heterogeneity range of up to 0.75, but the data do not provide very much evidence in this regard (see

TABLE 10 Log-IRR example data.112 The incidence rate ratios for the composite endpoint of recurrent cardiovascular (CV)
hospitalisations and CV mortality are given for each study. For the analysis, the logarithmic rate ratio is considered. Negative
values here indicate a reduction of incidence rates, i.e., a beneficial treatment effect.

log-IRR

i study rate ratio [95% CI] ni yi �i

1 FAIR-HF (2009) 0.44 [0.22, 0.90] 459 -0.82 0.36
2 CONFIRM-HF (2015) 0.68 [0.38, 1.21] 301 -0.39 0.30
3 EFFICACY-HF (2015) 1.09 [0.21, 5.54] 34 0.09 0.83
4 FER-CARS-01 (2018) 0.87 [0.07, 10.4] 45 -0.14 1.28
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also the posterior in Figure 8). The mean treatment effect eventually is at a log-IRR of −0.49, corresponding to an IRR of 61%
(i.e., a reduction in the event rate), with a CI ranging from 33% up to 116%. For these somewhat homogeneous estimates, one can
see that the ones with very large associated standard errors eventually have shrinkage estimates close to the overall prediction
interval. A sensitivity analysis investigating alternative prior choices for this example is also shown in Appendix D.4.

5.3.3 Log odds

Neuenschwander et al. investigated the use of historical data in order to inform the analysis of a new data set.77 A meta-analysis
of several trials in ulcerative colitis was performed in order to support the analysis of a subsequent phase II trial. The figure
of interest here was the probability for clinical remission at week 8 in placebo-treated patients, and the main interest was in a
prediction for the new study’s event probability, to then formally integrate this in a subsequent analysis using a meta-analytic-
predictive (MAP) approach.72 Four previous randomized controlled trials reporting this endpoint were available, their data are
shown in Table 11. Instead of working directly on the estimated probabilities p, the analysis here is done based on the odds

p

1−p
,

and a subsequent log-transformation.92

Homogeneity of placebo rates is not expected — differences between control rates are among the main reasons for requiring a
control arm for each RCT, and for pursuing a contrast-based analysis.113,114 The studies were designed aiming for an estimate of
the treatment effect, and the placebo rate originally way mostly a nuisance parameter here. However, some amount of similarity
still is anticipated, and the aim of this exercise is to carefully derive the predictive distribution, which of course depends on the
amount of heterogeneity �.

The earliest of the four studies was planned anticipating a remission rate of 10% for the placebo group,115 and hence a UISD

of �
1
≈

√
1

0.1
+

1

0.9
= 3.33 may be expected. Empirically, we get an estimate of s

1
= 3.2 from the present data set.

As the endpoint are logarithmic odds, we may again apply similar reasoning as in the previous subsections, regarding the
anticipated ratios of odds. However, a major difference here is that while clinical trials are usually carefully designed to provide
reliable estimates of treatment effects (treatment/control contrasts), this is not necessarily the case for the event rates that we
are considering here; we may expect the log-odds to be more variable than the log-ORs. With this in mind, and considering
conservatism and robustness particularly desirable in the present context, we would suggest a half-normal(1.0) prior here. From
Table 3, we can see that the implied 95% prior predictive interval then spans a range of roughly a factor 9 around the median �.
Given the context, it may be of particular interest to consider the associated prior maximum sample size n⋆

∞
(see Section 3.4.5);

for the prior median of � = 0.67, we have �

�
1

=
0.67

3.2
= 0.21, corresponding to a maximum size of n⋆

∞
= 23 (compared to an

original total of 363 subjects included in the analysis). The prior’s 95 % quantile is (approximately) at � = 2, and larger values
would effectively imply (with n⋆

∞
< 3) an almost noninformative posterior predictive distribution.

The eventual analysis is illustrated in Figure 6. Looking at the heterogeneity’s posterior (Figure 8), one can see that hetero-
geneity here appeared to be less than anticipated. The prediction interval is relatively wide, and on the back-transformed scale
is centered at a probability of 0.11 with its 95% posterior predictive interval ranging from 0.03 to 0.34. The posterior predictive
distribution’s standard error is 0.70, and relative to the UISD, this roughly corresponds to an effective sample size of 3.22

0.702
= 21

subjects.

TABLE 11 Log-odds example data due to Neuenschwander et al. (2010).77 The ni and xi here denote total numbers and the
numbers of remitting patients among these. Analysis is done based on the derived log-odds yi and their standard errors �i.

remission proportion odds log-odds

i study events (xi) total (ni) pi =
xi

ni

xi

ni−xi
=

pi

1−pi
yi �i

1 Feagan (2005) 9 63 0.143 0.167 −1.79 0.36

2 Rutgeerts (2005a) 18 121 0.149 0.175 −1.74 0.26

3 Rutgeerts (2005b) 7 123 0.057 0.060 −2.81 0.39

4 Van Assche (2006) 6 56 0.107 0.120 −2.12 0.43
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Proportion example (Neuenschwander, 2010)
quoted estimate shrinkage estimate

study

Feagan (2005)

Rutgeerts (2005a)

Rutgeerts (2005b)

Van Assche (2006)

mean

prediction

estimate

−1.79

−1.74

−2.81

−2.12

−2.06

−2.05

95% CI

[−2.50, −1.09]

[−2.25, −1.24]

[−3.57, −2.04]

[−2.97, −1.27]

[−2.81, −1.38]

[−3.57, −0.62]

−3.5 −3 −2.5 −2 −1.5 −1 −0.5
log−oddsHeterogeneity (tau): 0.42 [0.00, 1.18]

Regression example (Bergau, 2017)
quoted estimate shrinkage estimate

study
Maciag (2012)

Hage (2013)

Demirel (2014)

Konstantino (2016)

Rodriguez−Manero (2016)

mean

prediction

estimate
0.148

0.207

0.255

0.148

0.207

0.192

0.192

95% CI
[−0.110, 0.407]

[0.077, 0.337]

[0.017, 0.492]

[0.020, 0.277]

[0.101, 0.313]

[0.107, 0.278]

[0.043, 0.342]

0 0.1 0.3
log−HR slope (per 5%)Heterogeneity (tau): 0.034 [0.000, 0.120]

FIGURE 6 Forest plots for the examples discussed in Sections 5.3.3 and 5.4. For the log-odds, a half-normal(1.0) prior was
used, and for the log-HR regression slopes, a half-normal(0.125) prior was used for the heterogeneity �.

5.4 Regression slopes

Bergau et al. (2017)116 investigated predictors of all-cause mortality among patients with an implantable cardioverter-
defibrillator (ICD) device. Several potential covariables were considered, among these the left ventricular ejection fraction

(LVEF), which is a measure of the efficiency of heart function that is usually determined via echocardiography. LVEF is
commonly expressed in percent, where 52%–72% are normally observed in healthy individuals, while values below 30% are
considered abnormal.117 Criteria for an indicated ICD therapy include various conditions, including thresholds on the LVEF
in the range 30–40%.118. Five studies were found that had reported on survival analyses including LVEF as a predictor, and
a meta-analysis was performed based on the coefficients standardized to a 5 percentage point decrease in LVEF; the data are
shown in Table 12. The different studies also included different sets of additional covariates in their analyses.116

The regressor, LVEF, here is expressed in percentages (between 0 and 100), which might just as well have been expressed
as a fraction (between 0 and 1), while for the analysis a unit of a 5 percentage point decrease was used — this highlights the
importance of clarifying the scale of the increment Δx that heterogeneity considerations are to be based on. Table 12 also shows
the distributions of LVEF within studies; these are roughly similar and have standard deviations of the order of 10 percentage
points. For the “reference” increment Δx for judging plausible heterogeneity magnitudes, we will then consider a difference of
20 percentage points, which roughly spans the bulk of LVEF values encountered in each of the studies. This also coincides with
the range of values considered “normal” (52%–72%) or the difference between “normal” and “abnormal” ranges (≥ 52% vs.
< 30%) here. The (empirical) UISD for the present data is at s

1
= 1.9 (for the 5% increments shown in Table 12, corresponding

to s
1
= 7.5 for a 20% difference).

Since the regression coefficient is to be interpreted as a logarithmic HR, we will assume a half-normal(0.5) prior for the
effect correponding to a Δx = 20 percentage point increment (analogously to the arguments made in Sections 5.3.1 and 5.3.2).
For the 5 percentage point decreases considered in the analyses, this then implies a four-fold smaller heterogeneity, i.e., a
half-normal(0.125) prior. Analysis results for a half-normal(0.125) prior are illustrated in Figure 6. The estimates are very

TABLE 12 Regression example data.116 Regression slopes result from survival analyses and are expressed in terms of hazard
ratios (HRs) and with reference to a 5 percentage point decrease in LVEF. The baseline means and standard deviations of LVEF
values are also shown.

LVEF (%) log-HR

i study mean s.d. HR [95% CI] ni yi �i

1 Maciąg (2012) 28.0 4.0 1.16 [0.90, 1.51] 121 0.148 0.132
2 Hage (2013) 28.0 15.0 1.23 [1.08, 1.40] 696 0.207 0.066
3 Demirel (2014) 31.9 9.3 1.29 [1.02, 1.64] 99 0.255 0.121
4 Konstantino (2016) 31.6 11.1 1.16 [1.02, 1.32] 1125 0.148 0.066
5 Rodríguez-Mañero (2016) 26.2 7.6 1.23 [1.10, 1.36] 1174 0.207 0.054
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homogeneous, which is evident from the forest plot as well as from the estimated heterogeneity (see also Figure 8). The overall
log-HR estimate is at 0.19, corresponding to 1.21-fold increased mortality hazard for a 5 percentage point decrease (worsening)
in LVEF.

5.5 Correlations

Molloy et al. (2014)119 investigated the relationship between conscientiousness and medication adherence. A total of 16 relevant
studies reporting correlation coefficients of the two factors were found, which were also graded according to their methodological
quality. Three of the studies were rated with the highest quality score; their data are shown in Table 13. The data are also available
as part of the metafor R package.91 In order to avoid problems due to the bounded parameter space of correlations ri (between
−1 and +1), we will use the Fisher-z transformed values instead. Note that, since in the present example the reported correlations
(ru) are relatively close to zero, the corresponding Fisher-z values (yi) are almost identical here (see Table 13; ri and yi values
only differ in their third decimal place) and the transformation eventually makes little difference.

As elaborated in Section 4.5, we expect smaller magnitudes of heterogeneity for correlation endpoints (say, mostly � ≤ 0.3);
the UISD is at �

1
= 1.0, which also matches the figures we see empirically in the present data set (s

1
= 1.004). Van Erp et al.

(2017)82 report a median and 95% quantile of 0.12 and 0.29, respectively, for empirically observed heterogeneity estimates from
published studies. Meta-analysing the remaining set of 13 studies from the present data set119 (using a uniform prior), in order
to quantify the evidence “external” to the example data, yields a heterogeneity estimate of 0.07 with 95% CI [0.00, 0.17].

Heterogeneity values of � = 0.1 or � = 0.2 would imply differences between a random pair of studies of a similar order of
magnitude (see Table 1). A half-normal(0.2) prior for the heterogeneity would cover values mostly in the range below 0.4, with
a prior median at � = 0.13 (see Table 3).

For the present analysis, we would then suggest a half-normal(0.2) prior for the heterogeneity. A meta-analysis of the example
data based on this prior is illustrated in Figure 7. The two traits were originally measured using differing scales, so that complete
homogeneity might be considered especially unlikely. The heterogeneity’s resulting posterior median is at � = 0.12 (with the
95% CI ranging up to 0.30), its posterior distribution is also illustrated in Figure 8. The three studies are of differing size

TABLE 13 Correlation example data.91,119 ri and ni here denote the empirical correlation coefficients and the underlying sample
sizes. The yi are the Fisher-z transformed correlations and �i the associated standard errors that eventually go into the analysis
(see Section 2.1). A positive effect size yi here indicates a positive correlation.

Fisher’s z

i study Correlation ri ni yi �i

1 Stilley (2004) 0.24 158 0.245 0.080
2 Ediger (2007) 0.05 326 0.050 0.056
3 Jerant (2011) 0.01 771 0.010 0.036

Correlation example (Molloy, 2014)

quoted estimate shrinkage estimate

study

Stilley (2004)

Ediger (2007)

Jerant (2011)

mean

prediction

estimate
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0.010

0.079

0.076

95% CI

[0.087, 0.402]

[−0.059, 0.159]

[−0.061, 0.081]

[−0.110, 0.299]

[−0.302, 0.492]

−0.1 0 0.1 0.2 0.3 0.4
Fisher−z transformed correlationHeterogeneity (tau): 0.12 [0.00, 0.30]

FIGURE 7 Forest plot for the example discussed in Section 5.5. For the (Fisher-z transformed) correlations, a half-
normal(0.2) prior was used for the heterogeneity �.
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FIGURE 8 Marginal prior and posterior densities for the heterogeneity parameter � in the seven examples discussed in Section 5.
The dashed lines show the prior densities, the solid lines show the posteriors. The area shaded in dark grey indicates the 95%
credible interval, the vertical line is the posterior median.

and suggest neutral to slightly positive correlation between conscientiousness and medication adherence. The resulting mean
estimate is positive at about 0.08, while the CI ranges from negative to positive (−0.1 to +0.3).

6 DISCUSSION

While executing a Bayesian meta-analysis is not technically difficult, specifying a widely acceptable prior remains a challenge,
especially when it comes to the heterogeneity parameter �. Although the problem may appear complex at first, it is usually possi-
ble to break down the specification into a number of more specific questions that are easier to approach one-by-one. These steps
are summarized in Table 6 and may be outlined as follows: (i) what is the effect’s scale? (ii) what is the probable magnitude of
other effects? (iii) how large is the unit information standard deviation (UISD)? (iv) is relevant empirical information available?
The information may then be related to more concrete prior specifications by constraining (v) prior quantiles (of �) (vi) prior
predictive quantiles (of �i), and (vii) other prior properties. We have demonstrated the prior specification in seven applications
involving few studies and covering a range of common effect scales and application areas, leading to sensible prior distributions
and results in all examples. Besides the case of few studies, another context in which (weakly) informative priors are useful is
whenever marginal likelihoods (or Bayes factors) need to be computed.73 Calculation of marginal likelihoods requires proper
prior distributions, and special care must be taken in their selection in order to avoid (seemingly) paradoxical results.1,120

In many applications, the results will be robust to variations of the prior, which may also be checked in sensitivity analyses. The
prior specification will usually not be the most crucial or influential among the line of assumptions being made, which include
normality,5 exchangeability, the selection of estimates to be pooled, or the choice between effect measures.121 Different prior
specifications will of course leave their imprint on the posterior distribution, for example, results based on short- or heavy-tailed
priors will reflect the differing assumptions, which may be based on emphasizing regularisation or robustness aspects. There
usually is no unique “correct” prior, and “sceptical” or “enthusiastic” results may be derived by implementing corresponding
prior assumptions.42 Even uncertainty in the prior distribution itself (or its scale) may be accommodated by using mixture
priors. Consideration of the stochastic ordering of heterogeneity priors may help assessing more or less conservative settings,
which may be useful for the definition of sensitivity analyses. However, we would also like to warn against inflationary default
specification and execution of multiple analyses here, as the resulting alternative estimates may lead to unnecessary ambiguity or
inconsistent (flip-flopping) conclusions. In Appendix D.4, sensitivity analyses are discussed in the context of the two examples
from Sections 5.1 and 5.3.2. Pre-specification of analyses (and their intended consequences) may help here. In case there is
genuine a-priori uncertainty about the heterogeneity’s magnitude, this might better be reflected in a single prior (e.g., in terms
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of a mixture distribution). Either way, one needs to be prepared and willing to base the eventual analysis results on the posterior
also when the data have little information on heterogeneity to add to the weakly informative prior, as was the case for some of
the examples discussed here (see Figure 8). If it is not possible to specify a suitable (weakly) informative prior for the expected
heterogeneity, then one might have to resort to a more conservative approach using uninformative priors.

Another central assumption crucial to the validity of inference is the exchangeability (see Section 2.1). This might be com-
promised by selection effects, for example, publication bias122 or reporting bias.123 Especially in the case of only few studies,
such effects might be hard to detect from the data, and information on the presence of selection effects may need to come from
considerations of the context.

Choice of heterogeneity priors has consequences for estimation of the overall mean parameter, but in particular also in predic-
tion and shrinkage applications, as the inferred heterogeneity directly impacts on the amount of borrowing-of-strength;20,33,72

smaller heterogeneity will lead to stronger pooling of estimates, and larger heterogeneity will imply that individual estimates
are only loosely connected through the model.

Especially in regulatory settings such as drug approval or health technology assessment (HTA) the definition of a standard
prior distribution for the heterogeneity parameter is important to avoid post hoc discussions in case the use of different prior dis-
tributions leads to results suggesting conflicting interpretations. The Institute for Quality and Efficiency in Health Care (IQWiG)
in Germany is currently looking into determining the empirical distribution for the between-study heterogeneity parameter from
all published IQWiG reports with the goal to motivate a suitable prior distribution for HTA applications.

While in the present manuscript we focused on the NNHM, some of the arguments laid out here are analogously transferable
to other models for pairwise meta-analysis, for example, a Binomial-Normal model. Additional parameters and their priors may
need to be specified in regard to baselines (which are often nuisance parameters and assigned vague priors).85,113,114,124 More
complex applications in evidence synthesis such as meta-regression or network-meta-analysis would again require similar prior
specifications regarding between-study heterogeneity in the effects, but would then entail additional model components, e.g., in
order to accommodate individual-patient data (IPD).125,126,127 Analogous arguments also extend more generally to hierarchical
or multilevel models, such as generalized linear mixed models (GLMMs).2,128 The sensitivity analyses shown in Appendix D.4
suggest that (for a given prior median) the prior distribution’s shape has little impact on the results, as compared to the scaling
of the pior. As it might simplify prior specification further, it will be interesting to investigate whether or to what extent this
feature holds more generally. In summary, the application of Bayesian methods with weakly informative prior distribution for the
heterogeneity parameter can be recommended for meta-analyses with random effects especially in the common case of only few
studies. This paper provides guidance on the choice of useful prior distributions for various effect measures and data situations.

HIGHLIGHTS

• What is already known:

– A Bayesian approach to meta-analysis may often be useful, in particular in cases of only few studies, and in order to
derive predictions and shrinkage estimates.

– Careful specification (and justification) of prior distributions is required, especially for the heterogeneity parameter.

• What is new:

– Prior selection may usually be narrowed down considerably using a structured approach.

– A series of questions to guide choice and justification of the prior distribution was devised.

– Unit information standard deviations (UISDs) were derived for some commonly used effect measures.

• Potential impact for Research Synthesis Methods readers outside the authors’ field:

– Similar approaches may be useful also in related fields where hierarchical models or generalized linear mixed models
(GLMMs) are used.
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APPENDIX

A UNIT INFORMATION STANDARD DEVIATIONS

A.1 Standardized mean differences (SMDs)

Defining an SMD simply as �i =
�2;i−�1;i

&i
(see Section 4.2), this figure is in practice estimated based on empirical group-

averages x̄1;i and x̄2;i. Neglecting uncertainty in variance estimation and assuming a known common standard deviation &i for

both treatment groups then leads to Var(�i) = Var
(

x̄2;i−x̄1;i

&i

)
=

Var(x̄2;i)+Var(x̄1;i)

&2
i

=

&2
i

n2;i
+

&2
i

n1;i

&2
i

=
1

n1;i
+

1

n2;i
. Furthermore assuming

equal group sizes (n1;i = n2;i =
ni

2
) then leads to an approximate standard error of 2√

ni
and hence a UISD of �

1
= 2.

A.2 Logarithmic odds (logits)

The variance of a logarithmic odds (or logit-proportion) estimate is 1

n

( 1

p
+

1

1−p

)
, where n is the sample size and p is the true

proportion. The variance (squared standard error) is in practice commonly estimated by
( 1

x
+

1

n−x

)
, where x is the observed

event count.92 The UISD then is given by �
1
=
√

1

p
+

1

1−p
≥ 2.

Note the similarity to the standard error of an logarithmic odds ratio,20 which may be expressed as the difference of two log-
odds. For p =

1

2
, the resulting UISD �

1
is twice as large (i.e. the variance �2

1
is four times as large), since (i) the two logits’

variances add, while (ii) each of the two logits has twice the variance since it is only based on “half as many” subjects (per total
number of subjects n).

A.3 Logarithmic incidence rate ratios (log-IRRs)

An (approximate) standard error for an incidence rate ratio is given by
√

1

a
+

1

c
, where a and c are the event counts in treatment-

and control-groups, respectively.129 Sec. 6.7.1 Assuming a total number m of events, and, for simplicity, a = c =
m

2
then yields

a standard error of 2√
m

, implying a per-event UISD of 2. For a given event rate � (per subject), the per-subject standard deviation

then is at �
1
=

2√
�

.

B PRIOR DISTRIBUTION FAMILIES

Table B1 characterizes some of the probability distribution families that are discussed in Section 3 in more detail (see also
Figure 1 and Table 4). The distribution families considered are half-normal, half-Student-t, half-Cauchy, half-logistic, exponen-
tial, Lomax, log-normal and (proper) uniform.130,75. The distributions’ parameters, probability density functions, medians, 95%

quantiles, means, variances, and coefficients of variation (cv =
√
Var(X)

E[X]
) are listed.

In particular for families including several parameters, some of the expressions may get somewhat complex (e.g., the moments
of a general half-Student-t distribution, which are omitted in the table).131 However, if only a scale parameter is present, then
quantiles, expectation and standard deviation are simply proportional to the scale, and the coefficient of variation is a constant.
Examples are the half-normal distribution, or half-Student-t or Lomax distributions with fixed shape parameters.

Note that for the exponential distribution, which is most commonly parameterized using a rate (or inverse scale) parameter,
the inverse of the rate is a scale parameter. Similarly, for the log-normal distribution, exp(�) would be a scale parameter, and
the corresponding expressions then factor as multiples of exp(�). Some of the expressions given below are not always defined,
e.g., expectation and variance of the half-t distribution are only defined for � > 1 and � > 2, respectively,131 and the first two
moments of the Lomax distribution are only finite for � > 1 and � > 2, respectively.130
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TABLE B1 Some properties of potential prior distribution families that were discussed in Section 3. An asterisk (∗) means that the corresponding expression is somewhat
complex and hence omitted here, and a dash (—) means the figure is not defined. cv denotes the coefficient of variation (the ratio of standard deviation over expectation).

distribution parameter(s) density function p(x) median 95% quantile expectation variance cv

half-normal scale �

√
2√
� �

exp
(
−

1

2

(
x

�

)2)
0.674� 1.96� 0.798� (0.603�)2 0.756

half-Student-t shape �, scale �
2 Γ
(

�+1

2

)

Γ
(

�

2

)√
�� �

(
1 +

1

�

(
x
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)2)−
�+1

2
∗ ∗ ∗ ∗ ∗

half-Student-t�=3 scale �
4

�
√
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(
1 +

1

3

(
x

�

)2)−2

0.765� 3.18� 1.10� (1.34�)2 1.21

half-Cauchy scale �
2

� �
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(
x
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� 12.7� — — —

half-logistic scale �
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exponential rate � � exp(−�x) 0.693
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Lomax(�=1) scale �
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log-normal shape �, shape �
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√
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(proper) uniform scale a

{
1∕a if 0 ≤ x ≤ a

0 otherwise
1

2
a 0.95a

1

2
a (0.289a)2 0.577
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C SCALE MIXTURE PARAMETRISATIONS

C.1 Motivating Lomax and Student-t distributions as scale mixtures

Heavy-tailed priors may be constructed as scale mixtures of shorter-tailed distributions. For example, a distribution p(�|s) that
has a scale parameter s > 0 may be generalized by specifying a mixing distribution p(s) and subsequently marginalizing over
it, yielding the mixture p(�) = ∫ ∞

0
p(�|s) p(s) ds.49,132 In order to make the connection to the original (conditional) distribution

p(�|s), it is instructive to consider the mixing distribution’s location and spread, e.g. in terms of expectation � = E[s] and coef-

ficient of variation cv =
√
Var(s)

E[s]
. For small cv, the mixture will closely resemble the original distribution (p(�|s)), for larger cv, it

will be heavier-tailed. Note that, since the scale parameter’s domain is the positive real line, an increasing coefficient of varia-
tion also implies an increasingly skewed mixing distribution. In the following, we show how Lomax and Student-t distributions
result as scale mixtures of exponential and normal distributions, respectively, and how these may be parameterised in terms of
pre-specified expectation and coefficient of variation of their scale parameters. Specification of a prior in terms of a scale mix-
ture may be seen as a case of a “contaminated” prior also considering variations of a prior that are “close to an elicited one”.68 69

Sec. 3.5.3

C.2 The Lomax distribution as an exponential scale mixture

The exponential distribution may be parameterized in terms of rate (inverse scale) �, or scale s =
1

�
, where the expected value is

given by E[X] = s =
1

�
. Suppose that the scale s is uncertain with expectation E[s] = � and coefficient of variation

√
Var(s)

E[s]
= cv.

Then s may be modelled using an inverse-gamma distribution with matched moments, using shape � = 2 +
1

c2
v

and scale � =

�
(
1 +

1

c2
v

)
(implying a gamma-distribution for the rate � with shape � and scale 1

�
). A mixture of exponential distributions with

inverse-gamma-distributed scale (or gamma-distributed rate) then results as a Lomax distribution parameterized by shape � = �

and scale � = �, with expectation �

�−1
and variance �2�

(�−1)2(�−2)
. By pre-sprecifying the exponential scale’s expectation and

uncertainty (in terms of the coefficient of variation), we can then derive the corresponding Lomax distribution. For example, if
we are aiming for an exponential scale mixture in which the scale has expectation � = 0.5 and coefficient of variation cv = 0.5,
this implies Lomax parameters of shape � = 2 +

1

c2
v

= 2 +
1

0.52
= 6 and scale � = �

(
1 +

1

c2
v

)
= 0.5

(
1 +

1

0.52

)
= 2.5.

C.3 The (half-) Student-t distribution as a normal scale mixture

The Student-t distribution (with � degrees of freedom) is classically defined as the distribution of a variable X =
Y√
Z∕�

, where

Y follows a standard normal distribution, and Z is independent and follows a �2
�

distribution (with � degrees of freedom).
The Student-t family includes the Cauchy distribution as a special case (for � = 1) and the normal distribution as a limiting
case (for � → ∞). Alternatively, the distribution of X may be expressed via X|� ∼ N(0, �2) and � ∼ Inv-�

(
�,
√
�
)
, where

the distribution of the normal scale � is a scaled inverse � distribution with � degrees of freedom and scale s =
√
�. The

latter formulation then makes the scale mixture connection more obvious. The arguments in the following then equally apply
for Student-t and half-Student-t distributions. The inverse � distribution is simply defined as the distribution of the inverse of
the square root of a �2

�
-distributed deviate; it is a special case of a square-root inverted-gamma distribution133 (with � =

�

2

and � =
1

2
). The scaled inverse � distribution then results by introducing an additional scale parameter s.65 Sec. VII.6.2 Its

probability density function is given by

p(�|�, s) =
2(1−�∕2)

sΓ(�∕2)

(
s

�

)(�+1)

exp
(
−

s2

2 �2

)
. (C1)

Cumulative distribution function, quantiles, etc. may be computed via the �2
�

distribution. Its moments are given by

E[�|�, s] = s
Γ
(
�−1

2

)

√
2 Γ

(
�

2

) and Var(�|�, s) = s2
(

1

� − 2
−

1

2

(Γ((� − 1)∕2)

Γ(�∕2)

)2
)

(C2)

(for � > 1 and � > 2, respectively). Its coefficient of variation depends only on the degrees of freedom parameter �. This means
that if, analogously to the previous section, we want to define a Student-t distribution corresponding to a normal scale mixture
where the normal scale has a pre-specified expectation and coefficient of variation, we can first determine the associated degrees



C. RÖVER, ET AL. 35

TABLE C2 Coefficients of variation (cv) corresponding to certain settings of the degrees of freedom (�) of an inverse �

distribution.

� cv

2.5 1.09

3 0.76

4 0.52

5 0.42

10 0.24

20 0.17

50 0.10

TABLE C3 Degrees of freedom (�) settings corresponding to certain pre-specified coefficient of variation (cv) of an inverse �
distribution.

cv �

2 2.2

1 2.6

1∕2 4.2

1∕3 6.7

1∕4 10.2

1∕5 14.7

1∕10 52.2

of freedom � and subsequently the scale s. Table C2 lists corresponding coefficients of variation for a selected set of degrees
of freedom values (according to equation (C2)). Inversion of the relationship may be done numerically; degrees of freedom �

settings corresponding to certain coefficients of variation cv are shown in Table C3.
For example, if one was aiming for a normal scale mixture with expectation � = 0.5 and coefficient of variation cv = 0.5,

this first of all implies � = 4.2 degrees of freedom (Table C3). Using an “plain” Student-t distribution now would correspond
to a scaled inverse � mixing distribution of the normal scale � with degrees of freedom � = 4.2 and scale s =

√
4.2 = 2.05,

and, according to equation (C2), with E[�] = 1.24. In order to set the expectation to the intended � = 0.5 instead, the (half-)
Student-t distribution needs be scaled by a factor of 0.5

1.24
= 0.40. So a half-Student-t distribution with � = 4.2 degrees of freedom

and a scale of 0.40 may be motivated as a half-normal scale mixture with E[�] = 0.5 and
√
Var(�)

E[�]
= 0.5. On the other hand, a

setting of � = 4 and Student-t scale 0.5 would imply cv = 0.52 and � = 0.63.

C.4 Scale mixture examples

Tables C4 and C5 below show a number of Lomax and Student-t distributions that result as scale mixtures for pre-specified mean
and variance for the exponential or half-normal scale parameter. Note that, due to linearity, simple re-scaling of the (exponential
or half-normal) scale’s distribution implies proportional re-scaling of heterogeneity and predictive distribution. For example,
the Lomax�=6(8.17)-distribution from Table 4 results from re-scaling of the Lomax�=6(5)-distribution from Table C4 by a factor
of 1

0.612
so that the prior median is at 1.0. Note also that by fixing the expectation and increasing the coefficient of variation, one

get an increasingly skewed mixing distribution with a decreasing median.
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TABLE C4 Lomax prior distributions resulting as scale mixtures of exponential distributions. An inverse-gamma distributed scale (or inverse rate) parameter for the
exponential distribution marginally yields a Lomax distribution. Pre-specifying expectation and coefficient of variation (cv) for the scale (shown in bold) implies a
unique inverse-gamma and resulting Lomax distribution. The table illustrates distributions of exponential scale (s), heterogeneity (�) and predictions (�i). The first line
corresponds to a “plain” exponential distribution with fixed scale.

exponential scale heterogeneity prediction

�|s ∼ exponential(s), (�i − �)|� ∼ N(0, �2),
s|�, � ∼ inv-Γ(�, �) �|�, � ∼ Lomax�(�) (�i − �)|�, � ∼ normal mixture

� prior shape � scale � mean cv median q95% shape � scale � mean cv median q95% q2.5%∕q97.5%

exponential(1.0) 1.0 0.0 1.00 1.00 1.0 0.00 0.69 3.00 ±2.052

Lomax�=102(101) 102 101 1.0 0.1 0.99 1.17 102 101 1.0 1.01 0.69 3.01 ±2.052
Lomax�=27(26) 27 26 1.0 0.2 0.97 1.36 27 26 1.0 1.04 0.68 3.05 ±2.049
Lomax�=6(5) 6 5 1.0 0.5 0.88 1.91 6 5 1.0 1.22 0.61 3.24 ±2.022
Lomax�=3(2) 3 2 1.0 1.0 0.75 2.45 3 2 1.0 1.73 0.52 3.43 ±1.937
Lomax�=2.25(1.25) 2.25 1.25 1.0 2.0 0.65 2.72 2.25 1.25 1.0 3.00 0.45 3.48 ±1.834
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TABLE C5 Half-Student-t prior distributions resulting as scale mixtures of half-normal distributions. An inverse-Chi distributed scale parameter for the half-normal
distribution marginally yields a half-Student-t distribution. Pre-specifying expectation and coefficient of variation (cv) for the scale (shown in bold) implies a unique
inverse-Chi and resulting half-Student-t distribution. The table illustrates distributions of half-normal scale (�), heterogeneity (�) and predictions (�i). The first line
corresponds to a “plain” half-normal distribution with fixed scale.

half-normal scale heterogeneity prediction

�|� ∼ HN(�), (�i − �)|� ∼ N(0, �2),
�|�, s ∼ inv-�(�, s) �|�, s ∼ Ht

(
�, s∕

√
�
)

(�i − �)|�, s ∼ normal mixture

� prior d.f. � scale s mean cv median q95% d.f. � scale mean cv median q95% q2.5%∕q97.5%

half-normal(1.0) 1.0 0.0 1.00 1.00 ∞ 1.00 0.80 0.76 0.68 1.96 ±2.18

half-Student-t�=52.2(0.99) 52.2 7.12 1.0 0.1 0.99 1.18 52.2 0.99 0.80 1.02 0.67 1.98 ±2.19
half-Student-t�=14.7(0.95) 14.7 3.64 1.0 0.2 0.97 1.37 14.7 0.95 0.80 1.08 0.66 2.02 ±2.21
half-Student-t�=4.2(0.81) 4.2 1.65 1.0 0.5 0.88 1.86 4.2 0.81 0.80 1.39 0.60 2.20 ±2.27
half-Student-t�=2.6(0.67) 2.6 1.09 1.0 1.0 0.78 2.25 2.6 0.67 0.80 2.10 0.53 2.35 ±2.30
half-Student-t�=2.2(0.60) 2.2 0.88 1.0 2.0 0.71 2.42 2.2 0.60 0.80 3.73 0.48 2.41 ±2.28
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D EXAMPLE APPLICATIONS

D.1 R code to illustrate the conditional prior predictive distribution

The following R code illustrates the conditional prior predictive distribution p(�i|�, �) (see Section 3.4.3) for the example case
discussed by Prevost et al. (2000).27 A fixed value of � = 0.35 implies a conditional distribution of effects (RRs, exp(�i)) within
factors of 0.5 and 2.0 with 95% probability.

# generate log-RRs based on (fixed) tau=0.35:

N <- 1000

theta <- rnorm(N, mean=0, sd=0.35)

# show quantiles:

quantile(theta, prob=c(0.025, 0.975))

log(c(0.5, 2.0))

# (approximately 95% are within log(0.5) and log(2.0))

# derive RRs:

rr <- exp(theta)

# show histogram:

hist(rr)

# show quantiles:

quantile(rr, prob=c(0.025, 0.975))

# (approximately 95% are within 0.5 and 2.0)

# conditional quantiles may also be computed numerically:

qnorm(c(0.025, 0.975), mean=0, sd=0.35)

exp(qnorm(c(0.025, 0.975), mean=0, sd=0.35))

D.2 R code to illustrate the marginal prior predictive distribution

The following R code illustrates the marginal prior predictive distribution p(�i|�) (see Section 3.4.4) for the example case
discussed by Dias et al. (2013).28 A half-normal(0.32)-distribution for � implies a marginal distribution of effects (ORs, exp(�i))
within factors of 0.5 and 2.0 with 95% probability.

# generate tau values from half-normal(0.32) distribution:

N <- 1000

tau <- abs(rnorm(N, mean=0, sd=0.32))

# generate log-ORs based on above tau values:

theta <- rnorm(N, mean=0, sd=tau)

# show quantiles:

quantile(theta, prob=c(0.025, 0.975))

log(c(0.5, 2.0))

# (approximately 95% are within log(0.5) and log(2.0))

# derive ORs:

or <- exp(theta)

# show histogram:

hist(or)

# show quantiles:

quantile(or, prob=c(0.025, 0.975))

# (approximately 95% are within 0.5 and 2.0)

# marginal quantiles may also be computed numerically:
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library("bayesmeta")

nm032 <- normalmixture(cdf=function(t){phalfnormal(t, scale=0.32)})

nm032$quantile(c(0.025, 0.975))

exp(nm032$quantile(c(0.025, 0.975)))

D.3 R code to reproduce examples

The following R code shows how to use the bayesmeta library20 to perform a meta-analysis of the example data from
Section 5.3.1110 using a half-normal(0.5) prior.

# load library:

require("bayesmeta")

# load data:

data("CrinsEtAl2014")

# calculate effect measures (ORs) for 2 randomized AR studies:

effsize <- escalc(measure="OR",

ai=exp.AR.events, n1i=exp.total,

ci=cont.AR.events, n2i=cont.total,

slab=publication, data=CrinsEtAl2014,

subset=(CrinsEtAl2014$randomized=="yes"))

# perform meta-analysis:

bma <- bayesmeta(effsize, tau.prior = function(t){dhalfnormal(t, scale=0.5)})

# show results:

print(bma)

# show forest plot:

forestplot(bma)
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D.4 Sensitivity analyses

D.4.1 General remarks

In the following we illustrate some sensitivity analyses for the prior choice based on the MD example from Section 5.1 (Grande
et al., 2015),100 and on the IRR example from Section 5.3.2 (Anker et al., 2018),112 both involving k = 4 studies. Sensitivity
analyses are commonly suggested and often easy to do, however, sensitivity to the choice of prior alone should only be a reason
for concern if the prior is not convincingly motivated. Also, prior sensitivity must not be confused with the (weak/strong)
informativeness of a prior; these are two quite separate aspects. A sensitivity analysis will also contribute little to the question
of whether a particular prior is “appropriate” or not. Besides investigating variations of a given prior, analysis results may also
be contrasted with those obtained when using a noninformative prior (presuming that this is possible; e.g., the improper uniform
prior requires k ≥ 3 studies in order to yield a proper posterior). The aim here may then be to investigate to what extent results
are determined by prior or data (likelihood). It should also be noted that the prior is only one among several crucial aspects of
the model that might be challenged; additional aspects include normality,5 exchangeability (selection effects),122,123 the choice
of effect measure,121 the model parametrisation,134 or the use (by deliberate choice or due to a zero heterogeneity estimate) of
a common-effect model.38,7 The default statement of several (seemingly) alternative results might also encourage inconsistent
(flip-flopping) conclusions from the data; if in fact there is uncertainty about the shape or scale of the prior, this might more
appropriately be addressed via specification of a mixture prior reflecting this uncertainty.

In Sections 5.1 and 5.3.2 half-normal priors with scale 0.5 were suggested for both examples. In order to investigate sensitivity
of the analysis to details of the heterogeneity prior specification, we will vary the prior scale (within the half-normal family) as
well as the distribution family (while keeping the prior median fixed). For the sensitivity check, we will then consider scales
half or twice as large. For the investigation of sensitivity with respect to the choice of the prior distribution’s shape, we consider
the distribution families shown in Figure 1 and Table 4, which are half-Student-t (with � = 3 d.f.), half-Cauchy, half-logistic,
exponential and Lomax (with shape parameters 6 or 1). The prior median for the original half-normal(0.5) prior was at � = 0.34,
the different distributions then were scaled to have a matching median. Some of the reasons why one might choose one of these
distribution families were discussed in Section 3.3; differences between these in particular relate to their behaviour near zero
or towards their upper tail, or to their motivation as mixture distributions (see Appendix C). In order to contrast results with
those obtained by using a noninformative prior, we selected the improper uniform prior in �, as well as the Jeffreys prior for �
for comparison. Both of these are improper and “noninformative” in a particular sense, and, since k ≥ 3 in both examples, both
yield proper posteriors here.20

D.4.2 Mean difference example (Grande et al.; 2015)

Varying the prior scale by a factor of two here implies a re-scaling of the prior predictive distribution by the same factor (see
also the discussion in Section 3.4.4 and especially Table 3). Instead of a-priori considering between-study variations of ±1 day
around the overall mean most plausible, this would mean focusing on a range of half a day of two days instead, respectively.
Figure D1 (left panel) shows the overall effect estimates corresponding to the three prior settings. Most notably, with larger
heterogeneity deemed plausible, the effect CI’s lower bound includes more extreme values, while median and upper bound
are less affected. This is consistent with the empirical data here (see Figure 4), as larger heterogeneity implies greater weight
for the most extreme, yet also most uncertain first estimate, while lower heterogeneity implies that weighting is closer to the
inverse-variance weights.20

When varying the prior distribution’s shape (and keeping the prior median fixed), the effect on the resulting overall estimate is
remarkably small, despite the different priors’ different properties and appearances (see Table 4 and Figure 1). Figure D1 (right
panel) illustrates the corresponding effect estimates, where differences are barely discernible visually.

Parameter estimates for the above analyses (also for heterogeneity � and prediction �k+1) are shown in Table D6. When
contrasting results with those obtained based on the noninformative uniform or Jeffreys priors, the estimates differ more sub-
stantially. One may argue that, without the use of a weakly informative prior, the empirical data alone are not sufficient to rule
out implausible ranges of heterogeneity here. For instance, in case of the improper uniform prior, heterogeneity values beyond
� = 4.0 would be considered a-posteriori plausible. This is more than the estimated UISD (s

1
= 3.9), and, looking at Table 4,

this would imply variability of �i values (differences in mean numbers of symptom days) within ranges of more than �±1week,
while the numbers of symptom days themselves were only of the order of one week (see Table 7). Use of a weakly informative
prior then allows to rule out such implausible parameter ranges.
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sensitivity analyses: prior scale

prior

half−normal(0.50)

half−normal(0.25)

half−normal(1.00)

estimate

−1.16

−1.11

−1.22

95% CI

[−2.03, −0.44]

[−1.73, −0.53]

[−2.45, −0.31]

−2.5 −2 −1.5 −1 −0.5 0
mean difference (MD)

sensitivity analyses: prior family

prior

half−normal(0.50)

half−Student−t(3, 0.44)

half−Cauchy(0.34)

half−logistic(0.31)

exponential(0.49)

Lomax(6, 2.75)

Lomax(1, 0.34)

estimate

−1.16

−1.16

−1.15

−1.16

−1.16

−1.16

−1.14

95% CI

[−2.03, −0.44]

[−2.06, −0.43]

[−2.06, −0.41]

[−2.04, −0.43]

[−2.09, −0.42]

[−2.10, −0.41]

[−2.08, −0.41]

−2 −1.5 −1 −0.5 0
mean difference (MD)

FIGURE D1 Sensitivity analyses for the MD example (Grande et al.; 2015)100 from Sec. 5.1 investigating alternative prior
distributions for the heterogeneity parameter �. The left panel shows variations of the scale parameter within the half-normal
family, while the right panel corresponds to different prior distribution families with a fixed prior median (here: at 0.34). The
“original” result from Sec. 5.1 (half-normal prior with scale 0.5) is shown at the top of each panel.

TABLE D6 Estimates and 95% CIs for the heterogeneity (�), the overall mean effect (�) and the prediction (�k+1) corresponding
to the discussed sensitivity analyses for the MD example (Grande et al.; 2015)100. The first line shows the estimates resulting
from the half-normal(0.5) prior that was originally proposed in Section 5.1.

heterogeneity � effect � prediction �k+1

prior median 95% CI median 95% CI median 95% CI

half-normal(0.50) 0.29 [0.00, 0.87] -1.16 [-2.03, -0.44] -1.15 [-2.50, -0.05]

half-normal(0.25) 0.16 [0.00, 0.47] -1.11 [-1.73, -0.53] -1.11 [-1.92, -0.36]
half-normal(1.00) 0.47 [0.00, 1.47] -1.22 [-2.45, -0.31] -1.19 [-3.34, 0.48]

half-Student-t(3, 0.44) 0.28 [0.00, 0.98] -1.16 [-2.06, -0.43] -1.14 [-2.58, 0.00]
half-Cauchy(0.34) 0.23 [0.00, 1.08] -1.15 [-2.06, -0.41] -1.13 [-2.61, 0.02]
half-logistic(0.31) 0.29 [0.00, 0.92] -1.16 [-2.04, -0.43] -1.15 [-2.55, -0.02]
exponential(0.49) 0.26 [0.00, 1.05] -1.16 [-2.09, -0.42] -1.14 [-2.65, 0.04]
Lomax(6, 2.75) 0.25 [0.00, 1.09] -1.16 [-2.10, -0.41] -1.14 [-2.67, 0.05]
Lomax(1, 0.34) 0.20 [0.00, 1.16] -1.14 [-2.08, -0.41] -1.13 [-2.66, 0.04]

uniform 0.86 [0.00, 4.60] -1.30 [-3.98, 0.58] -1.25 [-6.57, 3.13]
Jeffreys 0.62 [0.01, 2.61] -1.27 [-3.03, -0.05] -1.24 [-4.55, 1.38]

D.4.3 Log incidence rate ratio example (Anker et al.; 2018)

Regarding the implications of varying the prior scale, the half-normal(1.0) prior was also discussed in Sections 3.4.4 and 4.3
(see especially Table 3 and Figure 3). In the present context, the half-normal(0.25) prior would assign 31% probability to “small”
values, 64% and 4.5% to “reasonable” and “fairly high” heterogeneity, respectively, and allow only 0.0063% probability for
“fairly extreme” values. The 95% predictive interval (for �i − �) ranges across ±0.55, corresponding to multiplicative effects
of factors of 0.58 or 1.73 on the exponentiated scale. With that, the half-normal(0.25) prior confines heterogeneity to a rather
optimistic range of values, which would need to be discussed in the exact context of the example. One might need to argue why
mostly up to “reasonable” (but virtually no “fairly high” or “fairly extreme”) heterogeneity would be expected; in the present case,
such an argument might be made based on the fact that the studies were performed according to similar protocols and executed
by the same sponsor.112 Figure D2 (left panel) illustrates the overall effect estimates corresponding to the three prior settings.
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sensitivity analyses: prior scale

prior

half−normal(0.50)

half−normal(0.25)

half−normal(1.00)

estimate

−0.49

−0.50

−0.48

95% CI

[−1.10, 0.15]

[−1.01, 0.01]

[−1.24, 0.35]

−1 −0.5 0 0.5
log−IRR

sensitivity analyses: prior family

prior

half−normal(0.50)

half−Student−t(3, 0.44)

half−Cauchy(0.34)

half−logistic(0.31)

exponential(0.49)

Lomax(6, 2.75)

Lomax(1, 0.34)

estimate

−0.49

−0.49

−0.49

−0.49

−0.49

−0.49

−0.49

95% CI

[−1.10, 0.15]

[−1.10, 0.15]

[−1.09, 0.13]

[−1.10, 0.15]

[−1.11, 0.15]

[−1.10, 0.15]

[−1.08, 0.11]

−1 −0.5 0
log−IRR

FIGURE D2 Sensitivity analyses for the IRR example (Anker et al.; 2018)112 from Sec. 5.3.2 investigating alternative prior
distributions for the heterogeneity parameter �. The left panel shows variations of the scale parameter within the half-normal
family, while the right panel corresponds to different prior distribution families with a fixed prior median (here: at 0.34). The
“original” result from Sec. 5.3.2 (half-normal prior with scale 0.5) is shown at the top of each panel.

Although especially the CI width changes slightly, and for the more “optimistic” half-normal(0.25) prior almost excludes zero,
the conclusions do not change drastically.

Figure D2 (right panel) illustrates the overall effect estimates corresponding to the different prior distribution families. Despite
their different appearances and properties (see also Figure 1), the resulting overall effect estimates and CIs again are remarkably
similar.

The noninformative priors yield CIs that are wider by factors of roughly 1.5 or 2.1 than for the analysis based on the proposed
half-normal(0.5) prior, so the precision gain is quite substantial here. In addition to investigating the priors’ influence on the
overall effect (�), it may also be of interest to consider its effect on prediction intervals, shrinkage estimates, or the heterogeneity’s
posterior. Table D7 lists some estimates corresponding to all of the sensitivity analyses discussed above.

TABLE D7 Estimates and 95% CIs for the heterogeneity (�), the overall mean effect (�) and the prediction (�k+1) corresponding
to the discussed sensitivity analyses for the IRR example (Anker et al.; 2018)112. The first line shows the estimates resulting
from the half-normal(0.5) prior that was originally proposed in Section 5.3.2.

heterogeneity � effect � prediction �k+1

prior median 95% CI median 95% CI median 95% CI

half-normal(0.50) 0.24 [0.00, 0.75] -0.49 [-1.10, 0.15] -0.49 [-1.49, 0.56]

half-normal(0.25) 0.15 [0.00, 0.44] -0.50 [-1.01, 0.01] -0.50 [-1.18, 0.20]
half-normal(1.00) 0.34 [0.00, 1.17] -0.48 [-1.24, 0.35] -0.49 [-1.89, 1.02]

half-Student-t(3, 0.44) 0.23 [0.00, 0.78] -0.49 [-1.10, 0.15] -0.49 [-1.49, 0.55]
half-Cauchy(0.34) 0.19 [0.00, 0.77] -0.49 [-1.09, 0.13] -0.50 [-1.44, 0.50]
half-logistic(0.31) 0.24 [0.00, 0.77] -0.49 [-1.10, 0.15] -0.49 [-1.49, 0.56]
exponential(0.49) 0.21 [0.00, 0.82] -0.49 [-1.11, 0.15] -0.49 [-1.50, 0.57]
Lomax(6, 2.75) 0.20 [0.00, 0.82] -0.49 [-1.10, 0.15] -0.49 [-1.49, 0.56]
Lomax(1, 0.34) 0.16 [0.00, 0.79] -0.49 [-1.08, 0.11] -0.50 [-1.42, 0.48]

uniform 0.46 [0.00, 2.52] -0.47 [-1.68, 0.91] -0.48 [-3.05, 2.30]
Jeffreys 0.43 [0.01, 1.61] -0.47 [-1.39, 0.55] -0.48 [-2.29, 1.47]
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