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Abstract

The analysis of count data is commonly done using Poisson models.
Negative binomial models are a straightforward and readily motivated
generalization for the case of overdispersed data, i.e., when the observed
variance is greater than expected under a Poissonian model. Rate and
overdispersion parameters then need to be considered jointly, which in
general is not trivial. Here we are concerned with evidence synthesis in the
case where the reporting of data is rather heterogeneous, i.e., events are
reported either in terms of mean event counts, the proportion of event-free
patients, or rate estimates and standard errors. Either figure carries some
information about the relevant parameters, and it is the joint modeling
that allows for coherent inference on the parameters of interest. The
methods are motivated and illustrated by a systematic review in chronic
obstructive pulmonary disease.

1 Introduction

Count data commonly occur as endpoints in clinical trials, for example, when
one is interested in inferring rates of recurrent events. Accordingly, these types
of data are frequently encountered in meta analysis, when results from different
studies are integrated. The Poisson distribution is often applicable when mod-
eling event counts that are associated with a certain rate which then is usually
the quantity of interest. The negative binomial distribution arises as a straight-
forward generalisation of the Poisson distribution (Lawless, 1987); it results as a
marginal distribution of counts when the corresponding “Poissonian” rate is not
fixed, but is associated with some uncertainty taking the mathematical form of a
Gamma distribution. The introduced additional variability, the overdispersion,
induces extra variation in the data and uncertainty in resulting estimates. The
consideration of overdispersion is often useful and necessary in order to account
for heterogeneity of some kind in the data.
Clinical trials in the context of chronic obstructive pulmonary disease (COPD),

are commonly concerned with count data. The progress of COPD is character-
ized by recurrent exacerbations, periods of rapid worsening of the disease. The
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presence of exacerbations, or their counts, are often used as clinical endpoints,
as treatments are supposed to delay or prevent the occurence of exacerbations.
Negative binomial models are commonly advocated and used in the context of
COPD exacerbations (Keene et al., 2007, 2008; Aaron et al., 2008; European
Medicines Agency (EMA), 2012), but while the presence of overdispersion and
the importance of its consideration appears to be undoubted, published evi-
dence on its actual magnitude on the other hand is rather sparse. For example,
Anzueto et al. (2009) use “an over-dispersion estimate of 1.5” and Calverley
et al. (2009) use “a correction for overdispersion of 2”, while the actual con-
ventions used for quantifying overdispersion may be ambiguous. Also, the way
in which results are quantified varies considerably across studies; many studies
quote exacerbation rate estimates, some provide standard errors (or confidence
intervals) in addition, and some studies again quote numbers (or proportions)
of patients with and without an exacerbation during the study.

Differences in the reporting of study results commonly pose problems when
combining information sources that aggregate data not in the same way. Off-
the-shelf software may then not be suitable to deal with the peculiarities of a
given problem. The generic case of combining data of a common format will
here be referred to as meta analysis while the more general case of combining
data in different formats or possibly originating from different experimental
designs is commonly called evidence synthesis (Spiegelhalter et al., 2004). Our
aim was to set up a model to infer both unknowns while incorporating the
different sources of data in a coherent manner. Here we aim for a model that
consistently based on an underlying negative binomial process, to which the
different data sources are linked in individual ways. The eventual formulation
of a coherent data likelihood then allows for consistent inference based on all
available information.

In our case, both rate and overdispersion are important parameters deter-
mining the possible trial outcomes, while neither one is usually the figure of
primary interest — the actual focus usually lies on quantities like rate ratios.
If one knows the total number of exacerbations (or a rate estimate) and the
number of zero-counts (exacerbation-free patients), one can immediately esti-
mate rate and overdispersion jointly (e.g. via a maximum-likelihood approach).
If only one of the figures is given, only one parameter may be estimated for
the other being given or fixed. While we do not know any of the parameters
precisely, we have some information on their probable order of magnitude from
related studies. The idea now is to utilize a Bayesian framework (Sutton and
Abrams, 2001; Spiegelhalter et al., 2004) to coherently incorporate the informa-
tion from different sources. This way we are able incorporate exact likelihoods
into the joint model, and to “borrow strength” among studies in order to make
sense of the limited amount of information that may be contained in any single
one.

The outline of the paper is as follows. In Section 2, the context of count data
in modeling exacerbation counts in COPD is introduced. Section 3 describes
Poisson and negative binomial models for count data in general and the prob-
lems arising with data encountered in studies investigating COPD. The pro-
posed approach to data modeling is developed, including a hierarchical model
for the meta-analysis. In Section 4, the model is applied to actual data, and
model variations are explored in order to investigate the impact of considering
additional data.



2 DMotivating example: Meta-analysis in COPD

Chronic obstructive pulmonary disease (COPD) is a major cause of death and
disability worldwide, and the burden of this disorder will continue to increase
in the coming decades despite therapeutic advances (Decramer et al., 2012).
Thus there is substantial need to improve symptomatic and prognostic bur-
den in COPD. Randomized controlled trials (RCTs) investigating a primary
endpoint are the gold standard in proving efficacy of one therapy over another
or over placebo. Lung function such as forced expiratory volume in 1 second
(FEV1) is a physiological measure and a global marker of disease severity in
COPD. However, FEV; and other measures of lung function correlate poorly
with patient-related outcomes such as symptoms, exercise tolerance, quality of
life, exacerbations and mortality. Mortality is a key endpoint, but two COPD
trials failed to show significant effects on mortality, despite including about
6 000 COPD patients each (TORCH (Calverley et al., 2007), UPLIFT (Tashkin
et al., 2008)). Exacerbations of COPD relate to mortality, impaired quality of
life, lung function and health care costs. Furthermore, the chronic and progres-
sive course of COPD is frequently aggravated by exacerbations (Decramer et al.,
2012). Thus many phase 3 studies exploit COPD exacerbations as the primary
endpoint (Cazzola et al., 2008). There are different definitions of exacerbations
mostly categorized by severity and the use of health care resources. Although all
definitions harbour some subjective aspect, reproducibility and validity within
one study is generally high. Problems arise, if different studies are accumulated
and compared to each other as done in pooled- or meta-analyses (Suissa, 2006),
which are usually addressed by the inclusion of variance components reflecting
the heterogeneity in the statistical model.

We are currently working on a meta-analysis comparing different treatments
in COPD (Réver et al., in preparation). In order to find relevant studies, we
performed a literature search using PubMed; in addition we considered studies
that were cited in the meta-analyses by Puhan et al. (2009); Mills et al. (2011);
Fleer et al. (2012); Karner et al. (2012); Dong et al. (2013). In the present
analysis, we will focus on the subset of studies comparing long-acting muscarinic
antagonist (LAMA) with placebo treatment.

3 Statistical model

3.1 Notation and basic properties

A Poisson model naturally arises as a model for event counts that are associ-
ated with a certain rate (Spiegelhalter et al., 2004, Ch. 2.6). The Poisson model
is specified through a single parameter, the rate A\ > 0, which is usually to
be interpreted per unit time, i.e., as a yearly rate, for example. The number
of events occuring over a duration ¢ then follows a Poisson distribution with
mean JJA; the expected number as well as its variance are equal to d\. The
negative binomial distribution in addition possesses an overdispersion parame-
ter ¢ > 0. For ¢ = 0, the model again simplifies to the Poissonian. With ¢ > 0
the distribution’s expectation remains the same, but the variance increases to
IA(1 + @dA) (Lawless, 1987; Hilbe, 2011). The negative binomial model arises
as a Poisson mixture distribution, where, instead of being constant, the rate is
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Figure 1: An example of actual exacerbation counts observed in placebo-treated
patients over a duration of 48 weeks taken from Sethi et al. (2010). A negative
binomial model fits the data better than a Poisson model as it allows for a greater
fraction of extreme (i.e., zero or large) counts, and accordingly also fits better
in the moderate range. 95% confidence intervals for the Poisson and negative
binomial rates are [0.79, 0.99] and [0.80,1.07], respectively. The overdispersion’s
95% confidence interval is [0.30, 1.04].

a Gamma distributed random variable with expectation A and variance A2,
so that the rate’s coefficient of variation is /p; this way the negative binomial
model is able to account for extra-Poissonian heterogeneity in the data.

3.2 Illustrating example

Figure 1 provides an illustration of the difference between Poisson and negative
binomial models in comparison with actual count data. The bars represent the
observed frequencies of exacerbation counts in an actual study (Sethi et al.,
2010). The red and blue lines show the best-fitting Poisson and negative bino-
mial models (fitted via maximum likelihood) for the given data. One can see
that while the two rate parameters barely differ, the additional consideration of
a non-zero overdispersion provides a much better fit to the data, as it allows to
account for the increased number of “extreme” outcomes (zero or large exacer-
bation counts) that would be unlikely to occur under a plain Poissonian model.
In the negative binomial model, the standard error associated with the rate es-
timate is larger than in the Poisson model by a factor of a third (0.068 instead
of 0.051). Looking at the data, one can already see that the two commonly
quoted summary statistics of (mean) rate and the number of exacerbation-free
patients carry somewhat complementary pieces of information which in combi-
nation allow to infer both A and ¢.



3.3 Parameter estimation and sufficient statistics

When we assume a Poisson model for the observed event counts z; in a group of
n patients that were all observed over durations §;, then all that is required in
order to infer the unkown rate X is the total count t = 21 +. ..+, (and the total
observation time 6; = d1+...4+3,,), as the total constitutes the sufficient statistic
in this case. These numbers are rarely explicitly quoted, but being provided with
a rate estimate A\ = t/5, (which is both the maximum-likelihood and moment
estimator) and assuming a constant observation duration (6; = ... = d, = 9),
one can again directly infer the total t. In the case of a negative binomial
distribution on the other hand, there is no simple form for a sufficient statistic;
ideally one would need the complete data (all individual counts z;) in order to
derive for example maximum-likelihood estimates (Lawless, 1987). Only for the
case of constant durations §; = §, the maximum-likelihood estimator for the
rate is the same as in the Poisson case, and there is also a moment estimator
for the overdispersion available, although its properties are questionable, as it
may also turn out negative.

Another common alternative approach to modeling count data of the present
kind is to consider odds ratios, i.e., to compare chances of an exacerbation (at
least one event vs. no event) between treatment groups; this approach is used
e.g. by Puhan et al. (2009); Fleer et al. (2012); Karner et al. (2012). However,
if we assume an underlying Poisson or negative binomial process, the odds ratio
only equals the rate ratio in the limit of small rates or small exposure durations.
Otherwise odds ratios and rate ratios will in general differ, depending on the
exposure duration and the amount of overdispersion present, and hence are not
directly comparable (see Appendix A.1 for an explicit derivation).

3.4 Available data

In the studies that we will investigate in the following, the most commonly
used figures for quantifying disease severity are the number of exacerbation-
free patients, rate estimates, partly in conjunction with confidence intervals or
standard errors, or the median time until the first exacerbation. Standard errors
and confidence intervals can easily be converted into one another (Higgins and
Green, 2011), and numbers of exacerbation-free patients are commonly derived
from the total number of patients and the provided percentage. For a given
rate estimate \, we assume that it results as the total count ¢ divided by the
cumulative observation time nd in order to infer the total number as t = And.

3.5 Marginal and joint modeling of total counts and zero-
counts

Suppose that a total of n patients are observed in a trial of duration §. Each
patient’s event count follows a negative binomial distribution with rate é\ and
overdispersion . Let T be the total number of events observed; by the central
limit theorem its marginal distribution is approximately normal with moments

E[T] = néX and Var(T) = ndéX(1+ @oA). (1)

The marginal distribution of the number of “zero-counts”, the number of
event-free patients, Z, is Binomial with size n and probability my given by the



probability of a zero outcome for the negative binomial model,

_ (1+<,05)\)_% for ¢ >0 9
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T and Z are not stochastically independent, rather they are negatively corre-
lated; i.e., when there is a large number of zeroes in the data, we expect a small
total count. An approximate joint probability distribution of T" and Z can be
derived by extending the ideas above. We can split the joint probability density
into the factors p(t,z) = p(z) x p(t|z). The conditional density p(¢|z) describes
the probability distribution of the total count T for which we know the num-
ber Z =z of zeroes in the total sum of negative binomial samples. The total T'
thus is constituted of n—z summands that are drawn from a “truncated” nega-
tive binomial distribution excluding the zero outcome. We can again determine
the first two moments of the truncated distribution and use the normal approx-
imation as above; see Appendix A.2 for the explicit derivation. The marginal
and joint distributions of T and Z then define the likelihood function for the
data that is used in the following.

3.6 The hierarchical model

In the following we set up a hierarchical model with study-level rate and overdis-
persion parameters, allowing for heterogeneity between studies in both param-
eters. Depending on the particular type of data provided, different studies then
contribute different pieces of information on both parameters.

We have data on k studies investigating both treatment and placebo. Each
study 7 has an associated study duration ¢; and is comprised of ¢; study arms.
The ith study’s jth arm corresponds to a treatment category indexed by my;
(myj € {0,1}, where m;; = 0 indicates a placebo group), and has a number n;;
of patients associated. Some study arms provide a rate estimate j\ij together
with an associated standard error, some provide only their total exacerbation
count Tj;, (corresponding to j\ijnijéi for some rate estimate S\ij), some provide
the number Z;; of zero-counts (exacerbation-free patients), and some provide
both T;; and Z;;. Studies directly providing rate estimates and standard er-
rors are considered via the common normal approximation to the likelihood
(Spiegelhalter et al., 2004). Studies quoting one or both of 7" and Z are consid-
ered in the analysis via the likelihood function described in Section 3.5. While
one might use the information on rates and standard errors within a negative
binomial model (which might in fact be considered an overall more consistent
approach), here we used the normal approximation in order to demonstrate the
gain compared to the most basic “classical” approach.

The hierarchical model is parameterized as follows. The rate for the jth arm
of the ith study is simply given by A; if it is a placebo group (i.e., if m;; = 0), or
otherwise by A; x ¥ x ;5. The parameter of primary interest is ¢, the treatment
effect, and ;; is a random effect accounting for particularities in treatment,
dosing, etc. differing between studies or study arms. The overdispersion in the
ith study is given by ;.

The prior for each trial’s “placebo” rate \; is normal on the log-scale (i.e.,
log-normal):

log(A;) ~ Normal(sx,03). (3)



The corresponding hyperparameters (uy, o3) are assigned vague uniform prior
distributions on the log scale:

[y ~ Unif(log(lO_Q), 10g(102)), log(oy) ~ Unif(log(lo_g), log(lo)). (4)

Similarly, each trial’s overdispersion ¢; also has a normal prior on the log-scale,
ie.,
log(pi) ~ Normal(uw, O‘?D), (5)

again with similar priors for the hyperparameters (i, 02,):
fty ~ Unif (log(107%), log(10%)), log(c,) ~ Unif (log(10~2), log(10)). (6)

For the treatment effect we use a normal prior that is centered around a neutral
effect (i.e., ¥ = 1) and loosely confined to within the range [1/10,10] with ~ 90%
probability, i.e.

log(9) ~ Normal(0, log(4)?). (7)

For each arm’s random effect we again use a vague and also heavy-tailed Student-t-
prior with 3 degrees of freedom centered around ¢;; = 1, i.e., no effect:

log(vi;) ~ t3(0, 0}). (8)

The heavy-tailed prior here is meant to allow for individual odd studies and to
bound their influence on the overall result. The scale parameter o, again is an
unknown with a uniform prior on the log scale:

log(oy) ~ Unif (log(107?), log(10)). 9)

The parameters accounting for heterogeneity (o, o, and o) here are mod-
elled on their logarithmic scales. In a related setting, similar priors (uniform for
the logarithmic heterogeneity) have been investigated among a range of other
uninformative or weakly informative choices, which were all found to yield com-
parable inferences as long as the number of considered studies was not too low
(Lambert et al., 2005). The priors used here are truncated versions of the (oth-
erwise improper) Jeffreys priors for location and scale parameters (Jaynes, 1968;
Jeffreys, 1946). The study-specific rate and overdispersion parameters (\; and
¢;) and the arm-specific random effect (¢;;) are for now treated as a priori
independent.

4 Application to COPD example

4.1 Investigated studies

Our literature search resulted in 24 placebo-controlled studies investigating
LAMA treatment and providing information on exacerbations. The resulting
numbers of studies providing total exacerbation counts and/or the number of
zero-counts (exacerbation-free patients) are shown in Table 1. Based on the dif-
ferent types of information provided, we defined 3 subsets of the data, namely:
(A) the studies providing rate estimates and standard errors, (B) the above
studies, plus the ones giving both total counts and zero-counts, and (C) the
above studies, plus the ones giving either total counts or zero-counts. The
(overlapping) data subsets (A), (B) and (C) consist of 4, 12, and 24 studies,
respectively. All data are shown in Table 2.



Table 1: Four of the studies found provide rate estimates along with standard
errors. The below table shows the numbers of studies without standard errors,
but providing a total count (or rate) or the number of zero-counts. Another
8 studies provide both, and also considering studies only giving one of the two,
we can include another 12 additional studies in the analysis.

total count provided?

No Yes
zero count  No 0 3
provided? Yes 9 8

4.2 Implementation

We utilized the JAGS software (Plummer, 2003) in conjunction with the “rjags”
package (Plummer, 2013) in order to carry out stochastic (Monte Carlo) inte-
gration of the unknown parameters’ posterior distribution (Gelman et al., 1997).
In order to ensure convergence of the algorithm, we ran four MCMC chains in
parallel, starting from different overdispersed initial values. Chains were run
for 107 iterations, where the first 10% of samples were discarded as burn-in.
Correlation between subsequent samples was reduced by using only every 100th
sample. Convergence of parallel chains to the same mode was checked using
the (multivariate) potential scale reduction factor (Brooks and Gelman, 1998),
which was well below 0.1% in all cases. In the following, we show estimates,
marginal posterior probability density functions etc. based on these Monte Carlo
samples. The densities shown in figures 2 and 3 are based on kernel density es-
timates derived from the samples.

4.3 Results

We applied the above model to the complete data, and its subsets as described in
Section 4.1. Figure 2 shows the marginal posterior distribution of the parameter
of primary interest, the treatment effect ¥ for all three scenarios. One can see
that the posterior distributions based on different data subsets are consistent
with each other, and that with the inclusion of additional studies the evidence
in favour of a substantial treatment effect is increased.

While only approximately comparable (see Section 3.1), the effect on the
annualized exacerbation rate is of the same order of magnitude as the odds
ratio estimates found in related meta-analyses (Puhan et al. (2009): 0.71, Fleer
et al. (2012): 0.76, Karner et al. (2012): 0.78). Performing a simple random-
effects meta-analysis (Viechtbauer, 2010) on the (logarithmic) rate ratios of
subset (A) yields a combined estimate for the treatment effect of 0.69 and a
95% confidence interval of [0.52, 0.93], which is in line with the results from the
Bayesian analysis yielding a median of 0.82 and credibility interval [0.56, 0.92].
Interestingly, the estimates differ by half a standard error, while the confidence
/ credibility limits still coincide. With the consideration of 8 additional studies
reporting both a rate estimate and the proportion of event-free patients, the
estimate changes to 0.73 [0.63, 0.83], and the inclusion of 12 studies providing
one of the two figures narrows the estimate further down to 0.73 [0.65, 0.80].

The posterior distribution of the heterogeneity parameter o, (right panel of
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Figure 2: Marginal posterior probability density functions (kernel density esti-
mates) based on different amounts of data. The prior density is also shown in
comparison.

Figure 2) shows that the observed data allow to constrain the heterogeneity’s
magnitude to an order of ~ 0.1 or below. While using only data subset (A)
we do not gain much information beyond that on this parameter, the inclusion
of additional data allows to constrain the heterogeneity to be of a magnitude
larger than, say ~ 0.01.

Figure 3 illustrates the information we gain about the rates and the amounts
of overdispersion encountered in the analyzed studies. Again, considering dif-
ferent subsets of the studies, we gain more certainty about the four hyper-
parameters (p,o0x) and (e, 0,) describing mean and variability in rate and
overdispersion among different studies with the inclusion of additional studies.
While the resulting posterior distributions differ, they are consistent and ex-
hibit significant overlap. Most notably, in scenario A where we only consider
studies that provide rate estimates along with standard errors, we do not gain
any information on the overdispersion ¢, so that here the posterior equals the
prior. The right panel shows the posterior predictive distribution of rate and
overdispersion (A\*, p*) of a “new” study, illustrating what we have learned from
the present set of studies about probable characteristics of an additional study
from the same population; this would be of interest e.g. when planning a future
study.

We also investigated whether we could find any particular reason for the
differences in effect estimates based on different data subsets. While the results
do not look inconsistent, it is interesting that the analyses based on subsets (B)
and (C) tend to indicate a stronger treatment effect. One notable feature of
studies in subset (A) is that these tend to be fairly long studies in comparison.

5 Discussion

In the context of meta-analysis, one is commonly faced with the problem of co-
herently reconciling data from different sources within a single model in order to
infer quantities of interest. Here we were able to utilize data in the form of rate



rate mean j, overdispersion mean j,
100
.

100 1000

T
10

log(*)
overdispersion ¢*

rate std.dev. o,

overdispersion std.dev. o,

0.1

© posterior (A)
£ posterior (B)
7 posterior (C)

og(x)

Figure 3: The left two panels show credibility areas for the four “population”
rate and overdispersion hyperparameters (px, o) and (u,0,). Solid lines en-
close 95%, and dashed lines 90% probability; the crosses indicate median values.
The right panel illustrates the resulting posterior predictive distribution for the
parameters in a “new” study (A*, ¢*).

estimates and odds ratios, and, everything being based on an underlying neg-
ative binomial model, differing follow-up times are not an issue, overdispersion
is addressed, and inference may be concentrated directly on the parameter of
primary interest, the treatment effect on the event rate. The use of a Bayesian
framework easily allowed for a flexible specification of correlation structures, in-
cluding random effects at different levels. The joint likelihood formulation here
allowed for the coherent incorporation of information in terms of quoted event
rates or proportions of event-free patients. This rendered those studies provid-
ing both figures most valuable, but also enabled the inclusion of a considerable
number of studies providing only one of the two. The utilization of additional
data sources improved parameter estimates and reinforced the results’ validity.

The approach may in future be extended further by providing an interface
for data in terms of estimated survival times (e.g., median time to first event),
which would here need to be implemented via the corresponding distribution
of survival times (Exponential distribution in case of a Poisson, and a Lomax
distribution in case of a negative binomial model (Siri et al., 2012)). While by
now we incorporated studies providing rates and standard error via a conven-
tional normal approximation to the likelihood, this could as well be implemented
via another (approximate) negative binomial likelihood, e.g., by assuming that
standard errors are based on the emprical standard deviation, in which case
this figure again carries information on the amount of overdispersion. For the
moment we assumed independence between rate and overdispersion parameters,
but introducing correlation between the two may also constitute a plausible and
useful extension, adding robustness to the approach. Bivariate meta-analyses
of the rate and overdispersion estimates for placebo control groups and active
treatments, however, do not indicate the presence of correlation between the
two parameters in our example data. Similarly, one may also question the as-
sumption of equal overdispersion across arms within a single study. For our
example, we checked the assumption by performing a meta-analysis based on
placebo- and treatment-arm overdispersions, which does not provide evidence
against the assumption of a common overdispersion parameter across groups.
However, the chances of resolving such issues based on the given data may be
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small, such investigations may be more realistically addressed based on individ-
ual patient data. Another further extension of the presented method would be
to utilize information on potential missingness of data that may be deducible
from the given set of studies (e.g. Duval and Tweedie, 2000; Copas, 2013; Copas
et al., 2014). Up to now the type of measure reported (rate and/or zero counts)
is assumed to be independent of the particular trial’s outcome. We have already
seen that the way of reporting may be connected with other features like study
duration (see Sec. 4.3). It would be interesting to consider additional informa-
tion (e.g. from study protocols) in order to test for potential correlations and
biases here. The general problem remains to meet the two-fold challenge of first
finding all relevant data and then also utilizing it in a coherent mannner. Mod-
eling would of course be much simplified if data were available not in the form
of study-level summary statistics, but in terms of detailed individual-patient
data. While the fully Bayesian approach using MCMC methods yields accurate
results, it is computationally rather costly, so it may be worth investigating
alternative approaches (like empirical Bayes quasi-likelihood methods) in com-
parison. It would have been of interest to validate the approach with external
individual patient data, however, we did not have access to this kind of data
and cannot pursue this line of investigation. As suggested by a referee, a leave-
one-out cross validation would be an excellent alternative validation, however,
due to the associated computational costs, this is currently not feasible; we will
further pursue this matter, possibly also by implementing checks via predic-
tive distributions, along with the investigation of computational speed-ups. It
should also be relatively easy to carry over the approximations used here to
related models, for example to other generalizations of the Poisson distribution
like the zero-inflated Poisson distribution.
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Appendix

A.1 Rate ratios and odds ratios

Consider the odds for the occurrence of at least one event in the Poisson model.
We have: P(X =0) = exp(—d\) and P(X >1) = 1 — exp(—dA). Assuming a
multiplicative treatment effect ¥ < 1 on the rate, the odds ratio is

1 — exp(—d9\) " exp(—dN) ~exp(dUN) —1
exp(—0uY\) I —exp(—d))  exp(6\) —1

(10)

which is &~ ¢ for small )\, and smaller otherwise, i.e., the effect on odds ratio
is larger than the effect on rate, and the effect will appear more pronounced for
longer studies.
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In the negative binomial model, we have: P(X =0) = (1 + @6)\)7% and

PX>1)=1-(1+ <p5)\)7%. Again assuming a treatment effect ¢ < 1, the
odds ratio is

17(1+<p519)\)_%x 1+edN)"F  (1+@sN)7 —1 1)
(1+@09N)"F  1—(1+@\) "% (1+pdN)F —1

which is ~ 1 for small §\, < 9 for p < 1, =9 for ¢ = 1 and > 9 for ¢ > 1, i.e.,
the effect on the odds ratio again is approximately the same as the effect on 6
for small event rate \ or exposure duration ¢, and whether the effect in terms
of odds ratio is smaller or greater than in terms of ¢ otherwise depends on the
amount of overdispersion .

A.2 Marginal and joint distributions of total and zero counts

Suppose we have negative binomial random variables X, ..., X,, with rate A,
overdispersion ¢ and a common corresponding exposure duration 6. The (ap-
proximate) marginal distributions of the total count 7' and the number of
zero-counts Z are described in Section 3.5. The joint distribution of 7" and
Z may be derived by noting that the density function may be factorised as
p(t,z) = p(2) x p(t|z). The conditional distribution of T'|Z is essentially that
of a sum of n—z draws from a “truncated” negative binomial distribution only
taking positive values, i.e., the conditional distribution of a negative binomial
draw X given that X #0. Instead of the moments given in (1), the “truncated”
distribution instead has the expectation

BIX|X>0] = =iy D7 x P(X=)) = g (12)
j=1

which for the general negative binomial case yields:

A for ¢ >0
— 1_(1 véx)l/w
E[X|X >0] { 1_8)3:?_5» for ¢ — 0. (13)

The variance is
Var(X|X >0) = 3 (- E[X|X>0])2 x P(X =j|X >0)

= (BX]-EX|X>0)+ > (i - E[X])?P(X =j|X >0)

= (BIX] ~ BXIX>0)" + t—prp—gr S0~ BX) Per=))

— (B[X]-E[X|X>0])’

T prr=gy (0, U ~ BXDPO=i) ~ Bx* P =)}
_ Var(X) - E[X]?P(X=0) 2
— P(X=0) + (E[X] — E[X|X >0])



_ Var(X) - E[X]?P(X =0) )
B P(X>0) + BX] (

which for the negative binomial case (¢ > 0) yields

SA 2(1 + o)) "% — (1 14+ 06N "%
Var(X|X >0) = (o220 (A H )+ QN g
1= (1+@dA)"% (1—(1+pdN)"%)
(14)
and for the Poisson case (¢ = 0)
oN)? SA — (002
Var(X|X >0) = 0\ + (OA) (6M) (15)

(exp(0A) — 1)2 exp(dA) — 1

Again assuming a normal approximation we then get an (approximate) joint
density of T and Z

p(t,2) = p(z) xp(t|2)
n 1 2
_ z (1 _ n—z 1 (=(n=)0)
(z) ™ (1= o) . 21(n—2z)o? exp( 2 (n=)o® )
where
I (1+<p5)\)7é for ¢ >0
0 exp(—dN) for p =0
oA
9 = 177‘{‘0
) 9+(6)\)2W for ¢ >0
T ) o 2 A o=,
0

0
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Table 2: The example data underlying the analyses. Each study comprises a
placebo arm (P) and one or two LAMA treatment arms (L). Some studies
report exacerbation rates along with standard errors (group A). Other studies
in addition report both the number of exacerbation-free patients (zero-counts)
and the total exacerbation count (group B), and yet a larger set reports at least
one of the two (group C). When rates are quoted, the total may be derived from
the study duration and number of included patients.

first author (year) group arm patients duration (yr) rate std. err. total zeroes

Ambrosino (2008) B, C P 106 0.4808 26 85
L 103 0.4808 19 89
Bateman (2010a) B, C P 653 1.0000 1.91 1247 365
L 670 1.0000 0.93 623 421
L 667 1.0000 1.02 680 421
Bateman (2010b) A, B,C P 1953 0.9231 0.87 0.051 1568 1112
L 1939 0.9231 0.69 0.0561 1235 1256
Beeh (2006) C P 403 0.2308 323
L 1236 0.2308 1056
Brusasco (2003) C P 400 0.5000 1.49 298
L 402 0.5000 1.07 215
Casaburi (2002) B, C P 371 1.0000 0.95 352 215
L 550 1.0000 0.76 418 352
Chan (2007) B, C P 305 0.9230 0.92 259 180
L 608 0.9230 0.88 494 340
Cooper (2010) C P 225 1.8460 0.54 194
L 239 1.8460 0.51 208
Donaldson (2012) A, B, C P 52 1.0000 2.129 0.3206 111
L 48 1.0000 0.9855 0.2283 47
Donohue (2002) C P 201 0.5000 109
L 209 0.5000 132
Donohue (2010) C P 418 0.5000 0.72 150
L 415 0.5000 0.53 110
D’Urzo (2011) C P 260 0.5000 197
L 532 0.5000 439
Dusser (2006) B, C P 510 1.0000 1.69 862 238
L 500 1.0000 1.1 550 238
Freeman (2007) B, C P 162 0.2308 44 160
L 182 0.2308 23 181
Johansson (2008) C P 117 0.2308 113
L 107 0.2308 105
Moita (2008) C P 160 0.2500 156
L 144 0.2500 140
Niewoehner (2005) B, C P 915 0.5000 1.05 480 620
L 914 0.5000 0.85 388 659
Powrie (2007) A, B, CP 73 1.0000 2.46  0.4471 134 26
L 69 1.0000 1.17  0.2709 60 39
Rio (2007) C P 125 0.2308 116
L 123 0.2308 113
Tashkin (2008) A, B,CP 3006 4.0000 0.85 0.02 10220 955
L 2986 4.0000 0.73 0.02 8719 986
Tonnel (2008) B, C P 288 0.7500 1.83 395 158
L 266 0.7500 1.05 209 165
Troosters (2011) C P 219 0.2308 194
L 238 0.2308 228
Verkindre (2006) C P 46 0.2308 43
L 45 0.2308 45
Voshaar (2008) C P 181 0.2308 160
L 180 0.2308 155
L 180 0.2308 164
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