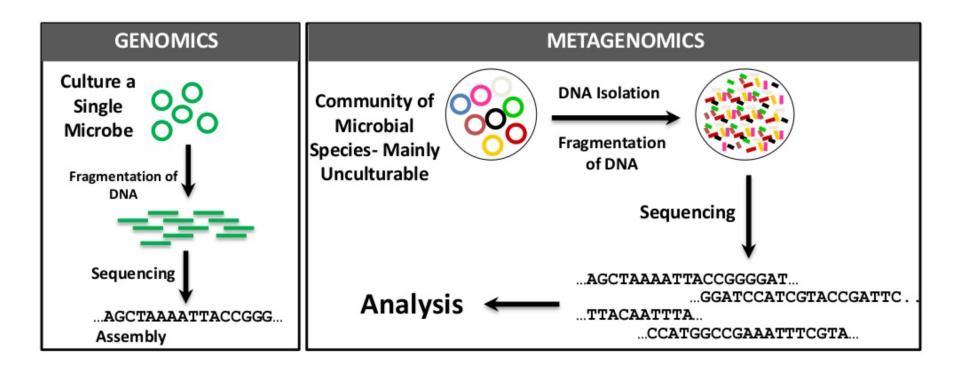
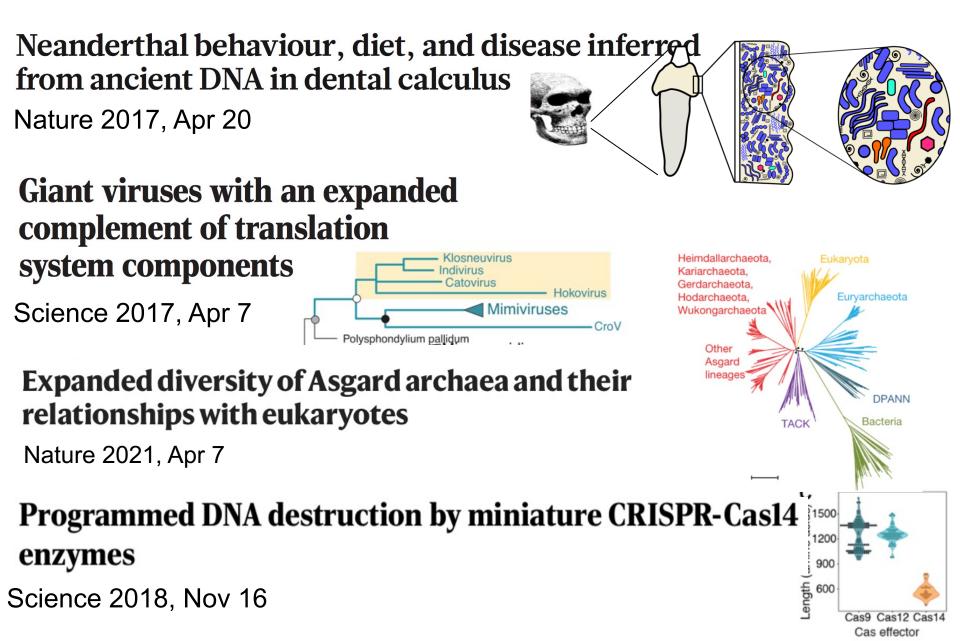
Recap of day 1

- What does it mean that two proteins are homologous?
- What is homology inference?
- What is a P-value? What is an E-value?
- How can we still find homologies between eukaryotic, bacterial and archaeal proteins, given the many mutations per amino acid since the Last Common Ancestor of all life)?
- Give another name for amino acid substitution matrix that would make sense.
- How are substitution matrix scores computed?
- How are sequence profile scores computed?
- What is iterative profile search? What tools exist?
- What are protein domains? What is their relevance?
- Why are some parts of proteins disordered (unstructured)?
- What are the key ideas of the algorithm to compute the bestscoring alignment between two sequences?

With metagenomics we can study the ~99% uncultivable microbes by sequencing their DNA directly from environment



Metagenomics age of enlightenment



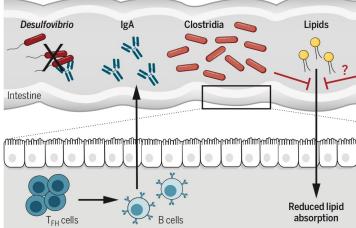
Metagenomics age of enlightenment

Neonatal selection by Toll–like receptor 5 influences long–term gut microbiota composition Nature 2018, Aug 23

Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth

Nature 2019, Oct03

T cell-mediated regulation of the microbiota protects against obesity Science 2019, Jul 26



The microbiota regulate neuronal function and fear extinction learning

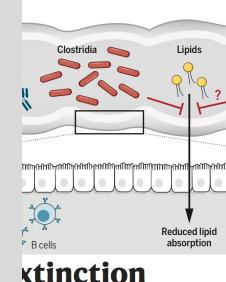
Nature 2019, Oct 23

Potential role of indolelactate and butyrate in multiple sclerosis revealed by integrated microbiome-metabolome analysis

Cell Rep Med 2021, Apr 20

Metagenomics age of enlightenment

Neonatal selection by Toll–like receptor 5 influences long-term gut microbiota composition Nature 2018, Aug 23



Stunted Applications:

- Human health (gut, skin, ...)
 - Ecology & climate
- Enzymes for biotechnology
- New drugs and natural compounds
 - Evolution, tree of life

learning

The micro

Nature 2019

T cell-m

microbi

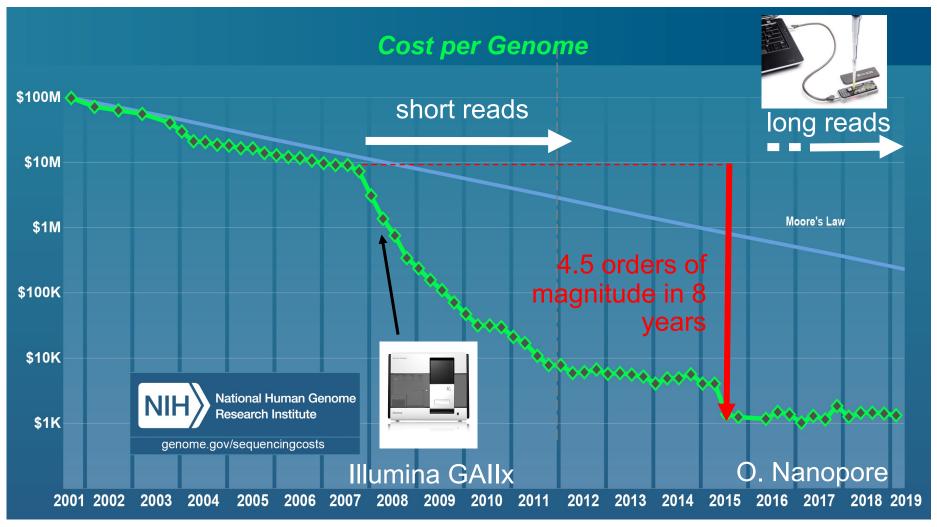
Science 20

Nature 2019, Oct 23

Potential role of indolelactate and butyrate in multiple sclerosis revealed by integrated microbiome-metabolome analysis

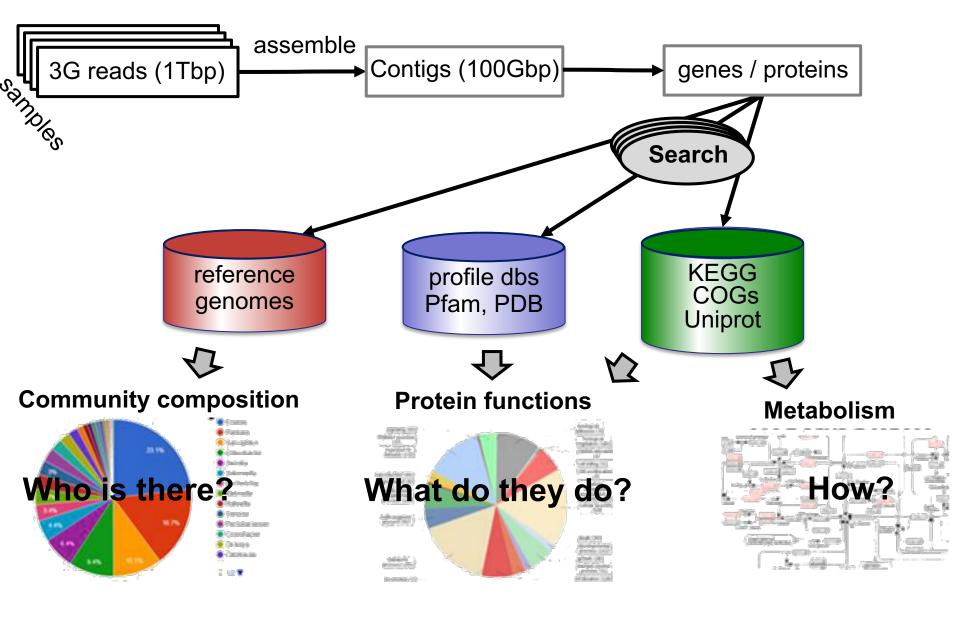
Cell Rep Med 2021, Apr 20

Metagenomics is driven by fast-decreasing sequencing costs

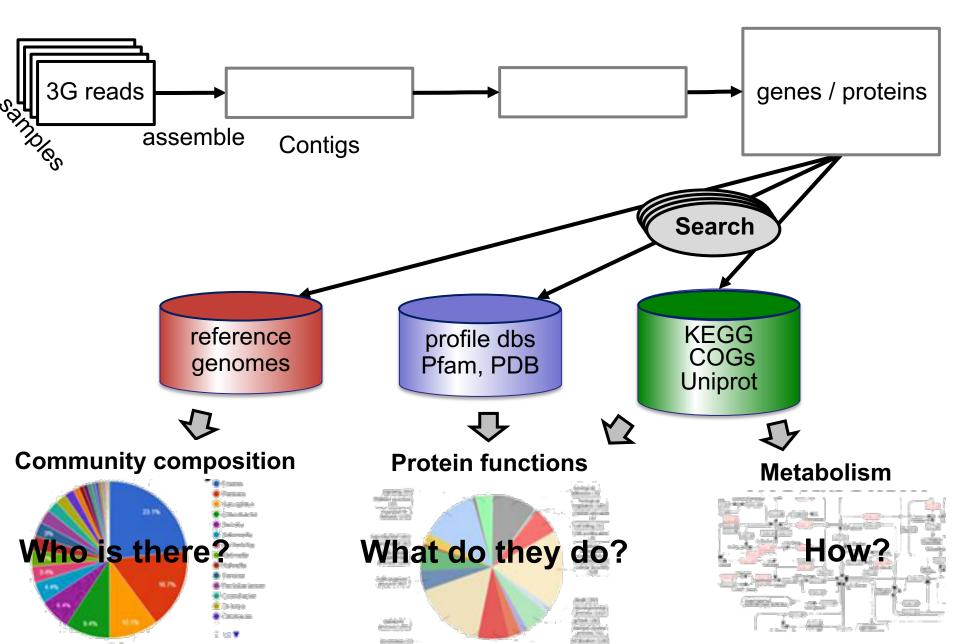


- Costs for computing by far exceed sequencing costs
- Bottleneck: sequence searches

Shotgun metagenomics data analysis



Shotgun metagenomics data analysis



MICROBIOLOGY

nature

Metagenomics

Philip Hugenholtz and Gene W. Tyson

Vol 455 25 September 2008

What other bottlenecks are there?

The gap between characterized and hypothetical proteins identified in metagenomes is widening at an alarming rate. Next to computational resources, uncharacterized gene products are likely to be the biggest bottleneck for the foreseeable future. This means that our under-

Often, 50%-90% of ORFs remain unannotated: no function, no taxon

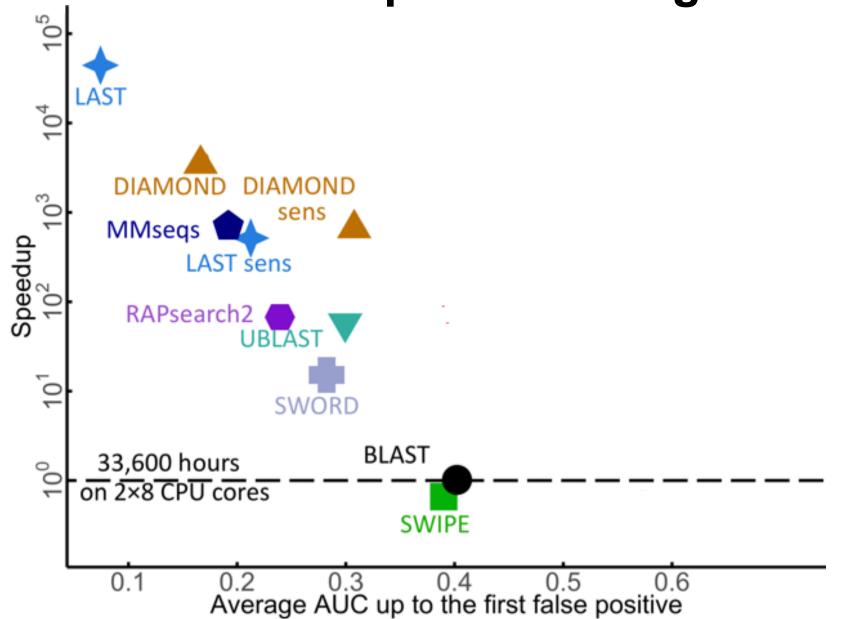
MMseqs2

Ultrafast and sensitive sequence and profile searches

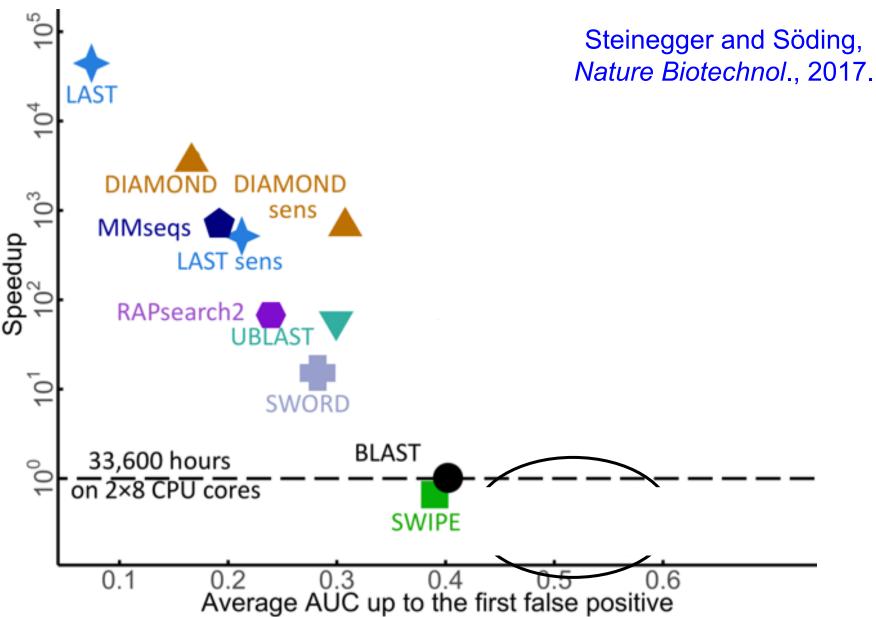
Martin Steinegger

with Milot Mirdita, Eli Levy Karin, Clovis Galiez, Ruoshi Zhang

Faster but less sensitive search tools have been developed for metagenomics

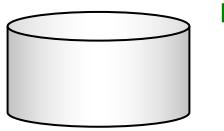


MMseqs profile searches 300 times faster and more sensitive than PSI-BLAST



Fast and sensitive prefilter is most critical part for search performance

Reduces search space 10⁵-fold while losing few true positives



k-mer-based prefilter

10⁹ sequences

10⁴ sequences

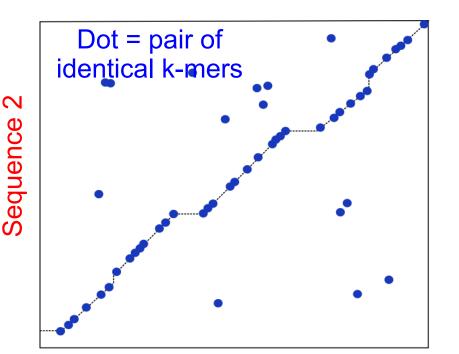
Key ideas for prefilter in MMseqs

Match long & similar k-mers VRLSLCW FLCYAGD VCYSGN
Two k-mer matches without gap in-between
Sequence profiles!
No random memory access in innermost loop

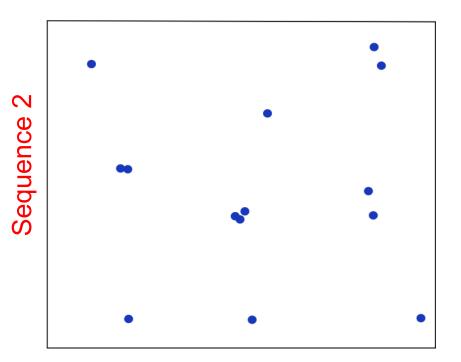
Conventional alignment-free comparison: count identical k-mers

Sequence 1VRLSPLCWYAGDSequence 2VRLSPLCWYAGD

Homologous proteins



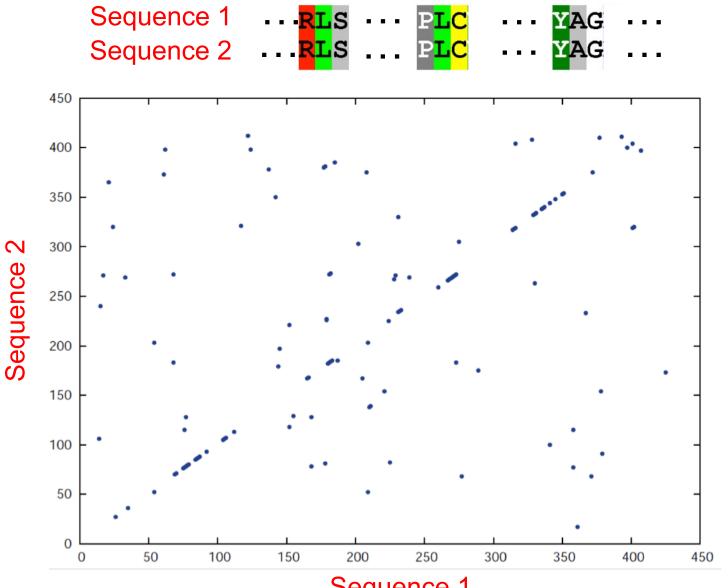
Unrelated proteins



Sequence 1

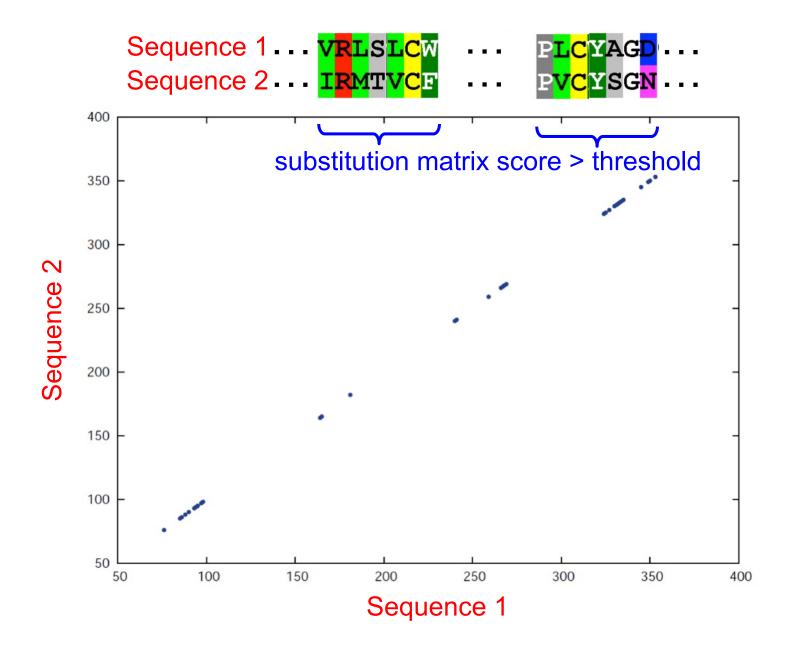
Sequence 1

Most 3-mer matches occur by chance

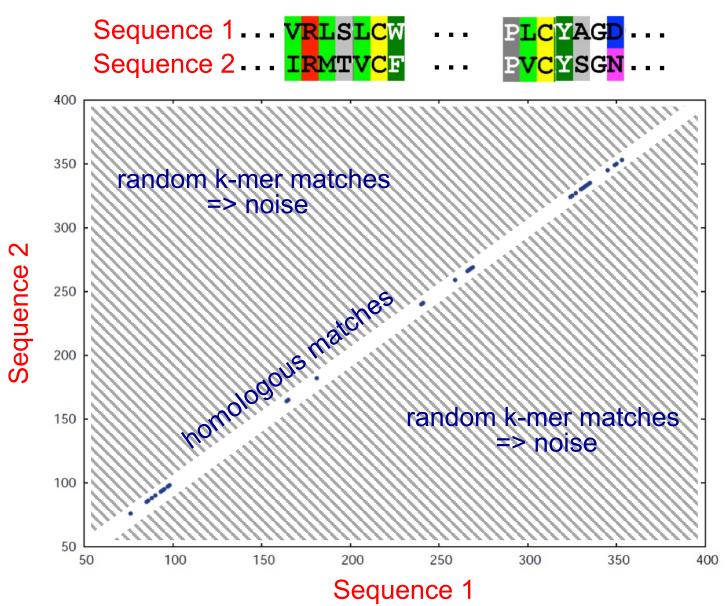


Sequence 1

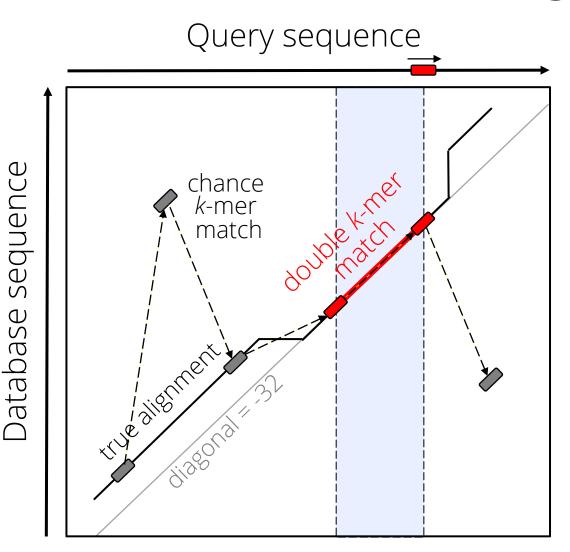
MMseqs: sum scores of similar 7-mers



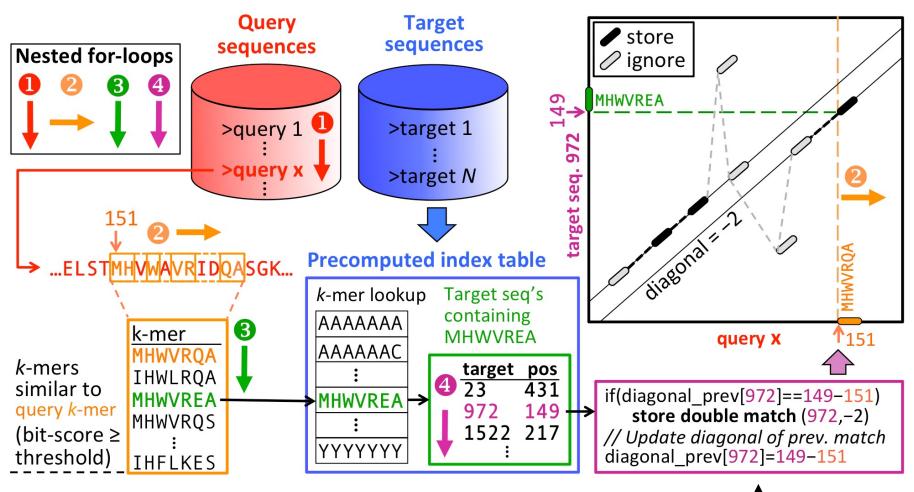
But: how to suppress the many random matches in hatched part of matrix?



Find db sequences with 2 consecutive *k*-mer matches on same diagonal



Find 2 consecutive *k*-mer matches on same diagonal

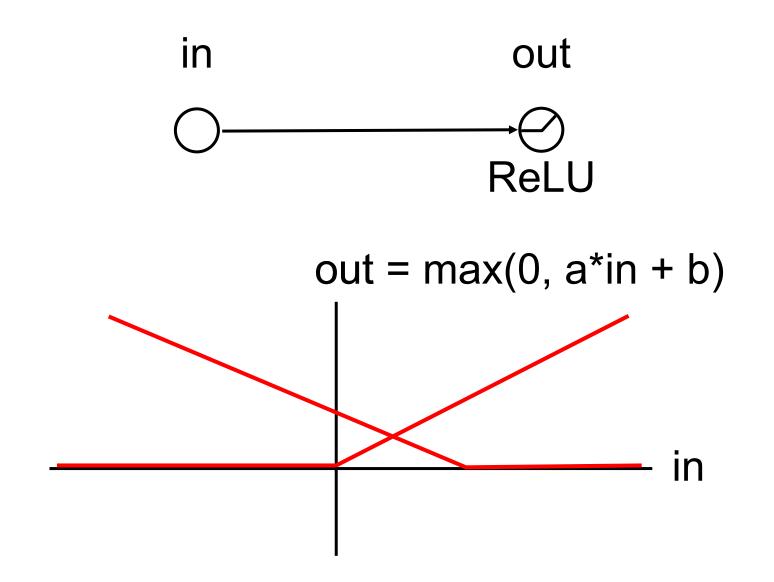


CPU cache optimized!

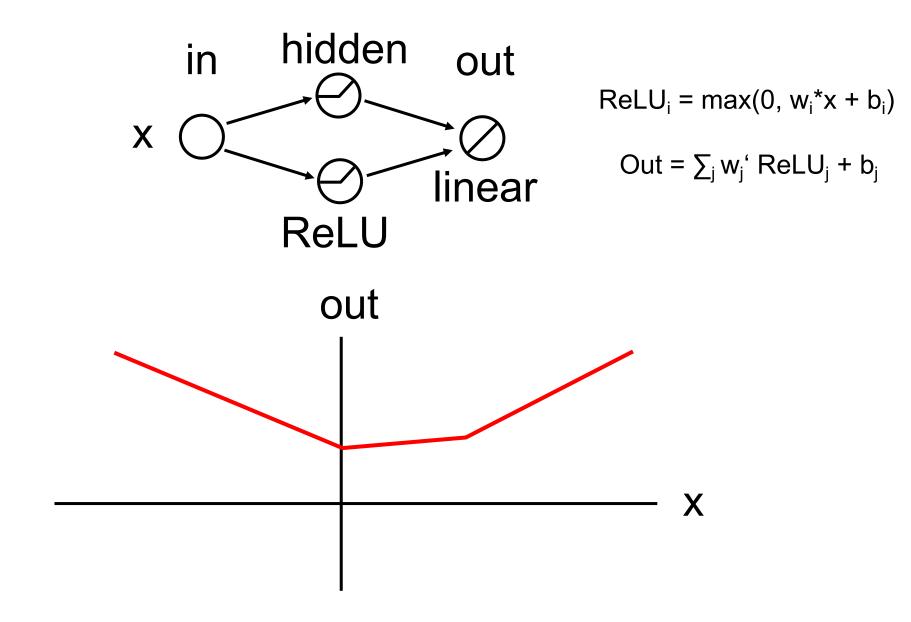
Executive summary

Whizz tour into deep learning

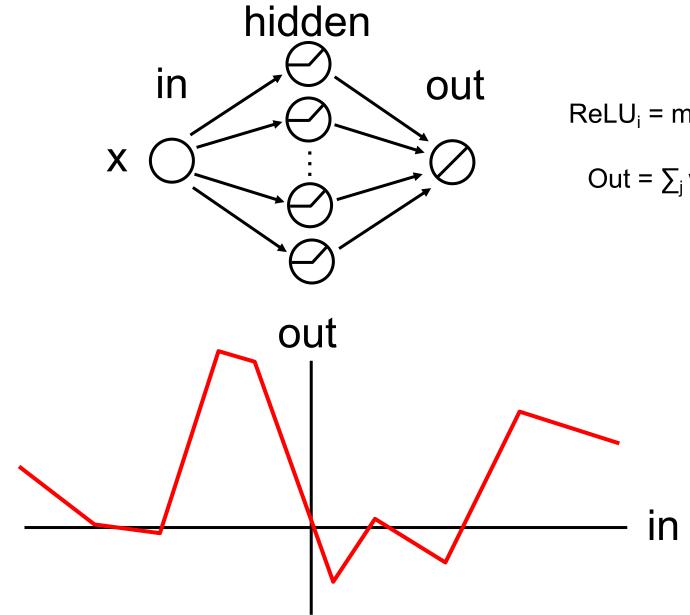
A rectifying linear unit (ReLU) – the basic nonlinear unit of neural networks



Two rectifying linear units combined linearly



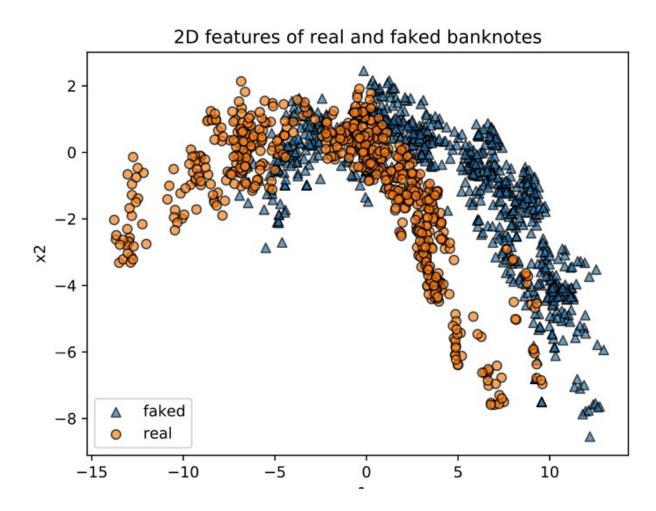
Ten rectifying linear units combined linearly



 $ReLU_{i} = max(0, w_{i}^{*}x + b_{i})$

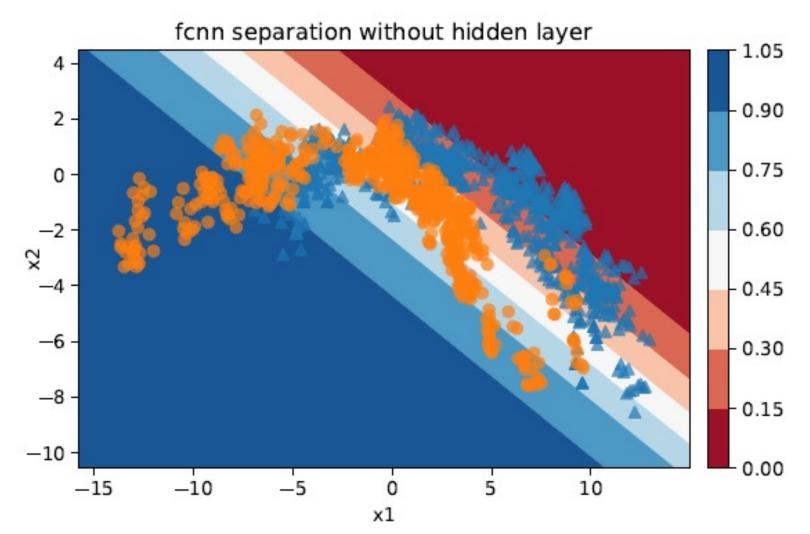
$$Out = \sum_{j} w_{j}^{i} ReLU_{j} + b_{j}^{i}$$

Dense neural networks can approximate any multivariate function arbitrarily well

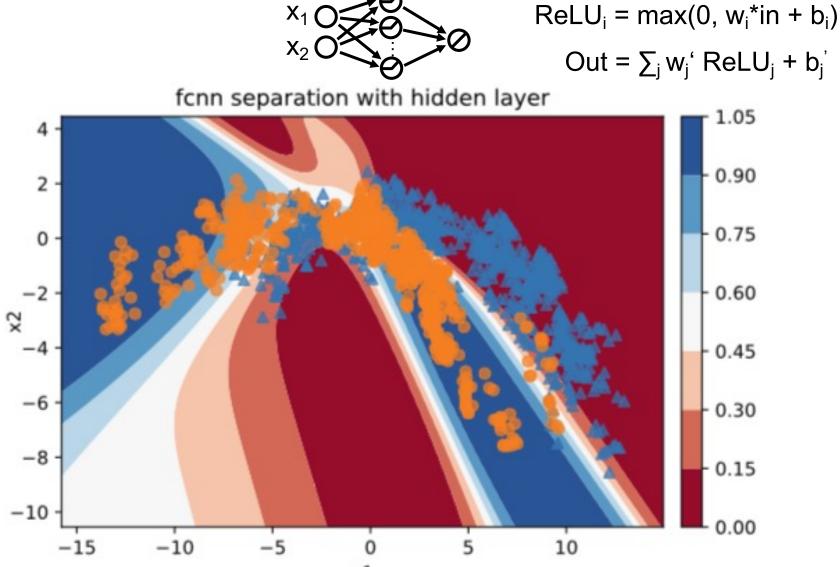


Dense neural networks can approximate any multivariate function arbitrarily well

$$x_1 O \longrightarrow 0$$
 out = $w_1 x_1 + w_2 x_2 + b$

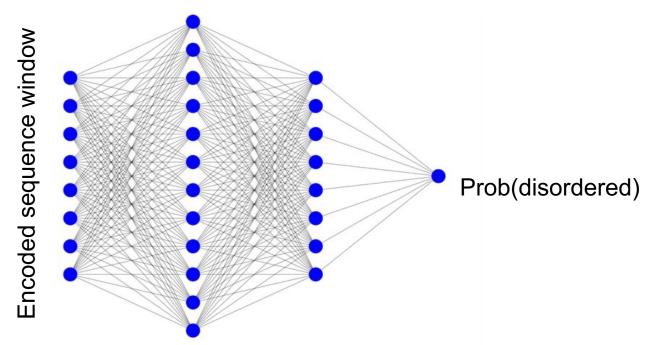


Dense neural networks can approximate any multivariate function arbitrarily well



x1

Neural networks can be trained with training data to learn any multivariate function (somewhat well)



Many technical tricks have been developed for this to work well. Most important:

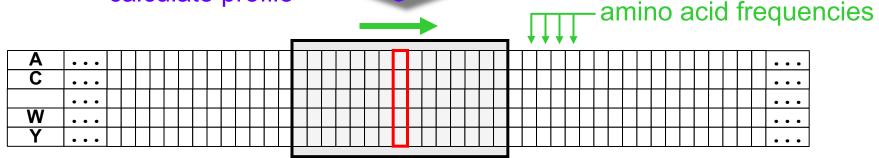
- Back-propagation = efficient way to compute partial derivatives of outputs with respect to each of the neural network weights (given the training data)
- Stochastic gradient descent
- Automatic differentiation

How disorder prediction works

Query ... DPLLIAETLRQAAMLVFHAGYGVPVGYHFLMATLDYTCHLDHLGVS...

PSI-BLAST / HHblits search

homologs



use **neural network** to predict disorder from windows

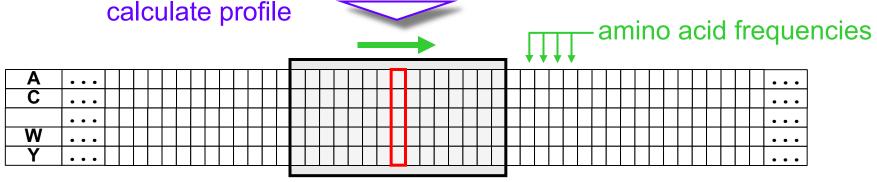
The neural network has learnt pattern \leftrightarrow disorder/order relations

Best methods reach per-residue accuracy ~ 80%, but what is disorder really?

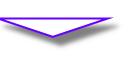
How secondary structure prediction works

PSI-BLAST / HHblits search

homologs



use **neural network** to predict SS from windows

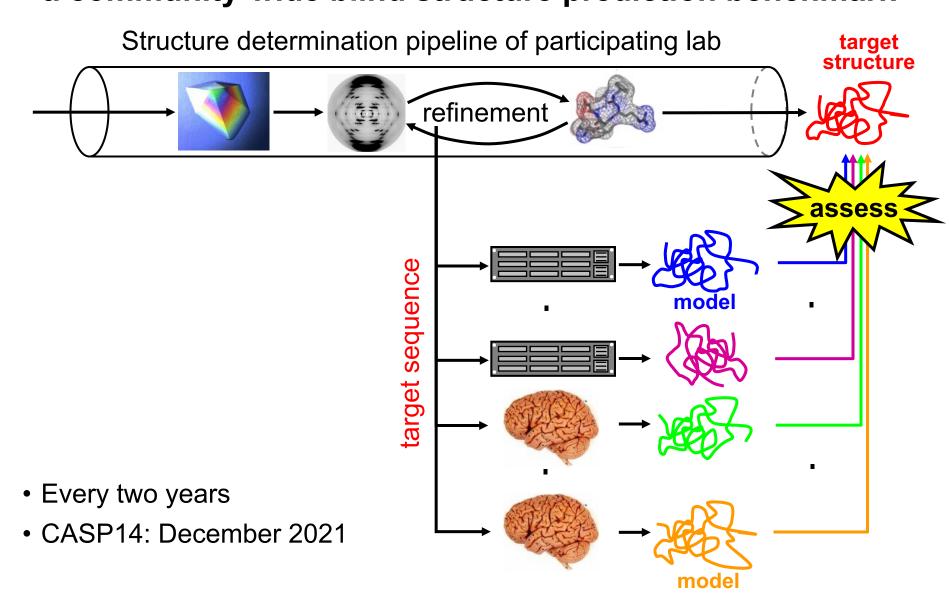


The neural network has learnt pattern \leftrightarrow SS state relations

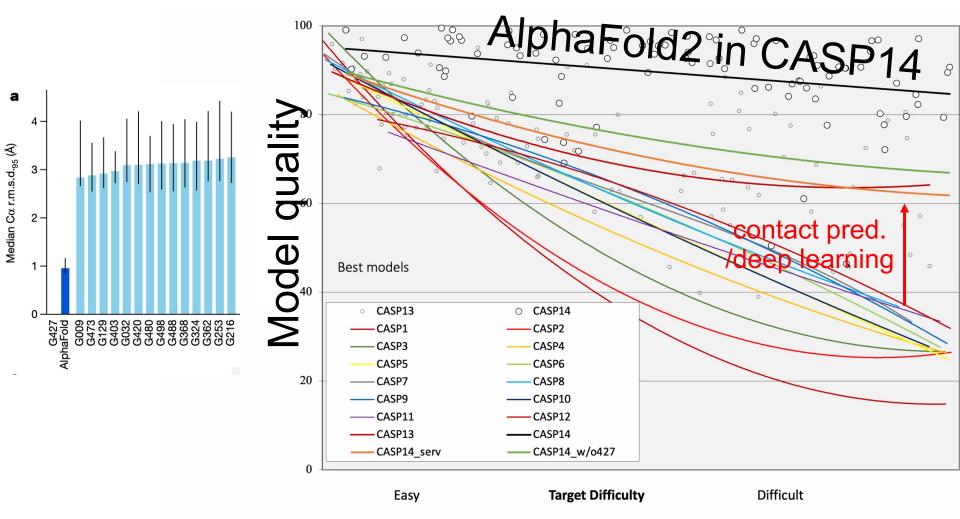
Best methods reached per-residue accuracy up to ~ 85%

Protein structure prediction with AlphaFold

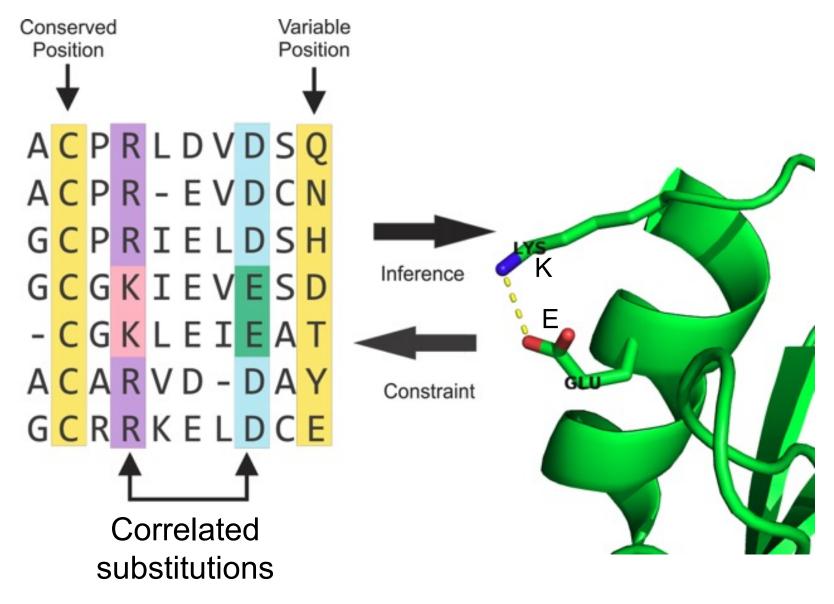
Critical Assessment of Structure Prediction a community-wide blind structure prediction benchmark



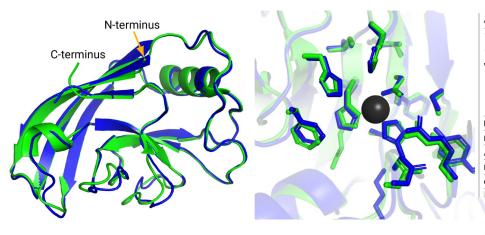
Big leap in recent protein structure prediction benchmark CASP14 (Dec 2020)



Correlated substitutions in multiple sequence alignments predict residue-residue contacts



AlphaFold is transformative for protein bioinfo., structural biology & biotechnology



DEEPMIND'S AI PREDICTS STRUCTURES FOR A VAST TROVE OF PROTEINS

AlphaFold neural network produced 'transformative' database of more than 350,000 structures.

Article

Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-	038
Received: 11 May 2021	
Accepted: 12 July 2021	
Published online: 15 July 2021	
Open access	
Check for undates	

John Jumper^{1,483}, Richard Evans¹⁴, Alexander Pritzel¹⁴, Tim Green¹⁴, Michael Figurnov¹⁴, Olaf Ronneberger^{1,4}, Kathryn Tunyasuvunakool¹⁴, Russ Bates¹⁴, Augustin Židek¹⁴, Anna Potapenko¹⁴, Alex Bridgland¹⁴, Clemens Meyer¹⁴, Simon A. A. Kohl¹⁴, Andrew J. Ballard¹⁴, Andrew Cowie¹⁴, Bernardino Romera-Paredes¹⁴, Stanislav Nikolov¹⁴, Rishub Jain¹⁴, Jonas Adler¹, Trevor Back¹, Stig Petersen¹, David Reiman¹, Ellen Clancy¹, Michal Zielinski¹, Martin Steinegger²³, Michalina Pacholska¹, Tamas Berghammer¹, Sebastian Bodenstein¹, David Silver¹, Oriol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Pushmeet Kohli¹ & Demis Hassabis¹⁴²⁵

Article

Highly accurate protein structure prediction for the human proteome

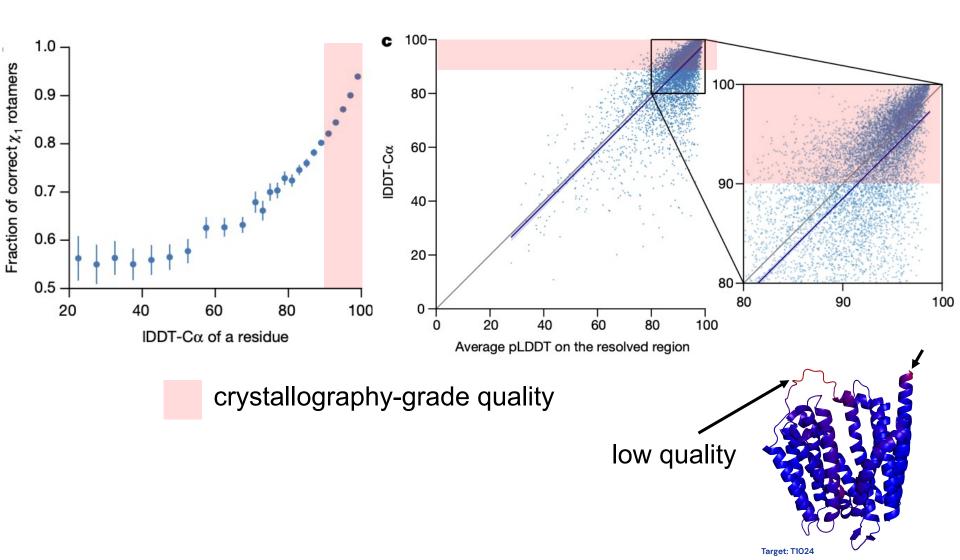
https://doi.org/10.1038/s41586-021-0382	8
Received: 11 May 2021	
Accepted: 16 July 2021	
Published online: 22 July 2021	
Open access	

Kathryn Tunyasuvunakool¹⁸³, Jonas Adler¹, Zachary Wu¹, Tim Green¹, Michal Zielinski¹, Augustin Židek¹, Alex Bridgland¹, Andrew Cowie¹, Clemens Meyer¹, Agata Laydon¹, Sameer Velankar², Gerard J. Kleywegi², Alex Bateman², Richard Evans¹, Alexander Pritzel¹, Michael Figurnov¹, Olaf Ronneberger¹, Russ Bates¹, Simon A. A. Kohl¹, Anna Potapenko¹, Andrew J. Ballard¹, Bernardino Romera-Paredes¹, Stanislav Nikolov¹, Rishub Jain¹, Ellen Clancy¹, David Reiman¹, Stig Petersen¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Ewan Birney², Pushmeet Kohl¹¹, John Jumper^{1,38} & Demis <mark>Hassabis^{1,383}</mark>

By the end of this year, EMBL EBI will hold structural models of 130 million proteins

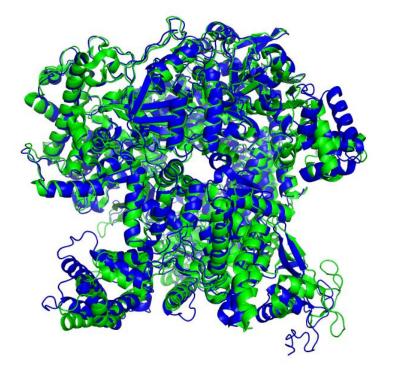
"Everything that relies on a protein sequences we can now do with protein structures" (Mohammed AlQuraishi , Columbia U.)

Most predictions by AlphaFold are crystallography-grade ... and the prediction of local quality is excellent



© 2020 DeepMind Technologies Limited

Protein example: T1044 (RNA Polymerase)



6VR4: Leiman, P.G., et al. Virion-packaged DNA-dependent RNA polymerase of crAss-like phage phi14:2 (CASP target). (To be published.)

> Folding as a single long chain

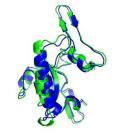
Long-chain-trained model trained after the submission

Individual domains

T1042

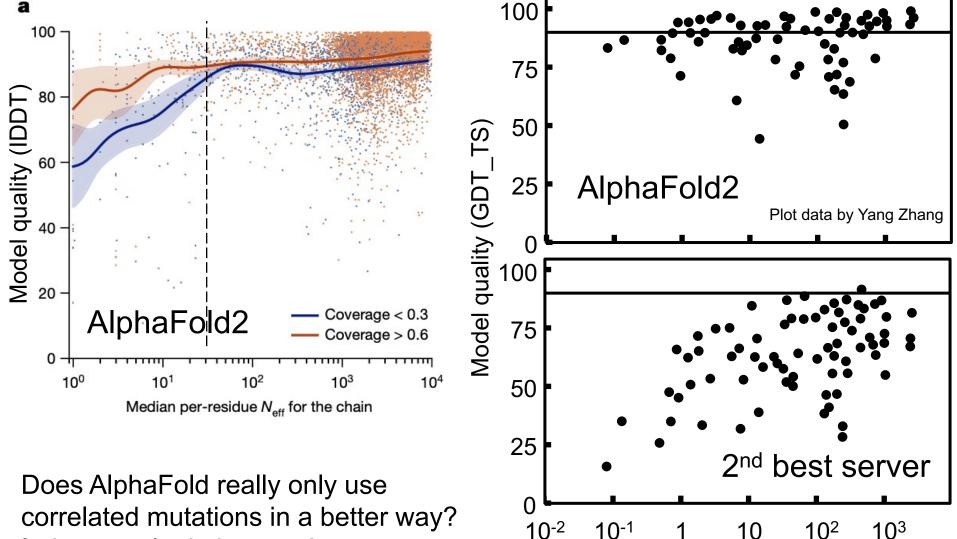
T1041

Ground truth Prediction



T1043

AlphaFold2 can predict accurate models with only 30 sequences in the MSA (and others cannot)

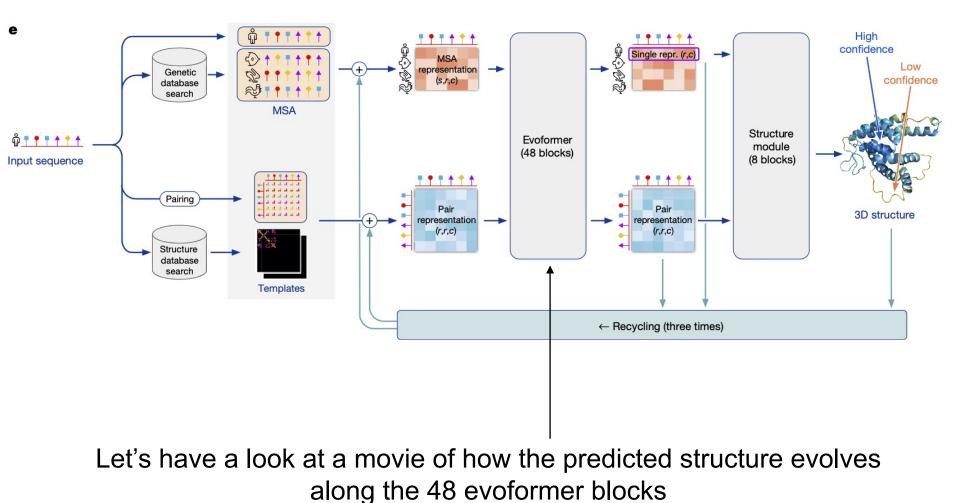


10

Neff (MSA diversity)

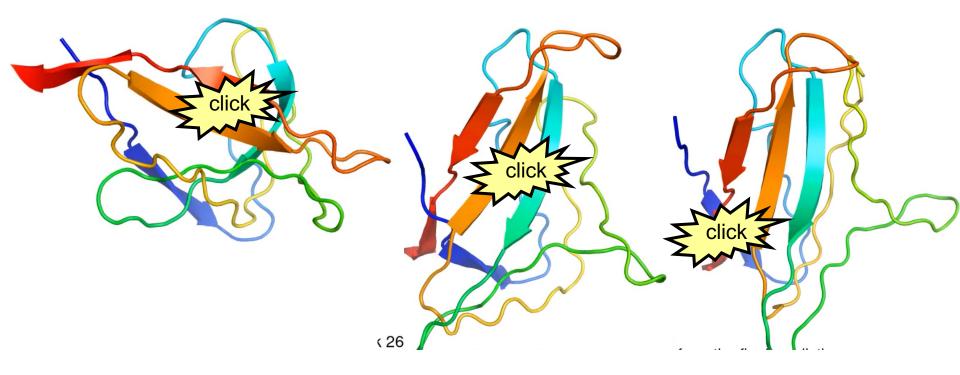
correlated mutations in a better way? It does not look that way!

AlphaFold evolves abstract representation of MSA and of residues pairs which improve each other step by step (by "attention")

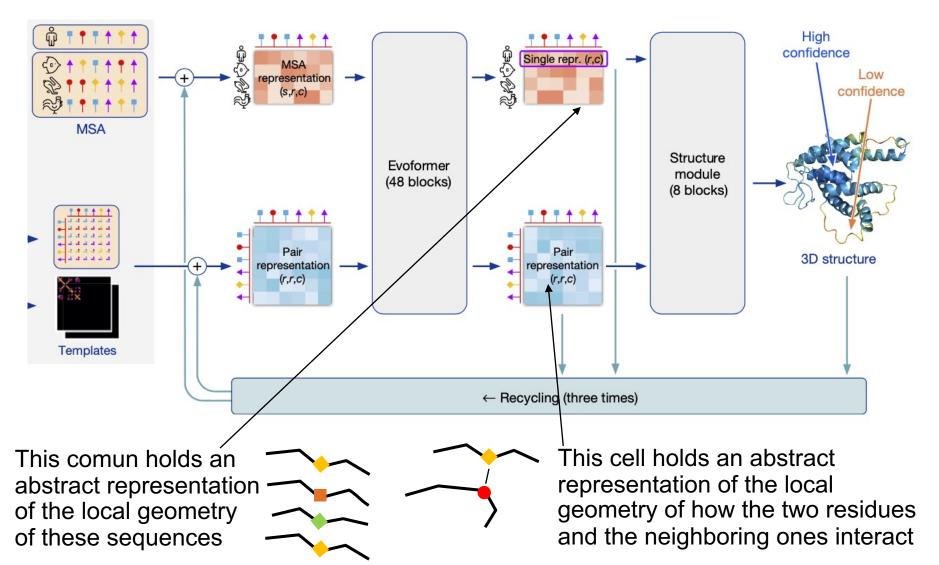


AlphaFold learns from structure-MSA pairs what local sequences are compatible with which interacting local backbone geometries – because the local sidechain packing works

(this is my personal take – but I am quite convinced)



AlphaFold evolves abstract representation of MSA and of residues pairs which improve each other step by step (by "attention")



What does that mean for biology?

- "This will change medicine. It will change research. It will change bioengineering. It will change everything." Andrei Lupas, MPI Developmental Biology Tübingen. See <u>https://www.nature.com/articles/d41586-020-03348-4</u>
- "AF2 is profoundly transformative because it may do for structure what DNA sequencing did for genomics." Mohammed AlQureishi, Harvard

https://moalquraishi.wordpress.com/2020/12/08/alphafold2-casp14-it-feels-like-ones-child-has-left-home/

 Next tasks expected to be tackled by deep learning: protein complexes, protein conformations, protein dynamics, RNA structure, protein-DNA, ligand binding, protein design!, ligand design!

sufficient training data?

Thanks for your participation!

(now prof. at SNU Korea)

Söding lab (pre-Corona)

See you back at 13:30h ③