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1 Introduction

The Student-¢ noise model was introduced in [1] as a robust alternative to
the commonly used stationary, Gaussian noise model that constitutes the
basis for many signal processing procedures. This model may also be used
to generalize the matched filter in order to make it less outlier-sensitive [2].
The generalized Student-t model includes an additional set of degrees-of-
freedom parameters v; along with the power spectral density S(f;). These
d.o.f. parameters effectively specify the degree of heavy-tailedness of the
noise that is accounted for or expected through the model. While there are
many off-the-shelf procedures available for estimating the PSD S(f;), it is
not so obvious how one would go about estimating the d.o.f. parameters. In
the following, we will decribe a first attempt at eliciting these parameters
from empirical measurements using some LIGO data. We will be using the
notation explicated in [1, 2].

2 The empirical noise power distribution

2.1 The “Student-Rayleigh” distribution

In order to infer the heavy-tailedness behaviour of the (non-Gaussian) noise,
it makes sense to reduce the data and only cosider the empirical noise power
at the jth Fourier bin:
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[2, Sec. IV.C]. If the Gaussian noise model was appropriate, then the noise
power would be a random variable following a Rayleigh distribution (the
squared expression would be y?-distributed with 2 degrees-of-freedom, or
exponentially distributed with rate A = %) Assuming instead the Student-t
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Figure 1: Probability density functions of “Student-Rayleigh” distributions
for varying degrees of freedom v and fixed scale 02 = 1. For v = oo, the
distribution corresponds to the usual (“Gaussian”) Rayleigh distribution.

noise model, the same expression follows a more heavy-tailed probability dis-
tribution, whose functional form may be related to Snedecor’s F-distribution,
and which is explicitly given in [2, Appendix A.4]. We will refer to this dis-
tribution as the “Student-Rayleigh” distribution in the following.

Figure 1 illustrates the Rayleigh and Student-Rayleigh distributions in
comparison. One can see how decreasing degrees-of-freedom values v imply
greater probabilities for extreme values, and how for v — oo the distribu-
tion converges to the (usual, “Gaussian”) Rayleigh distribution. Figure 2
shows how the Student-Rayleigh distribution’s upper quantiles grow with
decreasing degrees-of-freedom . While the median barely changes, the up-
per quantiles grow quite large for small values of v.

2.2 Estimating the noise PSD

In most practical data analysis problems, the noise PSD S(f) is a priori un-
known and needs to be estimated from the data. A popular PSD estimation
procedure is Welch’s method [3, 4], which simply uses several noise samples
to compute the empirical noise power and estimates the PSD via their aver-
age. A variety of this procedure commonly employed in LIGO data analysis
uses the median instead of the mean in order to gain robustness against
outliers.

An important point to note is that the estimation procedure introduces
additional variation, or uncertainty, into the noise model. Even if the noise is
perfectly Gaussian, with an uncertain, estimated PSD S(f), the distribution
of the normalized noise power (1) changes from a Rayleigh distribution to a
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Figure 2: Selected quantiles of the Student-Rayleigh distribution as func-
tions of the degrees-of-freedom parameter v. The case labeled as v = oo
indicates the limiting Rayleigh distribution.

heavier-tailed one.

If the noise PSD was estimated using Welch’s method, using an average
over k non-overlapping, independent noise samples, then the PSD estimator
would follow a (scaled) x3,-distribution, which in turn would make the nor-
malized noise residuals exactly Student-t distributed [5], and which would
make the noise power (1) Student-Rayleigh distributed with v = 2k degrees
of freedom. In case the median method is used, this distributional form
only holds approximately; the appropriate number of degrees-of-freedom is
generally lower and should probably be =~ % x 2k instead.

2.3 Exploring the empirical noise residuals

Once we have sampled data, we can explore its empirical behaviour and
contrast it with theoretical expectations based on the Gaussian or Student-t
models. Since we are particularly interested in outliers and the distribution’s
tail behaviour, a quantile-quantile plot (Q-Q-plot) may be an appropriate
exploration tool [see 2, Sec. IV.C]. Since an earlier investigation of the noise’s
(non-) Gaussian behaviour already suggested that the noise distribution
changes with the corresponding frequency [6], we will in particular try to
investigate the frequency dependence as well.

Figure 3 illustrates quantiles of the empirical normalized noise power (1),
binned into 10-Hz-wide frequency bins. Normalisation of the noise power
(1) is done in analogy to actual data analysis procedures, according to a
PSD estimate based on a median from k£ = 32 preceding noise samples.
(Note that this is different from the figures shown in [6], where the PSD was
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Figure 3: Empirical quantiles of the empirical, binned noise power. This
figure is based on 200 noise samples, each 8 seconds long and sampled at
sampling rate A% = 1024 Hz. The noise PSD estimate used for normalisation
was based on k = 32 equally-sized preceding noise segments. Quantiles
are computed based on the distribution of the normalized noise power (1),
binned across 10Hz wide frequency ranges (so each of the 51 frequency
bins here contained 16000 noise samples). The dashed lines indicate the
“theoretical” quantiles as implied by a Gaussian model, according to the
Rayleigh distribution.

estimated via an overall median.) The dashed lines indicate the correspond-
ing expected quantiles under the assumption of the Gaussian noise model
(i.e., quantiles of the Rayleigh distribution). Note that while the median is
matched well, i.e., the PSD estimation procedure actually does a good job at
pinpointing the median power, the higher quantiles increasingly exceed the
assumed values, and there also is a clear frequency dependence apparent.
It is important to note that the exact Fourier-domain noise distribution
depends on the details of the (discrete) Fourier transform performed in the
given analysis. This includes windowing of the data [7, 4], the sample size
and sampling rate. Changing any of these will also affect the properties of
the Fourier-domain noise n;. When trying to match the noise model to the
data, it is hence crucial to use samples that were of the same nature and
subject to the same preconditioning as the data in the “actual” analysis.

2.4 Matching the degrees-of-freedom parameter(s)

The question now is how the Student-t model may be used to “fix” the
discrepancies apparent in Fig. 3 and make the data analysis model reflect the
observed noise properties. For now we will treat the problems of spectrum
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Figure 4: Empirical noise quantiles and estimated degrees-of-freedom pa-
rameters v; for some S5 data.

estimation and d.o.f. estimation separately. The noise spectrum, i.e., the
Student-t-distribution’s scale parameter, will be estimated “as usual” via
a running median, and independent of the choice of v;. In order to fit
the degrees-of-freedom parameter v; to the data, we will then (attempt to)
match a particular Student-Rayleigh quantile to the empirically observed
noise quantile. The idea is to take the empirical quantiles as in Fig. 3
and then invert the relationship shown in Fig. 2 to find the parameter v
for which the assumed distribution matches the empirically found one in
the particular quantile. The mapping from quantiles to degrees of freedom
may easily be derived numerically via a root-finding algorithm. Another
sensible restriction to observe is that the fitted value v in any case should
probably not be greater than 2k, which would be the appropriate number in
the “optimal” case of Gaussian noise and a noise PSD derived via a mean
estimator.

Figures 4-6 show more empirical quantiles for several pieces of instru-
mental data as well as simulated Gaussian noise. The corresponding esti-
mated d.o.f. values v, corresponding to the different quantiles, are shown in
parallel. The d.o.f. estimates here were restricted to v; < 2k = 64 (see the
dashed line). For simulated Gaussian noise, the estimated values are indeed
scattered around the anticipated value of v; = %k ~ 41. The estimates
based on different quantiles appear to roughly agree; one exception here is
the right panel in Fig. 6, which (as a closer inspection reveals) appears to be
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Figure 5: Empirical noise quantiles and estimated degrees-of-freedom pa-
rameters v; for some S6 data.
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Figure 6: Empirical noise quantiles and estimated degrees-of-freedom pa-
rameters v; for simulated Gaussian data.



dominated by a transient noise event in this particular piece of data. The
frequency-dependence of the noise distribution is also obvious.

3 Conclusions / to do

Estimation of the degrees-of-freedom parameters v; via empirical quantiles
seems to work and and to give roughly consistent results even when us-
inh different quantiles. This also suggests that the Student-t distribution
appears to match the actual noise properties to some degree.

For a practical application, there is a number of details yet to be deter-
mined. For example how (or whether) the binning should exactly be done,
or what quantile the estimation should actually be based on. While a lower
quantile will show less estimation variance, a higher quantile may be more
suitable to reflect rare events. Another question is what time interval the
estimates should be based on — one could modify the PSD estimation pro-
cedure to also return v; estimates, but on the other hand, these may be
supposed to also reflect particularly rare events, and so one might want to
base them on way longer time ranges. Eventually, the exploration of other
ways of degrees-of-freedom estimation may also be worthwhile.
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