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Abstract

In Bayesian random-effects meta-analysis, the use of weakly informative prior

distributions is of particular benefit in cases where only a few studies are

included, a situation often encountered in health technology assessment

(HTA). Suggestions for empirical prior distributions are available in the litera-

ture but it is unknown whether these are adequate in the context of HTA.

Therefore, a database of all relevant meta-analyses conducted by the Institute

for Quality and Efficiency in Health Care (IQWiG, Germany) was constructed

to derive empirical prior distributions for the heterogeneity parameter suitable

for HTA. Previously, an extension to the normal-normal hierarchical model

had been suggested for this purpose. For different effect measures, this

extended model was applied on the database to conservatively derive a prior

distribution for the heterogeneity parameter. Comparison of a Bayesian

approach using the derived priors with IQWiG's current standard approach for

evidence synthesis shows favorable properties. Therefore, these prior distribu-

tions are recommended for future meta-analyses in HTA settings and could be

embedded into the IQWiG evidence synthesis approach in the case of very few

studies.
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Highlights

What is already known
• Random‐effects meta‐analysis with very few studies is frequently unreliable

because of uncertainties in the estimation of the between‐study heterogeneity.
• Bayesian methods can be used in such situations but require specification of

appropriate prior distributions.
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• Whereas uninformative priors are commonly used for the effects, there is
some debate regarding appropriate choices of the prior for the heterogeneity
parameter.

What is new
• Data extracted from reports of IQWiG, a German HTA agency, are used to

derive informative prior distributions suitable for applications in HTA. Dif-
ferences to the current procedure used by IQWiG are investigated.

Potential impact for research synthesis methods readers
• A possible evidence synthesis process is described that combines the pro-

posed Bayesian approach in the current IQWiG procedure.

1 | INTRODUCTION

Health technology assessment (HTA) reports often
include results from multiple studies, necessitating a sys-
tematic overview. If possible, a meta-analysis is per-
formed to combine the individual study results into an
interpretable treatment effect estimate. In most cases, a
random-effects model is preferred due to heterogeneity
between the studies that is generally to be expected.
When there are only very few studies available (less than
five), the application of a random-effects model can be
difficult because the heterogeneity between studies can-
not be reliably estimated. In such situations, the current
approach used by the Institute for Quality and Efficiency
in Health Care (IQWiG) is rather complex and involves
the calculation and comparison of multiple meta-analytic
models (see also Section 4.1).1

Even though IQWiG's General Methods1 state that
Bayesian approaches may “also be an option,” they are not
regularly used for meta-analyses. More widespread applica-
tion of Bayesian methods might simplify analyses compared
to the current, rather intricate procedure. While the choice
of a uniform (uninformative) prior distribution for the treat-
ment effect parameter is usually uncontroversial, the speci-
fication of an appropriate prior for the between-study
heterogeneity is often more complex.2 In case of many stud-
ies, a uniform prior may be appropriate as well, but for the
common case of very few studies, using a proper weakly
informative prior is often advantageous or even necessary.2,3

Informative prior distributions for the between-study het-
erogeneity may be based on empirical information from
previous research, and various approaches for summarizing
empirical information for the heterogeneity parameter are
available.4–6 Röver et al.6 proposed an extended normal-
normal hierarchical model for Bayesian random-effects
meta-analysis and primarily discussed methodological
aspects in detail. In the present investigation, we apply this
method to data from IQWiG reports to derive prior distribu-
tions for the heterogeneity parameter. We also recommend

useful priors for IQWiG reports and compare the results of
Bayesian analysis using these priors with IQWiG's current
evidence synthesis procedure.

It has been most relevant for us that the prior distri-
butions are tailored to and applicable to IQWiG's HTA
purposes. Furthermore, we would like to take particular
care to derive conservative specifications. Considering
that underestimation of heterogeneity is potentially more
harmful, while overestimation may be seen as a conserva-
tive form of bias, we would rather prefer prior specifica-
tions favoring slightly larger heterogeneity values.

For this purpose, we set up a database of relevant
meta-analyses conducted in IQWiG projects. Its composi-
tion and a descriptive summary are given in Section 2.
Section 3 briefly introduces the extended normal–normal
hierarchical Bayesian model proposed by Röver et al.6

used to derive informative priors. This model is then
applied to the IQWiG data set, the results are presented,
and recommendations are made. In Section 4, we elabo-
rate on IQWiG's current approach for evidence synthesis
with only a few studies and compare it to the results of
Bayesian meta-analyses using the recommended prior dis-
tributions. The manuscript concludes with a discussion of
the most important findings and results (Section 5).

2 | DATABASE OF META-
ANALYSES

2.1 | Set up of database

All reports published by IQWiG until December 31, 2021,
were screened for meta-analyses, both benefit and dossier
assessments. Data from forest plots presented in the reports
were extracted and entered into a spreadsheet. Meta-
analyses done by IQWiG itself as well as by third parties
were included. We omitted meta-analyses that were only
referred to in the text (without a figure). It was irrelevant
whether the analysis itself was of direct interest or whether
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it was performed only to test the suitability of individual
pairwise comparisons (for example, to check a homogeneity
assumption in the context of network meta-analyses). For-
est plots of sensitivity and specificity were not considered,
neither were sensitivity analyses or subgroup analyses.

Forest plots for binary outcomes presenting no events
in either arm for all but one study were excluded, as the
pooled odds ratio (OR) or relative risk (RR) reduces to the
effect of the single study in that case. If both responder
analyses (binary data) and evaluations based on a mean
difference (MD) were available for operationalization of an
endpoint, both evaluations were included in the database
and subsequent analyses. If meta-analyses based on both
MD and standardized MD (SMD) were available, only the
results based on SMD were considered. In various projects,
analyses at different time points were presented in forest
plots each on their own. This could be due to different
evaluation times within studies or to different data cut-offs
within studies. We considered all forest plots as relevant
for the database, regardless of which was the most relevant
in a given report. Studies that were repeatedly included in
assessments, like due to follow-up data later submitted for
addenda, were also included multiple times in the data-
base. This also applied to individual arms of multi-arm
studies, which could be included in different objectives or
even reports. We did not adjust our analyses for such mul-
tiple uses of the same data for pragmatic reasons.

2.2 | Descriptive analysis

We screened a total of 867 IQWiG reports, 134 of
which contained at least 1 meta-analysis. A total of
919 analyses used binary data, 645 continuous data, and
112 time-to-event analyses. Two-thirds of the analyses
compared pharmacological interventions (against other
pharmacological interventions or placebo), 32% compared
non-pharmacological interventions (against other non-

pharmacological interventions or placebo, and only 1%
compared pharmacological against non-pharmacological
interventions. Most analyses (46%) investigated outcomes
of morbidity, 32% adverse events, 10% health-related
quality of life, 7% mortality, and 6% were others such as
biological markers or surrogates. Tables A1, A2, and A3 in
Appendix A in Data S1 provide numbers as on different
data types along with a comparison of endpoint categories
and intervention types.

Some studies feature multiple times in the data set, if
included in more than one report, but this is rarely the
case: The study total was 1075 and 69 of these were
included in two different reports. However, we did not
check for studies being included under different names
(study name or publication name). A greater limitation of
our data is that studies are included with each relevant
endpoint and therefore may be included multiple times.
The median number of endpoints included per study and
report in the full data set is 3 (IQR 2–6), with �10% of
studies having more than 10 endpoints included. How-
ever, different effect measures were extracted from these
studies. Therefore, subsetting on a certain effect measure,
these studies appear less often than in the full data set.

In case of binary data presented in 2�2 contingency
tables, we calculated both OR and RR, yielding
883 meta-analyses with OR as the effect measure and
917 meta-analyses with RR. A few reports did not report
contingency tables but aggregated effect measures (point
estimate and standard error) only, so these numbers differ
slightly between OR and RR. Another 112 meta-analyses
were based on the hazard ratio (HR) and 645 meta-
analyses on the SMD. In total, data from 2557 meta-
analyses were available for the eventual analysis. In this
section, we present detailed results using OR as the effect
measure of interest. Descriptive analyses for other effect
measures are provided in Appendix A in Data S1.

For the OR, just under half, that is, 431 out of 883 ana-
lyses (49%), considered exactly 2 studies, and 679 (77%)
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FIGURE 1 Bar chart of the number of studies included in each meta-analysis. Effect measure: OR.
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considered fewer than 5 studies (Figure 1). Descriptive
data for the number of meta-analyses per report, the num-
ber of studies per meta-analysis, and their respective sam-
ple size are given in Table 1. Some IQWiG reports address
more than one research question. As these naturally con-
sist of more analyses, reports with multiple research ques-
tions are counted separately for each question in this table.

Heterogeneous results that would not be pooled
according to IQWiG standard operating procedures
(p≤ 0:05 by the heterogeneity test) were present in 66 meta-
analyses (7%). Among these, 19 meta-analyses were of 2 stud-
ies, 15 of 3 studies, and 10 of 4 studies. Regardless of the het-
erogeneity and the number of studies, the results are pooled
by using a random-effects meta-analysis according to the
Knapp-Hartung method with Paule-Mandel estimator for
the heterogeneity parameter to give an idea of the distribu-
tion of the heterogeneity τ.7 A histogram of the estimated
effects is shown in Figure 2 (left panel). Point estimates
of the OR range from 0.059 to 28.888, their median is
1.063. A total of 693 meta-analyses (78%) resulted in a
statistically significant overall effect (p≤ 0:05).

Figure 2 (right panel) presents a histogram of esti-
mated τ from all 883 meta-analyses. In 561 (64%) of these,
τ was estimated as zero. These estimates of zero were
based on 261 meta-analyses with 2 studies, 105 with
3 studies, 68 with 4 studies, 31 with 5 studies, and 96 with
more than 5 studies. The proportion of non-zero hetero-
geneity estimates (36% for all meta-analyses) remains at a
similarly high level if the pool of meta-analyses is
restricted to those with at least 5 studies (38%) or those

that are not based on heterogeneous study results (31%)
(see Table A5 in Appendix A in Data S1 for the results for
all effect measures).

3 | DERIVATION OF
INFORMATIVE PRIORS FOR
THE HETEROGENEITY
PARAMETER

In this section, empirical information extracted from IQWiG
reports (see Section 2) is used to derive an informative
prior distribution for application in future Bayesian
random-effects meta-analyses. Multiple meta-analyses are
accommodated in a joint model to facilitate inference on
the heterogeneity parameter(s). This approach has been
described in the literature for binary and continuous out-
comes4,5 and has recently been extended.6 In such a Bayes-
ian framework, the posterior predictive distribution of the
heterogeneity parameter constitutes a prior distribution
for future meta-analyses. In this manuscript, the method-
ology will be reported only in condensed form, for more
information as well as an example code of an implementa-
tion using JAGS, see Röver et al.6

3.1 | Framework

Consider the framework of the normal-normal hierar-
chical model (NNHM) for meta-analysis, which here is
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FIGURE 2 Left: histogram of the effect estimates; dashed line marks null-effect. Right: histogram of heterogeneity estimates (bτ). Effect
measure: OR.

TABLE 1 Descriptive statistics on

numbers of meta-analyses (MAs) per

report, numbers of studies per MA, and

sample sizes. Effect measure: OR.

N Min q0:25 q0:5 q0:75 Max

Number of MAs per report 100 reports 1 3 5.5 10 63

Number of studies per MA 883 MAs 2 2 3 4 35

Sample size per study 3569 studies 20 558 1019 1879 229,588
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extended to accommodate data from several meta-
analyses (indexed by j, with j¼ 1,…,N):

yij j μj,τj �Normal μj,σ
2
ijþ τ2j

� �
, ð1Þ

μj j μP,σP �Normal μp,σ
2
p

� �
, ð2Þ

in which the ith treatment effect estimate of the jth meta-
analysis, yij, is normally distributed with expectation μj
and variance σ2ijþ τ2j (where i¼ 1,…,kj). The expectations
μj are assigned a vague normal hyperprior with parame-
ters μp and σp to effectively stratify by meta-analysis. The
variance σ2ijþ τ2j consists of the study-specific uncertainty
of estimation, σ2ij, and the heterogeneity parameter τ2j
which describes the inter-study variability in the jth meta-
analysis. While σij is generally assumed to be known, the
heterogeneity τj is often hard to assess, but is of primary
interest here. In the next hierarchy level, the “population” of
heterogeneity parameters is modeled via a parametric distri-
bution P, and using a hyperprior H for its parameters:

τj j θ�P θð Þ, θ�H: ð3Þ

Several distribution families for modeling the hetero-
geneity parameters are used and compared in the present
manuscript, covering different shapes and tail behaviors:

• Half-normal distribution: τj j s�HN sð Þ, s�Unif 0,bð Þ,
• Exponential distribution: τj j s�Exp 1=sð Þ, s�Unif 0,bð Þ,
• Log-normal distribution: τj j s, t�LN log sð Þ, tð Þ,

s�Unif 0,bð Þ, t�Unif 0,bð Þ,
• Half-logistic distribution: τj j s�HL sð Þ, s�Unif 0,bð Þ.

In all cases, s denotes a scale parameter, and we set
b¼ 10 as a large upper bound for its uniform hyperparameter
distribution (given that we are focusing on ORs here). The
log-normal distribution in addition possesses a shape parame-
ter t, for which we similarly specify a uniform prior.

Inference for these models is facilitated using Markov
chain Monte Carlo (MCMC) methods. We are primarily
interested in two figures: the heterogeneity distribution's
parameter(s) θ (usually: its scale s, and possibly also its
shape parameter t), as well as the posterior predictive dis-
tribution of a “new” heterogeneity value τ ? , both of
which can be derived directly from the MCMC samples.
For practical use in a Bayesian meta-analysis model, we
want to obtain a more manageable parametric distribu-
tion to adequately describe the posterior predictive distri-
bution. Different options are possible for this step6:

1. Calculate a point estimate of the parameter's distribu-
tion, bθ, and use the conditional distribution p τ ? jbθ� �

.

2. Take the parameter's uncertainty into account and
calculate a mixture distribution.

3. Approximate the sample distribution of τ ? by fitting a
suitable distribution using, for example, maximum
likelihood estimation or method of moments.

In the following application to our data set, we will
present the MCMC sample distribution of both θ and τ ?

and compare the different options for obtaining a para-
metric distribution.

3.2 | Application to IQWiG data

The IQWiG data set consists of meta-analyses based on
ORs, RRs, HRs, and SMDs. The described procedure is
employed separately for each effect measure. We used
the statistical software R and JAGS for computation8–10

(JAGS code for the model is available in the online sup-
plement of Röver et al.6). This section reports the results
for the effect measure OR in detail and briefly summa-
rizes the results for RRs, HRs, and SMDs. Comparisons
between the results of the effect measures and their con-
sequences for the recommendations regarding prior dis-
tributions are also presented.

3.2.1 | Odds ratios

Figure 3 illustrates the predictive distributions (of τ ? ) result-
ing from using different distribution families modeling
the conditional distribution τj j s (see Equation (3)). The
distributions have a median lying between 0.08 (LN) and
0.11 (HN) and an interquartile range between 0.10
(LN) and 0.14 (HN). The range between the lower and
upper quartiles spans slightly higher values for the half-
normal model than for the others, but overall the results
appear consistent in terms of the general dimensions of
the distributions.

Figure 4 shows histograms of the posterior distribu-
tion of the half-normal scale parameter s, as well as the
corresponding predictive distribution of τ ? resulting from
a half-normal model for τj. The scale parameter's poste-
rior lies mainly between 0.14 and 0.20 (2.5% and 97.5%
quantiles). Two parametric approximations of the predic-
tive distribution are illustrated in the right panel. The
half-normal distribution using the posterior mean of
the scale parameter, s¼ 0:167, is shown in blue. To
account for the scale parameter's uncertainty, we also
fitted a half-Student-t distribution as an alternative (yel-
low line).6 As apparent in the figure, both approxima-
tions are very similar and only differ slightly. This is also
evident from the large degrees-of-freedom parameter of
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the half-Student-t distribution, ν¼ 54:4. Both approxima-
tions seem to represent the predictive distribution in an
adequate way. Therefore, with simplicity in mind, one
might choose the half-normal distribution with scale s¼
0:167 as a suitable prior distribution.

Similarly, the results using the exponential, log-
normal, and half-logistic distribution as a model for τj
were analyzed. In each case, the point estimate
approach led to sufficient approximations of the
respective predictive distributions. The resulting fitted
distributions are compared in Figure 5. Variations of
the inherent distribution shapes, placing differing
emphasis on smaller or higher values of the heteroge-
neity parameter, can be seen.

In the remaining part of our work we focus on the
half-normal as a model for τj for several reasons: We
found that the different models seem to make little differ-
ence regarding the predictive distribution of τ ? . The half-
normal prior offers the advantage of being a simple

model with only one scale parameter. Its short upper tail
prevents too extreme heterogeneity values while not plac-
ing too much probability mass on near-zero values com-
pared to the other distributions. This avoids an increased
risk of under-coverage due to an increased risk of under-
estimation of the between-study variability. Furthermore,
the half-normal is frequently used and has been investi-
gated in extensive simulation studies.11 In addition, the
effect of the shape of different prior distributions on the
result of a Bayesian meta-analysis was demonstrated in
Röver et al. (2021).2 For a set of different heterogeneity
priors with a common median, very little sensitivity to
the prior's distribution family was observed.

3.2.2 | Other effect measures

We also performed analogous analyses for HR, RR, and
SMD data (see Appendix B in Data S1 for the

FIGURE 4 Results for the half-normal model. Left panel: posterior distribution of the half-normal scale parameter s; right panel:

predictive distribution of τ ? , along with half-normal and half-Student-t fits. Effect measure: OR.

FIGURE 3 Empirical distribution functions (left) and kernel density estimates (right) of the predictive distribution of τ ? resulting from

assuming different distribution families for τj. Effect measure: OR.
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corresponding figures). Figure 6 illustrates the predic-
tive distributions in those models when using the half-
normal model for τj. Compared with the results for OR,
the distribution is shifted to higher values in case of SMD
data. HR and RR data both resulted in distributions hav-
ing more emphasis on smaller values. Another observa-
tion is that the results using HR and RR data were very
similar.

Figure 7 illustrates the half-normal scale parameters'
posterior distributions side-by-side for the different
effect measures. Different color shades and the given
numerical values indicate the 50%, 90%, and 99% quan-
tiles. The same shift as was seen in the previous figure is
apparent here: the posterior of the scale parameter has
higher values for SMD data and lower values for HR
and RR data. The differing distribution widths between
HR and RR data reflect different uncertainties about the
parameter estimates resulting from the different num-
bers of meta-analyses available for the effect measures
(645, 883, 917, and 112 meta-analyses for SMD, OR, RR,
and HR, respectively).

3.2.3 | Sensitivity analyses

To analyze the robustness of our results presented in the
previous sections, we split the data set of reports report-
ing meta-analyses into several parts using the year of
commission of the report (“old” reports before 2010
vs. “new” reports after 2014), the type of the report (drug
assessments vs. others), as well as a combination of both.
Summary statistics regarding endpoint categories and
intervention types of the analyses of those subsets are
included in Tables A1 and A2 in Appendix A in Data S1.
Then, the same analyses were calculated for each subset
and the results were compared. There is a notable
correlation between the two factors: dossier assess-
ments, a special type of report for early benefit assess-
ment of drugs, started in 2011 and was the most
prevalent drug assessment from thereon. After 2014,
they account for half of the reports containing meta-
analyses. The main difference we found is in the type of
the report. In comparison to other reports, like those on
non-pharmacological interventions, dossier assessments

FIGURE 6 Empirical distribution functions (left) and kernel density estimates (right) of the predictive distribution of τ ? resulting using

the half-normal distribution for different effect measures.

FIGURE 5 Densities of point

estimate approximations of the

predictive distributions in models

using the corresponding distribution

families as the heterogeneity prior.

Effect measure: OR.

LILIENTHAL ET AL. 281

 17592887, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jrsm

.1685 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [07/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



tend to generally consist of fewer and more similar studies
(rarely more than two). Therefore, restricting the data set
to meta-analyses of drug assessments results in a predic-
tive distribution of the heterogeneity parameter that is
shifted toward zero. Differences between older and newer
reports are smaller when the interaction with the type of
report is taken into account. Overall, to account for these
differences and to avoid underestimation of heterogeneity,
the prior distribution should be chosen in a way that is not
overly focused on smaller heterogeneity values.

3.2.4 | Recommendations

The analyses of IQWiG data presented above shall now
be translated into a set of readily applicable, empirically
motivated recommendations. An important aspect is that
one may generally consider larger heterogeneity as a
more conservative assumption; while zero heterogeneity
means that the analysis simplifies to a common-effect
approach, larger heterogeneity implies less certainty in
the overall estimate, as well as less sharing of information
between the included studies. This results in wider confi-
dence intervals of the common effect and therefore fewer
statistically significant results. Specification of a stochasti-
cally larger heterogeneity prior (or a larger prior scale
parameter) will therefore usually be a more conservative
assumption.2,12 Given that half-normal distributions are
fairly common and established as prior distributions for
the heterogeneity parameter, and since in the present
application they also tended to yield the largest prior
medians, we choose to use the half-normal model among

the alternatives investigated here, which yielded similar
results anyway. To safeguard against potential underesti-
mation of the heterogeneity, we will also derive recom-
mendations with a view of the upper tails of the scale
parameters' posterior distributions.

On the basis of Figure 7 we suggest the use of

1. HN(0.1) for the effect measures RR and HR
2. HN(0.2) for the effect measure OR
3. HN(0.3) for the effect measure SMD

as prior distributions for future Bayesian random-effects
meta-analyses. We used approximately the 95% quantiles
of the scale parameters' posteriors, and rounded these to
the nearest value with a single decimal place. This also
has a practical reason: By not choosing a precise value
we ensure that updates to our data set will not result in
immediate changes to our recommendations. However,
in Section 4.1 we will compare results from using the
median values and our recommendations.

It is important to note that these suggested priors are
not intended for general meta-analysis application but are
specifically tailored for use in analyses of HTA investiga-
tions implemented in a similar fashion to IQWiG reports.
While one should not naively assume exchangeability and
immediately apply these priors in different contexts, the
inferred magnitudes of heterogeneity will certainly consti-
tute important and relevant signposts and will be helpful
in the discussion and justification of related prior specifica-
tions. In the following section, we will investigate the con-
sequences of using these recommendations compared to
the current procedure used in IQWiG reports.

FIGURE 7 Posterior distributions of the half-normal scale parameter for different effect measures. Different color shades and the given

numerical values indicate the 50%, 90%, and 99% quantiles, respectively.
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4 | COMPARISON WITH IQWIG'S
CURRENT APPROACH

This section first describes the current evidence synthesis
approach used by IQWiG in more detail.6 In the next
step, the results of IQWiG's current approach are com-
pared to the application of Bayesian meta-analyses using
the recommended priors.

4.1 | IQWiG's current evidence synthesis
approach

The first step is the decision of whether a common-effect
model (frequently also called fixed-effect model) is justifi-
able or not. If there are only two studies, homogeneity is
regularly assumed and a common-effect model is calcu-
lated, unless there is substantial doubt about the homoge-
neity. This pragmatic approach is chosen to avoid the
extreme model-change step from one to two studies, which
results from the very uncertain estimation of heterogeneity
in this case. If a common-effect model is not justifiable
(especially if three or more studies are available), it is
assessed whether a meaningful overall effect can be esti-
mated by application of a random-effects model. For this,
overall effect estimates are calculated using the Knapp-
Hartung method with and without ad-hoc variance correc-
tion (abbreviated as KH and KH-VC, respectively)13,14 as
well as using the method of DerSimonian-Laird (DSL), a
normal approximation based, for example, on the Paule-
Mandel heterogeneity estimate.15 By comparing the confi-
dence intervals' widths, either KH-VC (if the confidence
interval of KH is narrower than that of DSL) or KH is cho-
sen. The chosen method's confidence interval is then com-
pared with the confidence intervals of the individual
studies and is considered informative if it is fully contained
in the union of the individual intervals (since a narrower
interval reflects greater confidence in the location of the
true effect). An informative overall effect is called mean-
ingful if the conclusion on statistical significance is in
agreement with that according to DSL. A decision is
derived as follows:

1. If the overall effect is considered to be “meaningful,”
the estimation according to KH (either with or with-
out variance correction) is used.

2. If the overall effect is considered “not meaningful,” a
qualitative summary of study results (QSSR) is conducted.
A QSSR allows drawing a conclusion without calculating
a pooled estimate. The conclusion is based either on the
prediction interval or on conditions regarding the number
of studies with effect estimates in the same direction as
well as the number of studies with statistically significant

results.1 However, since no pooled estimate is calculated,
a possible benefit is non-quantifiable.

4.2 | Comparison between the Bayesian
and the current IQWiG approach

According to our recommendations from Section 3, we
performed Bayesian analyses using HN(0.1)-priors for
meta-analyses of HR and RR endpoints, HN(0.2)-priors
for ORs, and HN(0.3)-priors for the analyses based on
SMDs. For each of these, the analysis yields a point esti-
mate along with a 95% credible interval. We consider an
effect as statistically significant if its credible interval
excludes the value of the null effect (i.e., 1 in the case of
ratios and 0 in the case of SMD). For comparison, we also
derived frequentist random-effects point and interval esti-
mates according to DerSimonian and Laird, based on the
Paule-Mandel heterogeneity estimate.15,16

We present overall results for the complete set of meta-
analyses (see Appendix C in Data S1 for subgroups depend-
ing on the number of studies including 2, 3, 4, 5 or more,
and 2–4 studies, with the latter representing the case of
“very few studies”). The conclusion according to IQWiG's
current methods1,17 is taken as the reference value.
IQWiG's conclusion is merely a specific algorithm based on
comparing the results of various models and including a
QSSR (see previous Section). It comprises a few rater-based
judgments regarding model suitability and meta-analytic
study weights that we replaced by automated decision rules
to make the whole procedure computable.

Taking the conclusion by IQWiG's current algorithm
as a reference in the evaluation of the results is not
intended to establish IQWiG's approach as truth or a gold
standard. However, as the underlying “true” effect is
unknown, a useful reference standard is given by the cur-
rent approach. Consequently, an effect as by the Bayesian
approach is considered a “false positive” if the internal
algorithm results in “no effect.” Likewise, evidence of an
effect is considered a “false negative” if the Bayesian
approach results in an inconclusive effect but the internal
algorithm results in “evidence of an effect.” The remain-
ing possible combinations are all regarded as concordant,
that is, both procedures result in either an effect or no
effect. Additionally, we also consider the subset of ana-
lyses consisting of statistically significant effects in all
included studies. Within this subset, the number of false
negative cases is assessed. From a decisioner's perspec-
tive, this is an unambiguous situation and any meta-
analytic procedure should result in sufficient evidence of
an effect as it would be counter-intuitive to remain
unsure if all studies show significant results. Especially in
this case, we expect concordance to be perfect and would

LILIENTHAL ET AL. 283

 17592887, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jrsm

.1685 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [07/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



tolerate only a minimal discrepancy. Note that there is
no rule for cases with opposing effect directions, for
instance, a positive effect resulting from one procedure
and a negative effect from the other procedure. A check
of the data set revealed that such a situation did not
occur. The proportions of concordant, false negative and
false positive effects are presented in Table 2.

While we see fairly high proportions of overall agreement
between the Bayesian and the current IQWiG approach for
all of the effect measures, the more important statistics are
the proportions of false positives and false negatives: False
positive proportions range between 3% and 9% which seems
quite acceptable. However, false negative proportions reach
higher levels ranging from 9% to 36%. While a proportion
smaller than 10% might be acceptable, proportions exceeding
20% seem too high to be of use in practice. In the special case
of only statistically significant studies included, the false neg-
ative proportions reach more acceptable levels between 3%
and 12% but which are too high, nevertheless.

As a comparison, we have also included the results of
Bayesian meta-analyses if not the half-normal distribu-
tion with the previously recommended scales is used but
the half-normal with a scale corresponding to the median
value of the parameter's posterior distribution. Using
those smaller scale parameters leads to smaller heteroge-
neity values in each specific analysis and therefore to

shorter confidence intervals. Hence, the rate of “false
negative” is reduced while the rate of “false positives” is
increased (see Table 2 and Appendix C). However, the
differences are not substantial.

The high proportions of false negative results contra-
dict using the Bayesian approach as a sole and universal
method. It seems sensible to combine this approach with a
qualitative summary of the study results in those cases in
which the Bayesian approach does not result in sufficient
evidence of an effect but a qualitative summary of study
results does. In this case, the qualitative summary of the
study results is regarded as more reliable than the Bayes-
ian approach and would override any conclusions from it
in these cases. However, as a consequence, the effect size
would not be able to be determined. In IQWiG terminol-
ogy, the extent of added benefit would be “non-quantifi-
able.”18 Therefore, incorporating the Bayesian approach
into the evidence synthesis would more often result in a
quantifiable effect than with the previous approach.

5 | DISCUSSION AND
PERSPECTIVES

In IQWiG reports, evidence synthesis is used if results
from multiple studies are available for one or more

TABLE 2 Proportions of disagreement regarding statistical significance between IQWiG's current and the Bayesian approach using a

half-normal prior (HNprop: with our proposed parameters 0.1 (RR, HR), 0.2 (OR) and 0.3 (SMD), respectively; HNmed: with the median value

of the parameter's posterior) or random-effects analysis as by DerSimonian and Laird (DSL) instead. Database is all IQWiG reports.

Effect % disagreeing

Measure Set of meta-analyses # analyses HNprop HNmed DSL

RR All 917 10 9 8

No sufficient evidence of effect as by IQWiG procedure 666 9 9 7

Sufficient evidence of effect as by IQWiG procedure 251 13 9 9

All studies statistically significant 64 3 3 3

HR All 112 4 4 3

No sufficient evidence of effect as by IQWiG procedure 80 3 3 3

Sufficient evidence of effect as by IQWiG procedure 32 9 9 3

All studies statistically significant 14 0 0 0

OR All 883 10 10 8

No sufficient evidence of effect as by IQWiG procedure 639 9 9 7

Sufficient evidence of effect as by IQWiG procedure 244 16 15 10

All studies are statistically significant 63 3 3 5

SMD All 645 18 17 8

No sufficient evidence of effect as by IQWiG procedure 428 8 10 9

Sufficient evidence of effect as by IQWiG procedure 217 36 32 7

All studies are statistically significant 81 12 10 0
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endpoints. In general, frequentist methods are currently
used for meta-analyses. While the assumption of a
common-effect model is often hardly justifiable, random-
effects meta-analyses are frequently unreliable in the case
of very few studies (less than five). Due to high uncer-
tainty in the estimated heterogeneity parameter, the
resulting confidence intervals for the treatment effect
may end up being too wide or too narrow. In a complex
process, different methods (KH with and without vari-
ance correction, DSL) are applied and their results are
compared to assess if the overall treatment effect estimate
is considered “meaningful” or if a QSSR should be
conducted.1

Bayesian random-effects meta-analysis can be a
useful alternative in this situation to simplify that process
by replacing the involved calculation and comparison of
different models with a single meta-analysis based on a
specified prior distribution. In this context, the applica-
tion of Bayesian meta-analyses is able to properly account
for uncertainty in the heterogeneity parameter. The
result can be seen as a compromise between the overly
conservative estimation using KH, that often even leads
to implausibly wide, uninformative confidence intervals,
and the too-liberal estimation of DSL or the common-
effect model in the case of true heterogeneity. By specify-
ing a reasonable prior distribution for the heterogeneity,
both extremes, the frequently occurring estimates of zero
and implausibly high heterogeneity estimates, are effec-
tively avoided. The aim of our work was to derive informa-
tive prior distributions to be applied in Bayesian random-
effects meta-analyses building on the results from earlier
IQWiG reports and to compare the resulting inferences
with those based on the IQWiG's standard procedure. In
situations with very few studies, in which the heterogene-
ity cannot be estimated reliably, a valid estimation of a
treatment effect is facilitated using a Bayesian random-
effects meta-analysis as introduced within this paper.

We propose the combined application of Bayesian
meta-analysis with the QSSR to achieve congruent deci-
sions. In comparison to the sole application of QSSR, the
combined approach avoids the outcome of a “non-quanti-
fiable” result. The suggested new approach for very few
studies in situations in which pooling generally seems
meaningful (i.e., no statistically significant heterogeneity
test) is described below:

1. For two studies the common-effect meta-analysis is
calculated, unless strong reasons indicate otherwise.
In analyses of meta-analyses with only two studies
(see Appendix C in Data S1), we found that Bayesian
meta-analysis offers no advantages over the current
approach. For pragmatic reasons, we therefore con-
tinue with the current approach in these cases.

2. In cases of 3 or 4 studies (and for 2 studies if
common-effect is clearly inappropriate), a Bayesian
random-effects meta-analysis using the proposed prior
distributions (HN(0.1) for HRs and RRs, HN(0.2) for ORs
and HN(0.3) for SMDs) is calculated and compared to
the result of the QSSR. If only QSSR yields evidence in
favor of an effect, this holds, although the effect cannot
be quantified. If both QSSR and the Bayesian approach
suggest evidence in favor of an effect, the Bayesian
results are used to quantify the treatment effect.

So, for the case of four or fewer studies, evidence syn-
thesis would be based on either the common effect model
or a Bayesian meta-analysis combined with QSSR. Fre-
quentist random-effects models would only be applied in
case of five or more studies. But, if the new approach
appears to yield useful results, it could possibly also be
applied to cases of 5 or more (or less than 3) studies in
the future. However, little difference between KH and
the Bayesian approach is to be expected in the case of
many studies included. Using such a combined approach
would guarantee some consistency to prior assessments
while reducing the problem of non-quantifiable effects
while enhancing the simplicity and rigor of the assess-
ment procedure. In the situation of 3 or 4 studies,
IQWiG's current approach claims evidence in 172 meta-
analyses in our data set. In 40 (23%) of these, the decision
is made using QSSR; therefore no quantification is possi-
ble. Using the proposed approach of combining QSSR
with the Bayesian approach, evidence of an effect is
determined in 155 meta-analyses. Only in 9 (6%) of these
analyses it is not possible to quantify the treatment effect
because the result of the Bayesian analysis is not in agree-
ment with QSSR. In addition to reducing the rate of
unquantifiable effects in cases where evidence is claimed,
a pooled effect estimate may also be useful in the absence
of evidence for an effect.

Our work is similar to Turner et al.,5 where prior dis-
tributions for binary outcomes are derived using 14,886
meta-analyses within the Cochrane Database of System-
atic Reviews (CDSR). Similarly, for continuous outcomes,
Rhodes et al.4 analyzed 6492 meta-analyses within the
CDSR. The authors differentiated the between-study het-
erogeneity distributions for 80 different settings of out-
come type (e.g., mortality, quality of life/functioning,
adverse events) and intervention comparison type
(e.g., pharmacological vs. placebo/control). Our analyses
differ from this in important ways. We did not distinguish
between outcome types and intervention comparison
types. Our goal was to obtain general prior distributions
that could be used for analysis with the aspects of general-
ity and simplicity in mind. A more complex set of possible
distributions depending on outcome and intervention
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types and probably even more categories would contradict
this approach. More practical problems are that our
(already limited) database would be drastically decreased
under such constraints. Because some endpoints may be
classified as either morbidity or adverse events, it is bene-
ficial if the outcome of the meta-analysis does not depend
on the specific choice of an a priori distribution. How-
ever, differences between intervention comparison types
were briefly investigated, but no clear tendencies were
apparent. Therefore, we decided to use the data without
splitting it up and rounding up the parameters of the
prior distributions.

Both Turner et al. and Rhodes et al. also gave prior dis-
tributions for all meta-analyses without restriction to out-
come or intervention type. For ORs, Turner et al.5

proposed τ2 �LN�2:56,1:742ð Þ, and for SMDs, Rhodes
et al.4 proposed log τ2ð Þ� t5 �3:44,2:592ð Þ. Both distribu-
tions have more distributional weight at higher values
of heterogeneity than our proposed distributions. In
Table B1 in Appendix C in Data S1 a comparison of sum-
mary statistics on the untransformed scale of τ is given. For
ORs the prior of Turner et al. is generally shifted to
higher values, for SMDs a clear difference only appears
in the upper quartile.

The reason for this is that our analysis is based on a
rather specific data set of IQWiG's HTA reports. The PICO
framework is more restrictive than in the more general
Cochrane reviews. The selected studies are therefore more
similar, resulting in heterogeneity distributions shifted
toward zero. As a result, our recommendations are not gen-
eral and it is unclear whether or to what extent these might
be transferable to other applications. However, they are
likely suitable for applications of other HTA agencies with
similar HTA questions as IQWiG. In the light of the forth-
coming implementation of the EU HTA regulation, in
which assessments of health technologies will be conducted
on a joint European level, it is important that empirical
priors suitable for HTA applications are available.

A limitation is the multiple uses of individual study
results in the reports and the inclusion of multiple meta-
analyses of the same endpoint at different time points.
Since we did not correct for multiplicity here, it might be
that some of the presented inferences appear more certain
than appropriate. Furthermore, the suggested approach is
compared only with IQWiG's current approach, we did no
simulations to evaluate its performance in general. How-
ever, we considered this sufficient for the present pur-
poses, as both approaches lead to very similar solutions.

In summary, new empirical prior distributions for the
heterogeneity parameter are derived, which allowed us to
include Bayesian random-effects meta-analysis in the evi-
dence synthesis approach in the situation of very few
studies for application in HTA. The Bayesian approach

seems to be a useful compromise between the liberal
DerSimonian-Laird method and the conservative Knapp-
Hartung method and allows the quantification of the
extent of added benefit more frequently than frequentist
and QSSR methods alone.
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