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Meta-analyses of clinical trials targeting rare events face particular challenges
when the data lack adequate numbers of events for all treatment arms. Espe-
cially when the number of studies is low, standard random-effects meta-analysis
methods can lead to serious distortions because of such data sparsity. To over-
come this, we suggest the use of weakly informative priors (WIPs) for the treat-
ment effect parameter of a Bayesian meta-analysis model, which may also be
seen as a form of penalization. As a data model, we use a binomial-normal hier-
archical model (BNHM) that does not require continuity corrections in case of
zero counts in one or both arms. We suggest a normal prior for the log-odds ratio
with mean 0 and standard deviation 2.82, which is motivated (a) as a symmet-
ric prior centered around unity and constraining the odds ratio within a range
from 1/250 to 250 with 95% probability and (b) as consistent with empirically
observed effect estimates from a set of 37 773 meta-analyses from the Cochrane
Database of Systematic Reviews. In a simulation study with rare events and few
studies, our BNHM with a WIP outperformed a Bayesian method without a WIP
and a maximum likelihood estimator in terms of smaller bias and shorter inter-
val estimates with similar coverage. Furthermore, the methods are illustrated by
a systematic review in immunosuppression of rare safety events following pedi-
atric transplantation. A publicly available R package, MetaStan, is developed
to automate a Bayesian implementation of meta-analysis models using WIPs.
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1 INTRODUCTION

Individual clinical studies are often underpowered to
detect difference of probabilities or rates of rare events,
for example, safety events, and thus, meta-analysis may
be the only way to obtain reliable evidence of treatment
differences with regard to the rare events.1 On the other
hand, meta-analysis of clinical studies for rare events
faces particular challenges, since the numbers of events
might be very small in some treatment arms. The problem

is even more pronounced when some studies have no
events either in one or in both treatment arms (so-called
single-zero or double-zero studies).

The exclusion of the double-zero studies from the anal-
ysis can bias the treatment effect parameter estimate away
from the null (especially for the unbalanced design)2 and
also causes loss of information, since double-zero studies
contain information through their sample sizes.3 Hence,
we consider methods that do not remove double-zero
studies from the analysis. Two established fixed-effect
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meta-analysis methods exist for rare events, namely, Peto's
method4 and the Mantel-Haenszel (MH) method.5 On the
other hand, an assumption of homogeneity, that is, a single
common parameter for all studies, is typically unrealis-
tic for studies in the biomedical sciences.6-8 Therefore, we
focus on random-effects methods in this paper.

Standard (approximate) random-effects meta-analysis
methods, for example, the normal-normal hierarchical
model,9 require a continuity correction in case of single-zero
or double-zero studies, that is, the addition of a fixed value
(typically 0.5) to all cells of the contingency table
for studies with no events or with 100% events (no
nonevents). Such simple approaches have been found
problematic for meta-analyses involving rare events.10

Therefore, statistical models based on exact distribu-
tional assumptions have been suggested. These include
different parametrizations of the binomial-normal hier-
archical model (BNHM),11 a mixed effects conditional
logistic model,12 a Poisson-normal hierarchical model,13 a
Poisson-Gamma hierarchical model,14 or a beta-binomial
model (BBM).3 In this paper, we focus on a parametrization
of the BNHM that was suggested by Smith et al.15

Consider an extreme case of meta-analysis of rare events,
where all studies include no events for the same treatment
arm. These data sparsity problem in a meta-analysis can
be seen as a separation problem in the logistic regression
context16 in which case a maximum likelihood estimate
(MLE) for the treatment effect parameter does not exist.
A very useful way to deal with separation problems, or,
more generally, data sparsity in logistic regression is penal-
ization, that is, adding a penalty (adjustment) term to the
original likelihood function to regularize (or stabilize) the
estimates.17 In a frequentist framework, penalty terms may
be specified so that these nudge the MLE into a desired
direction if the maximum is not or poorly defined; one
such example is Firth penalization.17-19 From a Bayesian
viewpoint, penalization may often be motivated as weakly
informative priors (WIPs) that are multiplied to the likeli-
hood function.20

Numbers of studies included in meta-analyses are typ-
ically small, posing additional challenges.21 For Bayesian
meta-analysis of few studies, different WIPs have been sug-
gested for the heterogeneity parameter; see Chung et al22

for penalized MLE approach and also see Gelman23 and
Friede and Röver24 for Bayesian inference. Here, we con-

sider the meta-analysis of few studies targeting rare events.
To deal with data sparsity present in the meta-analysis of
few studies with rare events, we suggest the use of WIPs for
the treatment effect parameter in a fully Bayesian context
inspired by penalization ideas.17,20 We use a BNHM that is
parameterized in terms of baseline risks and a treatment
effect for the data. Note that this is a contrast-based model
meaning that relative treatment effects are assumed to be
exchangeable across trials.25 Our suggested default WIP for
the treatment effect parameter is motivated via the con-
sideration of the prior expected range of treatment effect
values. Furthermore, it is consistent with effect estimates
empirically observed in a large set of meta-analyses from
the Cochrane Database of Systematic Reviews (CDSR) with
binary endpoints.

The main contribution of this paper is the introduction
of default WIPs as penalization for treatment effect param-
eters to deal with data sparsity in the meta-analysis of few
studies involving rare events. Another contribution is the
introduction of an R package, MetaStan (https://CRAN.
R-project.org/package=MetaStan), which is developed to
automate a Bayesian implementation of meta-analysis
models using WIPs as described in the paper and which
is publicly available from CRAN. In Section 2, we describe
a systematic review concerning rare safety events associ-
ated with immunosuppressive therapy following pediatric
transplantation. In Section 3, we describe the application
of WIPs for the treatment effect parameter. We review a
BNHM for meta-analysis, discuss the derivation of WIP,
and an empirical investigation of treatment effect parame-
ter estimates from the CDSR. Long-run properties of differ-
ent methods including the proposed one are investigated
in the simulation studies in Section 5. In Section 6, the
example is revisited to illustrate the proposed method and
its implementation. We close with some conclusions and
provide a discussion.

2 AN APPLICATION IN
PEDIATRIC TRANSPLANTATION

Several rare pediatric liver diseases can nowadays be
successfully treated by liver transplantation with good
long-term outcomes. Crins et al26 conducted a system-
atic review of controlled but not necessarily random-

TABLE 1 Data on patient deaths and
posttransplant lymphoproliferative
disease (PTLD) from the meta-analysis in
pediatric transplantation conducted by
Crins et al26

Outcome: Death Outcome: PTLD
Control Experimental Control Experimental
Events Total Events Total Events Total Events Total

Heffron et al29 3 20 4 61 - - - -
Schuller et al30 - - - - 0 12 0 18
Ganschow et al31 3 54 1 54 0 54 1 54
Spada et al32 3 36 4 36 1 36 1 36
Gras et al33 3 34 2 50 - - - -

75ET AL.Ü G NHAN

https://CRAN.R-project.org/package=MetaStan
https://CRAN.R-project.org/package=MetaStan


ized studies of the Interleukin-2 receptor antibodies
(IL-2RA) basiliximab and daclizumab in pediatric liver
transplantation. Primary outcomes were acute rejections
(ARs), steroid-resistant rejections (SRRs), graft loss, and
death. Their analyses were based on a random-effects
meta-analysis using a restricted maximum likelihood
approach(REML).27 Crins et al26 used risk ratios as effect
measures, while we use the odds ratios here. With rare
events, however, these should be very similar. Heterogene-
ity was assessed using Cochrane's Q test.28 Secondary out-
comes included renal dysfunction nt lymphoproliferative
disease (PTLD). For illustrative purposes, here, we focus
on death and PTLDs, and these outcomes are displayed in
Table 1.

The specific problems with meta-analyses concerning
rare events outlined in the introduction are prominent
here. Firstly, the numbers of events are very small. For
the PTLD dataset, there is one single-zero study and one
double-zero study. Secondly, there are few studies avail-
able, only four for deaths and three for PTLD. Empirical
event rates are lower in three of the four experimen-
tal groups in the data on patient deaths. For PTLD, the
data appear inconclusive for Schuller et al30 and Spada
et al,32 and only a single event observed in the experi-
mental group suggests an increased risk in the study by
Ganschow et al.31

3 WIPS FOR THE TREATMENT
EFFECT

In this section, we present the usage of WIPs for the
treatment effect parameter to conduct random-effects
meta-analysis of rare events with few studies. As a data
model, we review a BNHM and then show how to derive a
WIP for a treatment effect parameter. Then, empirical evi-
dence obtained from the CDSR supporting the choice of
WIPs is illustrated.

3.1 Data model
The BNHM has been introduced by Smith et al.15 In the
BNHM, for each trial i ∈ {1, … , k} and treatment arm j ∈
{0, 1}, the event counts rij are modeled using a binomial
distribution, that is, rij ∼ Bin(𝜋ij,nij). The logit link is used
to transform 𝜋ij onto the log odds scale where effects can
be assumed to be additive

logit(𝜋i𝑗) = 𝜇i + 𝜃i xi𝑗

𝜃i ∼  (𝜃, 𝜏2), (1)

where xij is a treatment indicator, namely, +0.5 = experi-
mental (j = 1) and −0.5 = control (j = 0). The 𝜇i are fixed
effects denoting the baseline risks of the event in each
study i, 𝜃 is the mean treatment effect, and 𝜏 is the het-

erogeneity in treatment effects between trials. The BNHM
belongs to the family of generalized linear mixed mod-
els (GLMMs); this family also includes models for other
types of data including continuous or count outcomes.
It is important to note here that by treating the baseline
risks 𝜇i as fixed effects, the analysis effectively stratifies
the risk by study, as pooling of risks might compromise
the studies' randomization. In this sense, it constitutes a
contrast-based model.25 Unlike the normal-normal hier-
archical model, the BNHM does not rely on a normal
approximation, since it builds on the binomial nature of
the data directly.

The BNHM can be fitted using frequentist approaches,
for example, via maximum likelihood estimation (MLE).11

Alternatively, Bayesian methods are commonly used. In a
fully Bayesian approach, prior distributions for parameters
𝜃, 𝜇i, and 𝜏 need to be specified. Note that the parameter 𝜃
is on the log-odds ratio scale whereas𝜇i are on the log-odds
scale. Baseline risks (𝜇i) may be seen as intercept parame-
ters in a standard logistic regression model. For 𝜇i, we use
a vague normal prior with mean 0 and standard deviation
10, following the recommendation by Gelman et al.20 The
prior choice for 𝜃 is our main focus and will be discussed in
Section 3.2. The prior choice for the heterogeneity param-
eter 𝜏, which is a standard deviation parameter, has gained
much attention in the literature as discussed in the intro-
duction. Friede et al24 have shown that for meta-analysis
of few studies, the use of WIPs for 𝜏 displays desirable
long-run properties in comparison with frequentist alter-
natives. Following their suggestions, we use a half-normal
prior with scale of 0.5 ( (0.5)) for 𝜏 which has the
median of 0.337 with an upper 95% quantile of 0.98. Values
for 𝜏 of 0.25, 0.5, 1, and 2 represent moderate, substan-
tial, large, and very large heterogeneity.34 Thus, a (0.5)
prior captures heterogeneity values for log-OR typically
seen in meta-analyses of log-ORs and will therefore be a
sensible choice in many applications.

3.2 Derivation of a WIP for the treatment
effect
A common prior choice for the treatment effect parameter
𝜃 is a noninformative (vague) prior such as normal distri-
bution with a large variance, for example,  (0, 1002). One
way of constructing a WIP works via consideration of the
prior expected range of treatment effect values.35 Before
the derivation of the WIP for treatment effect parameter
𝜃, recall that 𝜃 is on the log-odds ratio scale. Thus, a value
of 𝜃 = 0 means an odds ratio of 1, ie, no effect, and a
value of 𝜃 = 1 means that odds differ by a factor (ratio) of
exp(1) = 2.7.

We assume a symmetric prior centered around zero,
implying equal probabilities for positive or negative
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treatment effects. Symmetry then implies (on the log-odds
ratio scale) that

P(𝜃 > q) = P(𝜃 < −q), (2)
where (on the odds ratio scale)

exp(−q) = 1
exp(q)

. (3)

The prior's scale parameter 𝜎prior then may be set such
that a priori the odds ratio is with 95% probability confined
to a certain range:

P(1∕𝛿 < exp(𝜃) < 𝛿) = 95%. (4)

In case of a normal prior with standard deviation 𝜎prior,
we can then simply specify

𝜎prior =
log(𝛿)
1.96

. (5)

We conservatively specify 𝛿 as 250, meaning that we con-
sider it unlikely that the odds ratio will be larger than 250
or smaller than 1/250. By plugging in this number into (5),
we obtain 𝜎prior = 2.82.

Another way to motivate the prior standard deviation
is by using the idea of unit information priors.36,37 When
the treatment effect parameter is on the log-odds ratio
scale (as in the BNHM), then the standard error is given
by

√
1
a
+ 1

b
+ 1

c
+ 1

d
. Assuming equal allocation, a neutral

effect, and equal counts of events and nonevents, we can
simply set the table allocation to a = b = c = d = N

4
. There-

fore, if we (heuristically) reverse the argument, a prior

for the log-odds ratio with zero mean and 2.82 standard
deviation gives37

2.82 ≈
√

8 =
√

1
N
4

+ 1
N
4

+ 1
N
4

+ 1
N
4

. (6)

Hence, N = 2. In other words, in terms of prior's effec-
tive sample size, the choice of 𝜎prior = 2.82 is equivalent
to adding two patients to the dataset. From this, it follows
that  (0, 2.822) is a reasonable choice as a WIP for 𝜃.

Note also the analogy between this WIP and commonly
used continuity corrections: Zero entries in a contingency
tables are commonly fixed by adding a correction term of
0.5 to each table cell of the single-zero or double-zero study,
which also amounts to a total of two patients added to
the data. This way of conducting continuity correction
adds two patients to each single-zero or double-zero study,
while the use of WIP is equivalent to adding two patients
to the whole dataset.

3.3 Empirical evidence supporting
the WIP for the treatment effect
For an empirical investigation of the WIP for treatment
effect parameter, we consider the meta-analysis datasets
archived in the CDSR. All systematic reviews in the CDSR
are available on the Cochrane Library website,38 and
personal or institutional access is required. For down-
loading the data from the CDSR and converting to CSV
files, we use the program Cochrane_scraper (version
1.1.0).39 We were able to access all Cochrane systematic
reviews available in March 2018 (CD000004 to CD012788).

FIGURE 1 The distribution of numbers of studies included in each meta-analysis obtained from the Cochrane Database of Systematic
Reviews (CDSR). The category labelled 19+ corresponds to meta analyses of size 19 or larger [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 2 The distribution of the estimates of the mean treatment effect parameter 𝜃 A, and the distribution of the estimates of the
(nonzero) heterogeneity standard deviation parameter ⊤ B, obtained from the reanalysis of meta-analysis datasets in Cochrane Database of
Systematic Reviews (CDSR) when the binomial-normal hierarchical model (BNHM) via maximum likelihood estimate (MLE) is used for
estimation. In A, two red lines (−1.94 and 2.06) show the 2.5% and 97.5% quantiles of the 𝜃 estimates, respectively. In B, the solid red line
(1.05) and the dashed red line (1.51) indicate the 95% quantiles of the ⊤ estimates including zero-estimates and excluding zero-estimates,
respectively. The fraction of zero-estimates of ⊤ is 63% [Colour figure can be viewed at wileyonlinelibrary.com]

Meta-analyses were excluded if they included only one
study, if the analysis was labelled as a subgroup or sensitiv-
ity analysis or there was insufficient information for clas-
sification, or if all data within the meta-analysis appeared
to be erroneous. Finally, we only consider meta-analyses
with dichotomous outcomes. In total, 37 773 meta-analysis
datasets from 4712 reviews are included. Note that we did
not distinguish regarding efficacy or safety analyses.

The frequency of the number of studies k considered for
each meta-analysis is illustrated in Figure 1. The percent-
age of the meta-analyses including five or less studies is
66%. This figure is consistent with other re-analyses of the
CDSR (see, eg, previous works8,21,40). We re-analyzed the
meta-analysis datasets from the CDSR using the BNHM
via an MLE approach. This procedure is implemented
using the R package lme4.41 A histogram of the estimates
of 𝜃 is illustrated in Figure 2A; 2.5% and 97.5% quantiles of
the estimates of 𝜃 are −1.94 and 2.06, respectively. By fol-
lowing Turner et al,40 we exclude the zero heterogeneity
estimates; nonzero estimates of 𝜏 are shown in Figure 2B.
The fraction of nonzero heterogeneity estimates is 63%,
which is also consistent with previous findings.40 The 95%
quantile of nonzero estimates of 𝜏 is 1.51, while the 95%
quantile of 𝜏 estimates including zeroes is 1.05. The under-
lying distribution of the estimates of 𝜃 and 𝜏 and their
variability are useful to see how large these estimates are
in some general population, in this case the CDSR. Thus,
these give us a rough sense of what would be a reasonable

default prior distribution. Therefore, we suggest the use of
WIPs,  (0, 2.822) for 𝜃 and  (0.5) for 𝜏, which are con-
sistent with estimates of 𝜃 and 𝜏 empirically observed in
the CDSR, meaning that both indicate odds ratios within
reasonable ranges, and heterogeneity mostly below 1.0.

4 IMPLEMENTATION OF THE
PROPOSED PROCEDURE IN R
USING STAN

The Bayesian implementation of the BNHM can be fit-
ted with the probabilistic programming language Stan,42

which employs a modern Markov chain Monte Carlo
(MCMC) algorithm, namely, Hamiltonian Monte Carlo
with the No-U-Turn Sampler.43 It is known that the
parametrization of the model can affect the performance of
an MCMC algorithm. In the presence of sparse data such
as in the meta-analysis of few studies involving rare events,
Betancourt et al44 showed that centered parametrization of
a hierarchical model (such as the BNHM) brings compu-
tational issues compared with a noncentered parametriza-
tion. Thus, we use the noncentered reparametrized
version of the BNHM for our implementations. Specifi-
cally, applying both location and scale reparametrization,
(3.1) becomes 𝜇i + 𝜃xij + ui 𝜏 where ui ∼  (0, 1) and
xij = +0.5 (experimental) or xij = −0.5 (control). (Correction

xij

added on 06 January 2020, after first online publication:
The preceding equation has been updated from

.to𝜇i + 𝜃i xij + ui 𝜏
2 𝜇i + 𝜃xij + ui 𝜏xij“ ” “ ” )
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For practical applications, learning Stan's syntax and
the required knowledge of available features in Stan
might present a hurdle preventing application of Stan.
To this end, we developed a new R package MetaS-
tan which is a purpose-built package defined on top of
Rstan, the R interface for Stan. Our package MetaS-
tan (https://CRAN.R-project.org/package=MetaStan)
includes the precompiled Stan model of the BNHM,
which eliminates the compilation time and the need of

learning Stan's syntax. The Stan code for the BNHM
is shown in Listing 1. MetaStan includes different
options for WIPs of the model parameters of the BNHM.
MetaStan syntax is similar to the syntax of the popu-
lar meta-analysis package metafor27 so that it should
be easy for a metafor user to utilize our package. The
syntax of MetaStan is displayed for the pediatric trans-
plantation example in Section 6, and in Appendix A, we
show how to install and use MetaStan.
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5 SIMULATION STUDY

In order to assess the long-run properties of the proposed
approach and compare it with some alternatives, we con-
ducted a simulation study.

5.1 Simulation setup
The simulation scenarios are similar to those consid-
ered by Friede et al,24 but with the important difference
that we focus on rare events. The datasets are gener-
ated under the BNHM, more specifically (3.1). Numbers
of studies (k ∈ {2, 3, 5}) and true treatment effects
(𝜃 = {−5,−4,−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3, 4, 5}) are var-
ied, resulting in a total of 39 simulation scenarios. To
reflect the rare-event cases, true baseline risks on the prob-
ability scale are taken uniformly between 0.005 and 0.05.
Following Kuss,3 a log-normal distribution is fitted to the
sample sizes obtained from the CDSR data, resulting in a
log-normal distribution with parameters 𝜇 = 5 and 𝜎 =
1. Hence, sample sizes are generated from  (5, 1), the
minimum sample size is restricted to two patients (val-
ues below 2 are rounded up to 2), and at least one patient
in each treatment arm is assumed. The degree of hetero-
geneity (𝜏) is taken as 𝜏 = 0.28 (moderate heterogeneity),
which is the median value of the predictive distribution
for between-study heterogeneity in a meta-analysis in a
general setting as estimated by Turner et al.40 According
to a binomial probability of 0.5, patients were allocated
to the treatment groups, thus mimicking randomization.
The simulations were carried out with 10 000 replications
per scenario. The data sparsity is reflected in the average
fractions of single-zero or double-zero studies in a simu-
lated meta-analysis dataset, which are shown in Figure 3A.
Notice that the fractions of the single-zero and double-zero
studies are the highest when true treatment effect is −5,

and they are decreasing with the increase of the treatment
effect.

The proposed approach (BNHM using a WIP, that is
 (0, 2.822), for 𝜃: WIP ) and four comparators are
included in the analysis, namely, BNHM using a vague
prior ( (0, 1002)) for 𝜃 ( Vague ), BNHM using MLE
( MLE ), the Mantel-Haenszel ( MH ) method5 and
a Bayesian implementation of the beta-binomial model
( BBM ).3 It is important to note the differences of the MH
and BBM from the BNHM methods. MH is a fixed-effect
meta-analysis method, and BBM has a different under-
lying data generating process than the BNHM. For both
Vague and WIP approaches, the prior for 𝜏 and 𝜇 are
taken as  (0.5), and  (0, 102), respectively. The MH
estimator of the treatment effect parameter is given by

𝜃̂MH =

∑k
i=1

ri1(ni0−ri0)
ni∑k

i=1
ri0(ni1−ri1)

ni

,

where ni = ni0 + ni1. In the BBM, the event counts rij are
modeled using a binomial distribution, rij ∼ Bin(𝜋ij,nij), as
in the BNHM. The probabilities of event are assumed to be
beta distributed: 𝜋ij ∼ Beta(𝛼j, 𝛽 j) where both arms share
the same correlation parameter 𝜌 = 1

𝛼0+𝛽0+1
= 1

𝛼1+𝛽1+1
,

implying 𝛼0 + 𝛽0 = 𝛼1 + 𝛽1. It is common to reparametrize
the model using mean parameters Φj such that Φ𝑗 =

𝛼𝑗

𝛼𝑗+𝛽𝑗
.

Finally, the linear predictor can be written as logit(Φj) =
𝜇 + 𝜃 xj where 𝜃 is the parameter for the treatment effect,
and xj is a treatment indicator, 1 = experimental (j = 1) and
0 = control (j = 0). Vague priors are chosen for all parame-
ters, namely, uniform priors across the interval [0,1] for all
three parameters: Φ0, Φ1, and 𝜌.

Three MCMC chains were run in parallel for a total
of 2000 iterations including 1000 iterations of burn-in.
These values are tested in some replications; convergence

FIGURE 3 The average fraction of single-zero or double-zero studies in a simulated meta-analysis dataset A, and the fraction of the
estimation failure for maximum likelihood estimate (MLE) and Mantel-Haenszel (MH) with different numbers of studies k used in the
simulations (B and C) are shown [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 The bias for the mean treatment effect 𝜃, coverage probabilities, and log mean length of the interval estimates for 𝜃 obtained by
five methods (beta-binomial model [BBM], Mantel-Haenszel [MH], maximum likelihood estimate [MLE], Vague, and weakly informative
prior [WIP]) are shown [Colour figure can be viewed at wileyonlinelibrary.com]

diagnostics are assessed and chosen accordingly. All
chains were assumed to have reached convergence (no
estimation failure). We used the package lme4 for the
MLE (using the adaptive Gauss-Hermite approximation
to the maximum log-likelihood) and metafor for the
MH (without using any continuity corrections) whereas
the Vague, WIP, and BBM methods were fitted with our
MetaStan package. Note that we use highest density inter-
vals (HDI), which are the shortest credible intervals, as
opposed to the commonly used equal-tailed credible inter-
vals. The HDI were obtained using the HDInterval45 pack-
age. All computations were performed using R.46 The code
for the computations for all methods used in the simula-
tions is provided in Appendices A to D.

5.2 Simulation results
For the MLE and the MH, the fractions of estimation fail-
ures are shown in Figure 3B and 3C. Estimation failure
occurred for the MLE when the Gauss-Hermite approxi-
mation does not converge to the maximum log-likelihood,
or when the MH estimator is not defined. The MLE and
MH methods show very similar behavior of the estima-
tion failure. Estimation failure is closely related to the
fraction of meta-analysis datasets including single-zero or
double-zero studies in the dataset, which can be seen by
comparing Figure 3A and 3B,C. This is because when the
data are highly sparse, estimation becomes more challeng-
ing for both MLE and MH. As a performance measure, we
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FIGURE 5 The bias for the heterogeneity parameter ⊤ obtained by three methods (maximum likelihood estimate [MLE], Vague, and
weakly informative prior [WIP]) is shown. True heterogeneity standard deviation is assumed to be ⊤=0.28 [Colour figure can be viewed at
wileyonlinelibrary.com]

use the bias ( 1
N

∑N
i=1(𝜃̂ − 𝜃)) based on the MLE, the MH

estimator, and posterior medians. The direction of the bias
is also important, since depending on the nature of the
outcome (safety or efficacy), a positive or a negative bias
may be considered conservative . Moreover, the coverage
probability and the mean length of interval estimates for 𝜃
are reported. The coverage probability of 95% for interval
estimates and shorter interval estimates are desirable.

The bias of posterior medians from the Vague, the WIP
and the BBM, and for MLEs from the MLE and for the MH
estimator from the MH across scenarios is displayed in the
first row of Figure 4. Note that failed runs were excluded
from the calculation of performance measures that is rele-
vant only for MLE and MH. The MLE shows unacceptably
high bias for the scenarios with 𝜃 ≤ 0, corresponding to
the scenarios in which the fraction of zero studies is also
very high. On the other hand, the MH estimator clearly
outperforms the MLE and exhibit bias very close to the
WIP. The WIP displays somewhat positive bias whereas
the Vague shows negative bias for the scenarios with 𝜃 ≤

0. This behavior of WIP is expected, since the WIP shrinks
the posterior towards zero. For safety analyses, a positive
bias commonly means a more conservative behavior and
may hence be considered less harmful than a negative bias.
It is important to note that the results of the bias behave
similar to the fraction of zero studies and the fraction of
estimation failure of the MLE, meaning that the bias is
higher in scenarios with more sparse data. Since the Vague
approach uses a vague prior on 𝜃, one might expect a some-
what similar behavior of bias from the Vague and the MLE
approaches. However, the fact that the Vague approach
includes a WIP for 𝜏 and that estimation is based on inte-

gration rather than maximization may be explanations of
the better performance of the Vague method in compar-
ison with the MLE. The WIP and the MH outperforms
the BBM in terms of bias across all scenarios. Performance
in terms of bias is improving for all methods when the
number of studies k is increasing. For Figures 3 and 4, the
curves are not symmetric around zero. This asymmetry is
due to the fact that while the true treatment effect (log-OR)
is varied between −5 and +5, the true baseline risk (prob-
ability) is drawn uniformly between 0.005 and 0.05 in the
simulations.

Figure 4 also shows coverage probabilities and log mean
lengths for 95% HDI obtained by the Vague, the WIP,
the BBM, and for 95% Wald confidence intervals (CIs)
obtained by the MLE and the MH. The CI and HDI
obtained by the MH and the BBM show unacceptably low
coverage especially for 𝜃 < −2. However, the undercover-
age of the BBM and somewhat relative poor performance
in terms of bias may stem from the fact that data are gen-
erated under the BNHM. Also, the CI obtained by the
MLE displays low coverage especially for k = 5. We will
revisit the coverage of the MLE in the discussion. The WIP
method shows higher coverage than nominal level across
all different true treatment effects except for 𝜃 = −5.
On the other hand, the HDI obtained by WIP are shorter
in comparison with HDI obtained by the Vague and CI
obtained by the MLE approaches.

Lastly, the bias for the heterogeneity parameter 𝜏

obtained by three methods (the MLE, the Vague, and the
WIP) are demonstrated in Figure 5. For Bayesian meth-
ods, posterior medians are used as the point estimates.
Recall that the prior used for 𝜏 both in the Vague and the
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FIGURE 6 The motivating pediatric transplantation application when the outcome is death: Top panel displays the observed log-odds
ratios (computed using a continuity correction in case of zero counts). The bottom panel shows mean treatment effect estimates of 𝜃 obtained
by beta-binomial model (BBM), Mantel-Haenszel (MH), maximum likelihood estimate (MLE), Vague, and weakly informative prior (WIP).
Heterogeneity parameter estimates ⊤ are also given on the left [Colour figure can be viewed at wileyonlinelibrary.com]

WIP is weakly informative ( (0.5)). The MLE underes-
timates the true heterogeneity, whereas the Vague and the
WIP methods slightly overestimate it. The Vague and the
WIP produce very similar bias. These observations are in
alignment with the conclusions made by Friede et al.24

6 EXAMPLE REVISITED
Returning to the dataset described in Section 2, we con-
sider the data on death and PTLD outcomes shown in
Table 1. The observed log-odds ratios are displayed in
Figures 6 and 7. To be able to visualize the observed
log-odds ratios when there is a single-zero or double-zero
study, a continuity correction of 0.5 is added to all cells of
the single-zero or double-zero study's contingency table.
The wide CI for observed log-odds ratios reflect the rather
small sample sizes in the datasets. Furthermore, the vari-
ability in the point estimates may be reflected upon to
assess the degree of heterogeneity between trial estimates.

We analyze the datasets using the five methods investi-
gated in the simulation studies, namely, the Vague, WIP,
MLE, MH, and BBM approaches. The code to implement
the MLE and the MH are given in Appendix B. Recall that
the only difference between Vague and WIP is the prior
used for the treatment effect parameter 𝜃 in the model,
namely,  (0, 1002) for the former and  (0, 2.822) for the
latter. WIP can be implemented in a routine data analysis
using our MetaStan package as follows:

The argument delta corresponds to 𝛿 from (5) and
thus is used to calculate the WIP for 𝜃. Alternatively,
one can directly specify the prior parameters for 𝜃,
in our case, equivalently, we can have theta_prior
= c(0, 2.82). The Vague method is simply imple-
mented by omitting the argument delta and specify-
ing theta_prior = c(0, 100). The BBM is also
implemented in MetaStan, and the required syntax is
shown in Appendix C. To check MCMC convergence, we
use the Gelman-Rubin statistics and traceplots. For the
WIP approach, the corresponding traceplots are shown in
Figures A1 and A2 for death and PTLD outcomes, respec-
tively. There was no divergence reported for both datasets.
The MLE fit and the MH estimation for the dataset where
death is the outcome does not cause any warning from
lme4 and metafor, respectively. For the PTLD outcome,
lme4 gives a warning suggesting that the estimates may
not be reliable. Nevertheless, it produces the MLE estimate
and CI for treatment effect parameter, and we report them.
For PTLD outcomes, when computing the MH estima-
tor, metafor gives a warning due to double-zero studies
(double-zero studies are removed from the analysis by
default) but still returns an estimate. Note that both MLE
and MH ignore the double-zero study (Schuller et al30);
hence, the analyses are based on two studies only.

The results for the death and PTLD outcomes from the
five methods are shown in Figures 6 and 7, respectively.
For MLE and MH, the estimates and 95% CI are given. For
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FIGURE 7 The motivating pediatric transplantation application when the outcome is posttransplant lymphoproliferative disease (PTLD):
Top panel displays the observed log-odds ratios (computed using a continuity correction in case of zero counts). The bottom panel shows
mean treatment effect estimates of 𝜃 obtained by beta-binomial model (BBM), Mantel-Haenszel (MH), maximum likelihood estimate (MLE),
Vague, and weakly informative prior (WIP). Heterogeneity parameter estimates ⊤ are also given on the left [Colour figure can be viewed at
wileyonlinelibrary.com]

Vague, WIP, and BBM, posterior medians and 95% HDI
are shown. Both for PTLD and death outcomes, apart from
the BBM, the point estimates of 𝜃 from the four meth-
ods look quite similar. The differing behavior of the BBM
was also observed in the simulations. The PTLD data are
similar to the scenarios when the number of studies is
three, and the true treatment effect is in the range from
0 to 1. Negative bias obtained by the BBM can be seen in
Figure 5 (in the corresponding scenario). The death data
are similar to the scenarios when number of studies is five
(since it is not highly sparse), and true treatment effect
is in the range from −1 to 0. Here, positive bias obtained
by the BBM can be seen in Figure 5 (in the correspond-
ing scenario). Furthermore, the point estimates obtained
by the WIP and the MH are very close as in the simula-
tions. MLE gives shorter interval estimates compared with
Bayesian alternatives, this is (partly) because 𝜏 was esti-
mated as 0. In the original paper, Crins et al26 fitted a
normal-normal hierarchical model using REML,27 and the
risk ratio was used as the measure of the treatment effect.
They concluded that treatment IL-2RA failed to show sta-
tistically significant result for reducing death. We obtained
similar point estimates with somewhat wider interval esti-
mates to Crins et al,26 specifically their risk ratio estimate
was 0.61 (CI, 0.27-1.37), and we obtained the odds ratio
estimate 0.58(HDI 0.20-1.49) using the WIP method. Con-
cerning the PTLD, the risk ratio was estimated as 1.60 (CI,
0.20-12.67) by Crins et al, the odds ratio is estimated 1.9826

(HDI 0.18-25.18) using the WIP method. The wider inter-
val estimates obtained by WIP may stem from the fact that
the uncertainty in 𝜏 is taken into account.

The estimates of the between-trial heterogeneity 𝜏 are
also included in the figure, which are only available for
the Vague, WIP, and MLE. Considering death as outcomes,
the heterogeneity parameter 𝜏 is estimated 0.29, 0.29, and
0.00 using WIP, Vague, and MLE, respectively. Similarly
for the PTLD outcomes, for 𝜏, we obtained 0.33, 0.33, and

0.00 using WIP, Vague, and MLE, respectively. The hetero-
geneity parameter of the BBM 𝜌 is estimated as 0.34 and
0.03 for PTLD and death outcomes, respectively. Moreover,
Crins et al26 concluded that there is no evidence for het-
erogeneity between trials using using Cochrane's Q test for
both death and PTLD outcomes. Since the prior used for 𝜏
is the same for WIP and Vague, similar heterogeneity esti-
mates are expected. The similar 𝜏 estimates by WIP and
Vague were also observed in the simulations (Figure 5). On
the other hand, the MLE estimate (𝜏 = 0.00) is most prob-
ably underestimating the actual amount of heterogeneity.
The underestimation of 𝜏 by MLE and slightly lower bias
of the WIP compared with the Vague was observed in the
simulations (Figure 5).

7 CONCLUSIONS AND
DISCUSSION

An assumption of the homogeneity is often consid-
ered unrealistic for meta-analyses in biomedical sci-
ences; hence, random-effects meta-analysis models are
suggested.6 Furthermore, as can be seen in the CDSR, a
substantial fraction of published meta-analyses is based
on few studies only. On the other hand, fitting a
random-effects models based on only few studies often
poses problems for inference, as certain asymptotics can-
not be relied upon.47 Additional issues arise for binary
outcomes when only few or no events are observed in
some of the studies or study arms. To deal with such data
sparsity in the meta-analysis, we have proposed the use of
WIPs for the treatment effect parameter 𝜃 in a BNHM. We
demonstrated how a normal WIP for 𝜃 can be derived by
considering an a priori interval for the treatment effect on a
log-odds ratio scale. Also, the empirical evidence obtained
from 37 773 meta-analyses with binomial outcomes from
the CDSR supports the proposed WIP. In simulation stud-
ies, the suggested method displays lower bias for 𝜃 and
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substantially shorter interval estimates for 𝜃 with some-
what higher coverage than nominal level in comparison to
alternative methods.

The use of a Bayesian approach exhibits analogy of some
degree to the use of continuity corrections. While conti-
nuity corrections might to some extent be perceived as
ad hoc makeshift fixes, they have also quite doubtlessly
proven very useful in practice. A Bayesian approach tack-
les the problem from a very different angle, but it is not
so surprising that the resulting procedure again exhibits
some similarity to continuity corrections. The relation to
current common practice may in fact also be seen as some-
what comforting. Use of an (informative) prior within a
Bayesian analysis on the other hand is not a desperate
measure; it is rather an integral part of a coherent model
specification that may also be subjected to checks of plau-
sibility and operating characteristics; this is what we have
tried to demonstrate in the present paper.

The simulation results displayed in Figure 4 are some-
what in contrast to the results given by Friede et al,24 who
observed lower coverage than nominal level of MLE meth-
ods in a similar setting, but not based on rare events. We also
investigated a scenario closer to their setup by considering
higher baseline risks between 0.05 and 0.20. The results are
shown in Figure D1, and indeed, here, the MLE method
exhibits lower coverage than nominal level, as reported by
Chung et al22 and Friede et al.24 The high bias and too
wide interval estimates obtained by the Vague and the MLE
are still present, but not as high as in the results of the
simulations in which true baseline risks are lower.

Jackson et al11 investigated seven random-effects
meta-analysis models including the BNHM which we
consider in this paper (model 4 in Jackson et al11) and
another parametrization of the BNHM (model 2 in
Jackson et al11). The only difference in the specification
between the two models is that in their Model 2, the
treatment indicator xik of (3.1) is +1 for the experimental
arm, and 0 for the control arm. Note that commonly used
network meta-analysis models, for example,48 are gener-
alizations of Model 2 in Jackson et al.11 As reported by
Jackson et al,11 we also observe the underestimation of
the heterogeneity parameter 𝜏 and hence decided to only
consider their model 4. On the other hand, it is important
to note that the usage of a WIP for 𝜃 also improves the
performance in model 2, as we have seen for the model 4.

This investigation has some limitations. One crucial
limitation is that we only considered the BNHM as a
data-generating process in our simulation study. Hence,
we did not investigate the robustness of the BNHM under
model misspecification. Also, the design of the simula-
tion study constitutes a model misspecification problem
for the MH method, which is a fixed-effect model, and
for the BBM, which assumes a different underlying

data-generating process. Moreover, we did not consider
other parametrizations of the BNHM as described, eg, in
Jackson et al.11 Lastly, one may find it too restrictive to have
a normal prior for 𝜃 as we have in our proposed model, it
may be worth exploring alternatives like Cauchy or log-F
distributions17,20 for penalization.

The proposed approach is not restricted to the BNHM;
similar approaches may analogously be defined in other
models, eg, a Poisson-normal hierarchical model. How-
ever, a crucial point is that the treatment effect parameter
is explicitly parameterized in the model, so that it can
directly be penalized via the prior specification. Hence,
so-called contrast-based models25 (in which relative treat-
ment effects are assumed to be exchangeable across trials)
are suitable for this purpose unlike arm-based models.
Note that this is also related to the inclusion of baseline
risks as fixed effects with vague priors. This was on pur-
pose as we consider this closest to the idea of stratifying
the analyses by study, a common feature of meta-analyses
regardless of fixed or random-effects. Furthermore, the
contrast-based models such as the BNHM preserve the
randomization, in contrast to the arm-based models as
explained in Dias and Ades.25

The BNHM can be extended to a network meta-analysis
model,49 which is desirable if there are multiple treat-
ments, and/or multiarm trials in the dataset. Even if the
dataset in a network meta-analysis consists of many stud-
ies overall, some of the treatment effects may still be
informed by few studies only. Thus, the use of WIPs for
treatment effect parameters in the context of network
meta-analysis with rare events can be very helpful. Differ-
ent distributions as WIP for 𝜃, different parametrizations
of BNHM, or different data models can be implemented in
Stan or MCMC methods in general. Although, currently,
our package MetaStan is restricted to use a BNHM and
BBM for pairwise meta-analysis, we will consider to extend
it to conduct meta-analysis and network meta-analysis
with flexible data model and prior options in the future.
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HIGHLIGHTS

What is already known: Standard random-effects
meta-analysis methods are not suitable for meta-analysis
of few studies with rare events.
What is new: To deal with data sparsity present in
the random-effects meta-analysis of few studies with rare
events, we suggest the use of weakly informative priors as
penalization for the treatment effect parameter.
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Potential impact for RSM readers outside the
authors' field: To make it more accessible to
meta-analysts, a publicly available R package, MetaStan,
is developed for fitting Bayesian meta-analysis models
using weakly informative priors.
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APPENDIX A: HOW TO USE THE METASTAN R
PACKAGE

The stable version of MetaStan is avail-
able on CRAN (https://CRAN.R-project.org/
package=MetaStan) and can be installed as follows:

The example described in the text (Crins dataset) is
available in the package, and it can be loaded as follows:

Additional information can be obtained by typing
?dat.Crins2014 (for any dataset and function in the
package).
meta_stan is the main fitting function of this package.

The main computations are executed via the rstan pack-
age's sampling function. We can fit the binomial-normal
hierarchical using a WIP for treatment effect as follows:
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FIGURE A1 Traceplots for the estimated parameters 𝜃 and ⊤ including burn-in for death outcomes [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE A2 Traceplots for the estimated parameters 𝜃 and⊤including burn-in for posttransplant lymphoproliferative disease (PTLD)
outcomes [Colour figure can be viewed at wileyonlinelibrary.com]
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Convergence diagnostics and the results can be very
conveniently obtained using the shinystan package as
follows:

Traceplots for the estimated parameters 𝜃 and 𝜏 includ-
ing burn-in are shown in Figures A1 and A2 for death and
PTLD outcomes, respectively.

Lastly, the posterior summary statistics can be obtained
using the following command:

APPENDIX B: R CODE TO IMPLEMENT
BNHM USING THE MLE AND THE MH
METHODS

Firstly, the BNHM using the MLE:

Secondly, the MH method:

APPENDIX C: R CODE TO IMPLEMENT THE
BBM METHOD

APPENDIX D: ADDITIONAL SIMULATION
RESULTS

We also conducted simulations using the same settings
as described in Section 5 under BNHM, but using higher

baseline risk probabilities, specifically, baseline risks (𝜇i)
are uniformly taken between 0.05 and 0.2. Results are
illustrated in Figure D1 (analogous to Figure 5).
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FIGURE D1 Simulations with high baseline risks: The bias for the mean treatment effect 𝜃, coverage probabilities, and log mean length of
the interval estimates for 𝜃 obtained by three methods (maximum likelihood estimate [MLE], Vague, and weakly informative prior [WIP])
are shown [Colour figure can be viewed at wileyonlinelibrary.com]
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