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Goals for next 1 ½ days

• Protein structure and sequence conservation
• Homology-based inference and sequence similarity 

searches
• P- and E-value
• Sequence alignment (dynamic programming)

→ Role of algorithms in bioinformatics
• Sequence profiles: information is power! 
• MMseqs, basic analyses of metagenomics dataset
• (Genome assembly)
• Structure databases
• AlphaFold



Sequence identity
60%
40%
20%

RMSD in 
conserved core

0.85 Å
1.2 Å
1.8 Å

Fraction in core

95%
80%
55%

Protein structure is highly conserved even
without obvious sequences similarity

[Chothia & Lesk 1986]



Protein sequence determines structure! 

Allostery; misfolded proteins 
(Alzheimer’s, prions); chaperones (GroEL, Hsp70,Hsp90,…) 

Anfinsen‘s experiment

If all the information to correctly fold a protein is contained in its amino acid 
sequence, we should be able to predict its structure from its sequence! 

Anfinsen CB. "Principles that govern the folding of protein chains". Science 1973

Computational chemistry: uncover the rules of protein folding from first 
physical principles
Do you know “exceptions” to Anfinsen? (3)



From comparative protein structure
modeling to deep learning and AlphaFold

Comparative modeling has been the mainstay of protein 
structure prediction up to now. It relied on the fact that 
homologous proteins (those related by common ancestry) 
usually have very similar structures. If a protein with 
known structure can be found that has sufficiently high 
sequence similarity, the two are likely to be homologous, 
and the unknown structure can be modeled using the 
known structure as a template. 
Comparative modeling is now superseded by deep neural 
networks (transformers) such as AlphaFold, trained on all 
~160k protein structures.



Homologous =  
descended from common ancenstor

query protein homologous protein

2B years

similar structure
similar function

ancestral protein



Homology-based inference
of protein structure and function

2B years

query protein

sequence DB

sequence search

homologous
sequence found

with known structure
or functions

predict structure
and/or function of

query from those of
database match

When are two sequences
similar enough to ascertain
homology?
→ E-value < 0.01



Score
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P-value = prob(Score > S)

distribution of similarity 
scores between query and 

unrelated sequences  

Null hypothesis (boring “hypothesis of randomness”): query sequence is not 
in any way related to database sequence, similarity score is “random”.
Can we reject this null hypothesis (assume the db sequence is homologous)?
The sequence similarity score (our “test statistic”) has a distribution with only 
two parameters which we can compute. J

When are two sequences similar enough to
ascertain homology?

S = Score between query and 
matched db sequence

S
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P-value = area

Score distribution 
if null hypothesis 

is correct

Given: a null hypothesis (boring “hypothesis of randomness”) and 
a score (“test statistic”) with known distribution under the null hypothesis
Goal: find interesting cases for which the null hypothesis can be rejected
P-value = the probability to obtain a score as observed or more extreme, 
under the null hypothesis. 
A small P-value (e.g. < 0.01) indicates the null hypothesis can be rejected.

s

Small P-value: reject null hypothesis



E-values
P-value = the probability to obtain a score as observed or more extreme
under the null hypothesis

Suppose you searched a sequence database with a query sequence and 
you obtained a match with a P-value = 1E-6. Can you trust this matched 
sequence to be homologous to your query?

Suppose your sequence database contains 108 sequences. 
Can you trust the matched sequence with a P-value = 1E-6 to be 
homologous to your query?

No! Each db sequence has a probability of 1E-6 to have a P-value < 1E-6 
by pure chance alone. So the expected number of db sequences to 
achieve a P-value < 1E-6 is    

E = 108×1E-6 = 100 !
Therefore, the match is not at all trustworthy.



E-value = expected number of observations 
at least as extreme as the one observed

P-value = Probability for event with score ≥ s under the 
null hypothesis 

1

2 E-value = Expected number of events out of Ntests trials 
with score ≥ S under the null hypothesis

E-value = Ntests x P-value
similar to 

Bonferroni
multiple testing 

correction

Score

de
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E-value = Ntests x P-value

Score distribution 
for non-homologous 

sequences

total area = Ntests

s



Distant homology can predict function



Distant homology can predict function
Type VI secretion 

(trimeric unit)
phage T4

needle and spike



How can we infer common descent
over time spans of billions of years?



Hydrophobic residues form the domain cores
aliphatic V L I M A C
aromatic F W Y
small S T P G
polar N Q
negative D E
positive K R H

Example: protein with a 
ferredoxin fold
Most hydrophobic side chains
extend into the protein core



aliphatic V L I M A C
aromatic F W Y
small S T P G
polar N Q
negative D E
positive K R H

Hydrophobic residues form the domain cores
The protein core is tightly 
packed…



aliphatic V L I M A C
aromatic F W Y
small S T P G
polar N Q
negative D E
positive K R H

Hydrophobic residues form the domain cores
The protein core is tightly 
packed with mainly 
hydrophobic residues

Molecular 3D Puzzle



Core residues are often well conserved
a b c dA B

A

B

a

b
c

d

N

Note the conserved 
hydrophobic
columns in strands 
and helices. 
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The space of foldable sequences is like 
small islands in a vast ocean …

… of sequences that do not form stable structures

Island-hopping is therefore very rare

Less than ~ 10-10 is covered by islands of stability. 
The rest is water.

fold X

fold Y

fold Z

fold W, W‘



We can predict the structure and function of proteins 
based on sequence similarity to homologous proteins 

Structures and functions of 
proteins may be conserved 

over billions of years

Homology (common descent) 
can often be predicted

from sequence similarity

2B years

Homology-based protein structure and
function prediction is powerful



We can predict the structure and function of proteins 
based on sequence similarity to homologous proteins 

Structures and functions of 
proteins may be conserved 

over billions of years

Homology (common descent) 
can often be predicted

by aligning sequence profiles
built from closer homologs

2B years

Homology-based protein structure and
function prediction is powerful



Homologous =  
descended from common ancenstor

query protein homologous protein

2B years

similar structure
similar function

ancestral protein



How is it that we can infer common descent
over time spans of billions of years?

• Sequence evolution is highly constrained by the requirement of
a stable structural core

• Every fold has a specific 3D jig-saw
puzzle logic of how its side-chains
interlock, which is highly conserved

• This logic is reflected in a protein‘s
multiple sequence alignment: 
in pattern of conserved hydrophobicity
and amino acid properties

• By comparing multiple alignments we can detect similar
patterns that indicate the same 3D folding logic



Sequences are diverged beyond recognition at 
those time scales

We and others develop tools to build and 
compare multiple sequence alignments of closer 

homologs 

From the similarity score we obtain an E-value. 
When E < 0.01, homology is likely.

Structure and function of protein domains 
are often conserved over billions of years



Domains are the building blocks of proteins
- their structural, functional, and evolutionary units

• Most eurkaryotic proteins have multiple structural domains
• Domains have often been duplicated and rearranged during evolution

We can often formulate hypotheses about protein function 
based on its domains



Many parts in eukaryotic proteins are 
disordered (or natively unfolded )

What do they do?

…disordered ordered

Natively unfolded residues in human proteome: 37% - 50%
Fewer in simpler eukaryotes
Much fewer in bacteria and archaea (only 3%-25% of their
proteins contain disordered regions > 50 aa)



pKID domain of CREB
binding to KIX domain 
of CREB-binding protein (CBP)

Disordered regions are interspersed with 
short linear motifs that can bind to specific  

target domains

Dyson and Wright, Mol Cell Biol (2005)

Short linear motifs fold upon binding to their target domain 



Liquid-liquid phase separation –
a long-known phenomenon 

now revolutionizing cell biology
Many types of membraneless 
droplets exist in cytosol and 
nucleus of eukaryotic cells:
nucleolus, stress granules, P-
bodies, splicing speckles,…

Multivalent weak interactions Liquid-liquid 
phase 
separation 
is involved 
in almost 
every 
cellular 
process in 
eukaryotic 
cells

P

P

Alberti et al, Cell 2019Shin & Brangwynne, Science 2017



5 minutes J



Sequence searching 



Sequence-sequence comparison

• A sequence alignment groups similar residues into same 
column. These residues are assumed to occupy homologous 
positions in the proteins

• Alignment score = sum of similarity scores − gap penalties:

Score = S(V,I)+…+S(V,I)+…+S(E,G)+…+S(G,G) – d – e

• Find alignment with maximum score, rank by score

HBA_human  ... VKAAWGKVGA--HAGEYGAE ...

GLB1_glydi ... IAATWEEIAGADNGAGVGKD ...



Alignments correspond 1:1 to paths in dynamic progr. matrix

-1 1 -1
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1
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1
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GAATTCAG-TT-
--ATT-AGGTTT

Scores:
match = +1
mismatch = -1
Gap = -1

-1 1 -1 -1-1 -1 1T -1 1
-1 1 -1 -1-1 -1 1T -1 1 1

1

-1 1
-1

Corresponding 
alignment:

Goal of sequence alignment: 
maximize alignment score



Dynamic programming finds the sequence-
sequence alignment with highest score 

V(i,j) = max

0
V(i-1,j-1) + S(xi,yj)
V(i,j-1) – gap.penalty
V(i-1,j) – gap.penalty

. . . xi-1 xi

. . . yj-1 yj

. . . xi -

. . . yj-1 yj

. . . xi-1 xi

. . . yj -

alignment 
ending in:

similarity 
score

xi-1
xi

x1

y2 yj-1 yjy1

V(i,j)



Exercise: find the alignment with highest 
score by dynamic programming! 

0 1
0 0 1
1 1 0
0 0 0
0 0 0

1 1 0 0 0
0
0
0
1
1

0

0 0 1
0 0 1
0 0 1

0
0
0

A A T T C AG G T T

T
T
A
G
G

A

T
T
T

V(i,j) = max
0
V(i-1,j-1) + S(xi,yj)
V(i,j-1) – gap.penalty
V(i-1,j) – gap.penalty

0 match = +1
mismatch = -1

gap.penalty = -1

2 0
similarity scores:



Exercise: find the alignment with highest 
score by dynamic programming! 

0 1
0 0 1 3 2
1 1 0 2
0 0 0 1
0 0 0

1 1 0 0 0
0
0
0
1
1

0

0 0 1
0 0 1
0 0 1

0
0
0

A A T T C AG G T T

T
T
A
G
G

A

T
T
T

V(i,j) = max
0
V(i-1,j-1) + S(xi,yj)
V(i,j-1) – gap.penalty
V(i-1,j) – gap.penalty

0 match = +1
mismatch = -1

gap.penalty = -1

2 0

2

similarity scores:



Exercise: find the alignment with highest 
score by dynamic programming! 

0 1 0
0 0 1 3 2 0
1 1 0 2 3
0 0 0 1 2
0 0 0 0 0 1

1 1 0 0 0 1
0
0
0
1
1

0

2
4

0 0 1 0
0 0 1 2
0 0 1 2 0

0
0
0

A A T T C AG G T T

T
T
A
G
G

A

T
T
T

V(i,j) = max
0
V(i-1,j-1) + S(xi,yj)
V(i,j-1) – gap.penalty
V(i-1,j) – gap.penalty

0 2 0

2
1

1
0

match = +1
mismatch = -1

gap.penalty = -1

similarity scores:



Exercise: find the alignment with highest 
score by dynamic programming! 

0 1 0
0 0 1 3 2 1
1 1 0 2 3
0 0 0 1 2
0 0 0 0 0 1

1 1 0 0 0 1
0
0
0
1
1

0
0
0
2
4
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1
1
3
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T

V(i,j) = max
0
V(i-1,j-1) + S(xi,yj)
V(i,j-1) – gap.penalty
V(i-1,j) – gap.penalty

0 2 0

2
1

1
1

match = +1
mismatch = -1

gap.penalty = -1

similarity scores:



Exercise: find the alignment with highest 
score by dynamic programming! 

0 1 0
0 0 1 3 2 1
1 1 0 2 3
0 0 0 1 2
0 0 0 0 0 1

1 1 0 0 0 1
0
0
0
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1

0
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1 5

V(i,j) = max
0
V(i-1,j-1) + S(xi,yj)
V(i,j-1) – gap.penalty
V(i-1,j) – gap.penalty

match = +1
mismatch = -1

gap.penalty = -1

similarity scores:



Exercise: find the alignment with highest 
score by dynamic programming! 

0 1 0
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0 0 0 1 2
0 0 0 0 0 1

1 0 0 0 1
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V(i,j) = max
0
V(i-1,j-1) + S(xi,yj)
V(i,j-1) – gap.penalty
V(i-1,j) – gap.penalty

GAATTCAG-TT-
--ATT-AGGTTT

match = +1
mismatch = -1

gap.penalty = -1

similarity scores:



Exercise: find the alignment with highest 
score by dynamic programming! 
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0 0 0 0 0 1
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V(i,j) = max
0
V(i-1,j-1) + S(xi,yj)
V(i,j-1) – gap.penalty
V(i-1,j) – gap.penalty

GAATTCA-GTT-
--ATT-AGGTTT

2

match = +1
mismatch = -1

gap.penalty = -1

similarity scores:



Similar amino acids can frequently 
substitute for each other since 

without fitness loss

Sustitution matrices score the similarity 
between amino acids

Log-odds score S(a,b) =  log —————
P(a,b)

P(a) P(b)

Dissimilar amino acids can 
rarely substitute for each other 

without fitness loss

How to “measure” similarity between amino acids? 

Count how often each pair of amino acids a,b is aligned together  



Log odds P(a,b) / P(a)P(b) measures how 
much more frequently a and b are found 

aligned than by random chance

S(a,b) =  log —————
P(a,b)

P(a) P(b)
Probability for finding (a,b) among aligned 

residue pairs (model prob.)

Examples:

S(Y,F) = log2 ————— = log2 —————— = log2 2.9 = 1.5

S(W,D) = log2 ————— = log2 —————— = log2 0.25 = −2.0 

P(Y,F)
P(Y) P(F) 3.3E-2 × 4.0E-2

3.7E-3

P(W,D)
P(W) P(D) 1.3E-2 × 5.9E-2

1.9E-4

Probability for finding (a,b) among 
randomly drawn amino acids (null prob.)



A   4
R  -1  5  
N  -2  0  6
D  -2 -2  1  6
C   0 -3 -3 -3  9
Q  -1  1  0  0 -3  5
E  -1  0  0  2 -4  2  5
G   0 -2  0 -1 -3 -2 -2  6
H  -2  0  1 -1 -3  0  0 -2  8
I  -1 -3 -3 -3 -1 -3 -3 -4 -3  4  
L  -1 -2 -3 -4 -1 -2 -3 -4 -3  2  4
K  -1  2  0 -1 -3  1  1 -2 -1 -3 -2  5
M  -1 -1 -2 -3 -1  0 -2 -3 -2  1  2 -1  5
F  -2 -3 -3 -3 -2 -3 -3 -3 -1  0  0 -3  0  6
P  -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4  7
S   1 -1  1  0 -1  0  0  0 -1 -2 -2  0 -1 -2 -1  4
T   0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  1  5
W  -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1  1 -4 -3 -2 11
Y -2 -2 -2 -3 -2 -1 -2 -3  2 -1 -1 -2 -1  3 -3 -2 -2  2  7
V   0 -3 -3 -3 -1 -2 -2 -3 -3  3  1 -2  1 -1 -2 -2  0 -3 -1  4

A  R  N  D  C  Q  E  G  H  I  L  K  M  F P  S  T  W  Y  V

Frequent mutations get 
positive substitution 

matrix scores

Substitutions between similar amino acids 
have P(a,b) > P(a)P(b) ⇒ positive score

S(a,b) =  log —————
P(a,b)

P(a) P(b) a b

Log-odds 
score



A   4
R  -1  5  
N  -2  0  6
D  -2 -2  1  6
C   0 -3 -3 -3  9
Q  -1  1  0  0 -3  5
E  -1  0  0  2 -4  2  5
G   0 -2  0 -1 -3 -2 -2  6
H  -2  0  1 -1 -3  0  0 -2  8
I  -1 -3 -3 -3 -1 -3 -3 -4 -3  4  
L  -1 -2 -3 -4 -1 -2 -3 -4 -3  2  4
K  -1  2  0 -1 -3  1  1 -2 -1 -3 -2  5
M  -1 -1 -2 -3 -1  0 -2 -3 -2  1  2 -1  5
F  -2 -3 -3 -3 -2 -3 -3 -3 -1  0  0 -3  0  6
P  -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4  7
S   1 -1  1  0 -1  0  0  0 -1 -2 -2  0 -1 -2 -1  4
T   0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  1  5
W  -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1  1 -4 -3 -2 11
Y -2 -2 -2 -3 -2 -1 -2 -3  2 -1 -1 -2 -1  3 -3 -2 -2  2  7
V   0 -3 -3 -3 -1 -2 -2 -3 -3  3  1 -2  1 -1 -2 -2  0 -3 -1  4

A  R  N  D C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V

Rare substitutions get 
negative substitution 

matrix scores

Substitutions between dissimilar amino acids 
have P(a,b) < P(a)P(b) ⇒ negative score
S(a,b) =  log —————

P(a,b)
P(a) P(b) a b

Log-odds 
score



When searching for homologous
proteins, search with the protein

sequence, not the DNA sequence!

Why?Selection of mutations in coding regions acts on the
level of codons and amino acids, not on the level of
nucleotides. 

When comparing nucleotides sequences we ignore the
differences in selection pressure between
• silent mutations (which don‘t change the amino acid),
• conservative muitations (which lead to substitution with

a similar amino acid)
• Non-conservative mutations (which lead to substitution

with a dissimilar amino acid) and
• Nonsense mutations (which introduce a stop codon)



Are these sequences homologous?
gi|539437
d1btea_

BLAST E-value = 0.2 

Key message:
Information is power. Use it!

gi|539437
gi|91922
gi|213934
gi|54638211
gi|114724
gi|31418321
gi|2150128
gi|47218579
gi|1764144
gi|47223056
gi|47825379
gi|47218656
d1btea_

PSI-BLAST E-value =  1E-17

** * * ** ** * * ***** * ** * * * * **** *

Yes they are!



gi|539437
d1btea_

Sequence-sequence alignment uses 
substitution matrix scores



gi|539437
d1btea_

Sequence-sequence alignment uses 
substitution matrix scores

A 4
R -1
N -2 
D -2 
C 0 
Q -1  
E -1  
G 0 
H -2  
I -1
L -1 
K -1  
M -1 
F -2 
P -1 
S 1 
T 0 
W -3
Y -2 
V 0 

A-column of substitution matrix 
contains scores for substituting A
(alanine) with each of the 20 amino 
acids “aa”

S(A,aa) =  log —————
P(A,aa)

P(A) P(aa)

S(A,aa)aa



What score to use for aligning an MSA 
with a sequence? 

gi|539437
gi|91922
gi|213934
gi|54638211
gi|114724
gi|31418321
gi|2150128
gi|47218579
gi|1764144
gi|47223056
gi|47825379
gi|47218656

Scores for finding each of the 
20 amino acids “aa” in this 
position ?

Sj(aa) =  log ———
Pj(aa)
P(aa)

Count how often amino acid 
aa appears in MSA column j!

Log-odds profile score

j



Sequence profiles are a condensed 
representation of multiple alignments

HBA_human ... W  G  K  V  G  A  H  A  G  E ...
HBB_human  ... W  G  K  V  - - N  V  D  E ...
MYG_phyca  ... W  G  K  V  E  A  D  V  A  G ...
LGB2_luplu ... W  E  E  F  N  A  N  I  P  K ...

W G K V G A H A G E
A … -3,2 -1,9 -2,1 -2,2 -2,0 3,4 -2,1 1,4 1,5 -2,0 …
C … -2,3 -2,8 -2,9 -2,1 -2,7 -1,8 -2,7 -2,1 -2,6 -2,9 …
D … -3,7 -1,6 -1,6 -3,1 -1,4 -2,1 2,0 -2,8 1,6 -1,5 …
E … -3,4 2,1 2,1 -2,8 2,1 -2,0 -1,6 -2,5 -1,9 2,5 …
F … -0,8 -3,6 -3,2 2,9 -3,3 -2,8 -2,8 -2,0 -3,2 -3,3 …
G … -3,3 2,9 -2,3 -3,3 1,9 -1,8 -2,0 -2,8 1,5 1,6 …
H … -2,3 -2,2 -1,8 -2,4 -1,9 -2,3 2,4 -2,6 -2,3 -2,0 …
I … -2,6 -3,3 -2,8 -1,2 -3,1 -2,3 -3,0 2,4 -2,9 -3,0 …
K … -3,2 -2,1 3,2 -2,7 -1,9 -2,1 -1,8 -2,5 -2,1 2,1 …
L … -2,2 -3,3 -2,8 -1,4 -3,1 -2,4 -3,0 -1,5 -2,9 -3,0 …
M … -2,3 -3,0 -2,5 -1,5 -2,8 -2,2 -2,7 -1,5 -2,7 -2,7 …
N … -3,2 -1,8 -1,7 -2,8 2,8 -2,1 3,3 -2,6 -1,9 -1,8 …
P … -3,7 -2,4 -2,2 -2,8 -2,3 -1,9 -2,3 -2,5 2,6 -2,3 …
Q … -2,9 -2,0 -1,5 -2,6 -1,8 -2,1 -1,7 -2,4 -2,0 -1,6 …
R … -2,5 -2,2 -1,3 -2,8 -2,0 -2,2 -1,9 -2,6 -2,2 -1,7 …
S … -3,1 -1,9 -2,0 -2,5 -1,8 -1,6 -1,8 -2,2 -1,8 -1,9 …
T … -3,2 -2,2 -2,0 -2,2 -2,0 -1,8 -1,9 -2,0 -2,0 -2,1 …
V … -2,9 -2,9 -2,6 2,9 -2,8 -2,0 -2,8 2,3 -2,6 -2,7 …
W … 6,1 -3,4 -3,2 -1,9 -3,3 -3,2 -3,0 -2,8 -3,5 -3,3 …
Y … -0,6 -3,2 -2,8 -1,4 -2,8 -2,7 -2,6 -2,4 -3,0 -2,9 …

The profile scores quantify 
how much more frequent 
each amino acid aa is in 
column j of the MSA than its 
average frequency in the db:

They contain position-specific amino acid substitution scores

pj(aa) = frequency of aa in 
column (incl. pseudo-counts)

Sj(aa) = log
pj(aa)
pav(aa)

log-odds score



HBA_human  ... W  G  K  V  G  A  - - H  A  G  E ...
HBB_human  ... W  G  K  V  - - - - N  V  D  E ...
MYG_phyca  ... W  G  K  V  E  A  - - D  V  A  G ...
LGB2_luplu ... W  K  D  F  N  A  - - N  I  P  K ...
GLB1_glydi ... W  E  E  I  A  G  A  D  N  G  A  G ...

Profiles-sequence comparison

Score = 6.1 +2.1 +2.1 –1.2 –2.0 –1.8 – 5.0 – 0.5 +3.3 –2.8 +1.5 +1.6

gap
penalties

Find alignment with maximum score

W G K V G A H A G E
A … -3,2 -1,9 -2,1 -2,2 -2,0 3,4 -2,1 1,4 1,5 -2,0 …
C … -2,3 -2,8 -2,9 -2,1 -2,7 -1,8 -2,7 -2,1 -2,6 -2,9 …
D … -3,7 -1,6 -1,6 -3,1 -1,4 -2,1 2,0 -2,8 1,6 -1,5 …
E … -3,4 2,1 2,1 -2,8 2,1 -2,0 -1,6 -2,5 -1,9 2,5 …
F … -0,8 -3,6 -3,2 2,9 -3,3 -2,8 -2,8 -2,0 -3,2 -3,3 …
G … -3,3 2,9 -2,3 -3,3 1,9 -1,8 -2,0 -2,8 1,5 1,6 …
H … -2,3 -2,2 -1,8 -2,4 -1,9 -2,3 2,4 -2,6 -2,3 -2,0 …
I … -2,6 -3,3 -2,8 -1,2 -3,1 -2,3 -3,0 2,4 -2,9 -3,0 …
K … -3,2 -2,1 3,2 -2,7 -1,9 -2,1 -1,8 -2,5 -2,1 2,1 …
L … -2,2 -3,3 -2,8 -1,4 -3,1 -2,4 -3,0 -1,5 -2,9 -3,0 …
M … -2,3 -3,0 -2,5 -1,5 -2,8 -2,2 -2,7 -1,5 -2,7 -2,7 …
N … -3,2 -1,8 -1,7 -2,8 2,8 -2,1 3,3 -2,6 -1,9 -1,8 …
P … -3,7 -2,4 -2,2 -2,8 -2,3 -1,9 -2,3 -2,5 2,6 -2,3 …
Q … -2,9 -2,0 -1,5 -2,6 -1,8 -2,1 -1,7 -2,4 -2,0 -1,6 …
R … -2,5 -2,2 -1,3 -2,8 -2,0 -2,2 -1,9 -2,6 -2,2 -1,7 …
S … -3,1 -1,9 -2,0 -2,5 -1,8 -1,6 -1,8 -2,2 -1,8 -1,9 …
T … -3,2 -2,2 -2,0 -2,2 -2,0 -1,8 -1,9 -2,0 -2,0 -2,1 …
V … -2,9 -2,9 -2,6 2,9 -2,8 -2,0 -2,8 2,3 -2,6 -2,7 …
W … 6,1 -3,4 -3,2 -1,9 -3,3 -3,2 -3,0 -2,8 -3,5 -3,3 …
Y … -0,6 -3,2 -2,8 -1,4 -2,8 -2,7 -2,6 -2,4 -3,0 -2,9 …
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Dynamic programming finds 
sequence-sequence alignment 

with highest score 

V(i,j) = max

0
V(i-1,j-1) + S(xi,yj)
V(i,j-1) – gap.penalty
V(i-1,j) – gap.penalty

. . . xi-1 xi

. . . yj-1 yj

. . . xi -

. . . yj-1 yj

. . . xi-1 xi

. . . yj -

alignment 
ending in:

substitution
matrix

xi-1
xi

x1

y2 yj-1 yjy1

V(i,j)



Dynamic programming finds 
profile-sequence alignment 

with highest score 

V(i,j) = max

. . . xi-1 xi

. . . pj-1 pj

. . . xi -

. . . pj-1 pj

. . . xi-1 xi

. . . pj -

alignment 
ending in:

x1

p2 pj-1 pjp1

V(i,j)

pj(xi)
pav(xi)

log ——

Profile score

0
V(i-1,j-1) + 

V(i,j-1) – gap.penalty
V(i-1,j) – gap.penalty

xi-1
xi



Dynamic programming finds
profile-profile alignment 

with highest score 
alignment 
ending in:

Profile-profile 
score

qi-1
qi

q1

V(i,j)

log å ————
qi(a) pj(a)

pav(a)a=1

20

p2 pj-1 pjp1

. . . qi-1 qi

. . . pj-1 pj

. . . qi -

. . . pj-1 pj

. . . qi-1 qi

. . . pj -

V(i,j) = max

0
V(i-1,j-1) + 

V(i,j-1) – gap.penalty
V(i-1,j) – gap.penalty



Various ad-hoc measures of column similarity are used, e.g.  Score = S qia pja

Profile-profile comparison

W G K V G A H A G E
A … -3,2 -1,9 -2,1 -2,2 -2,0 3,4 -2,1 1,4 1,5 -2,0 …
C … -2,3 -2,8 -2,9 -2,1 -2,7 -1,8 -2,7 -2,1 -2,6 -2,9 …
D … -3,7 -1,6 -1,6 -3,1 -1,4 -2,1 2,0 -2,8 1,6 -1,5 …
… … … … … … … … … … … …. …
V … -2,9 -2,9 -2,6 2,9 -2,8 -2,0 -2,8 2,3 -2,6 -2,7 …
W … 6,1 -3,4 -3,2 -1,9 -3,3 -3,2 -3,0 -2,8 -3,5 -3,3 …
Y … -0,6 -3,2 -2,8 -1,4 -2,8 -2,7 -2,6 -2,4 -3,0 -2,9 …

HBA_human  ... W  G  K  V  G  A  - - H  A  G  E ...
HBB_human  ... W  G  K  V  - - - - N  V  D  E ...
MYG_phyca  ... W  G  K  V  E  A  - - D  V  A  G ...
LGB2_luplu ... W  E  E  F  N  A  - - N  I  P  K ...

GLB1_glydi ... W  K  D  I  A  G  A  D  N  G  A  V ...
GLB3_chitp ... F  D  K  V  K  G  - - - - - N ...
GLB5_petma ... W  A  P  V  Y  S  A  N  T  Y  E  T ...

W K D I A G A D N G A V
A -3,1 1,8 -2,0 -2,1 2,2 -1,8 3,4 -2,1 -2,0 -2,2 2,5 -1,8 …
C -2,3 -2,5 -3,0 -2,1 -2,2 -2,4 -1,8 -3,1 -2,4 -2,4 -2,2 -2,4 …
D -3,7 2,0 2,7 -3,1 -2,2 -1,9 -2,1 3,9 -1,6 -2,3 -1,6 -2,0 …
… … … … … … … … … … …. …. …
V -2,6 -2,4 -2,7 2,7 -2,2 -2,8 -2,0 -3,0 -2,4 -2,7 -2,2 -2,5 …
W 5,6 -3,3 -3,5 -2,7 -1,8 -3,2 -3,2 -3,7 -3,2 -1,5 -3,3 -3,2 …
Y -0,5 -2,8 -2,9 -2,3 2,7 -3,1 -2,7 -2,9 -2,5 3,2 -2,8 -3,0 …

20
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Compare 
amino acid 
distributions



Record probability of insertions and deletions at each position

D D D D D

M M M M M

D D D D

M M M M

D D D D

I I I I II I I II I I I

M M M M

D D

I I

M M

A profile HMM is a sequence profile 
extended by position-specific gap penalties



No new 
sequences?

END

accepted seqs

rejected seqs

BLAST
Search with single sequence through sequence database

seq-seq 
search

E<10-3

query sequence



add homologs

PSI-BLAST 
Iterative search with sequence profile through sequence db

evolving    alignment

accepted seqs

No new 
sequences?

END

rejected seqs

E<10-3

query sequence

Much more sensitive than BLAST



add homologs

evolving profile

Much more sensitive than BLAST

accepted seqs

PSI-BLAST, MMseqs2 
Iterative search with sequence profile through sequence db

No new 
sequences?

END

rejected seqs

E<10-3

profile-seq
search

query sequence



E<10-3

add homologs

HMM-HMM
comparison

Best sensitivity, alignment quality, and speed

No new 
HMMs?

END

accepted HMMs

rejected HMMs

HHblits 
Iterative search with profile HMM through profile HMM db

Evolving profile HMM

M

D

I

M

D

I

M

D

I

M

D

I

M

D

I

M

D

I

M

D

I

fast 
prefilter

fast db 
clusteringquery sequence

Remmert et al., Nature Methods 2011



See you back at 13:30h J



• I think the speed was good, the explanations were clear but I needed more breaks, specially for the first part 
of the presentations. Small 5 min breaks would be fine

• alignment for the section of profile based dynamic programming
• I found the part of HMM a bit difficult to comprehend. I liked the dynamic programming exercise.
• maybe could introduce a little more about the principles of clustering?
• I was following the local alignment algorithm explanation until the part where position specific score was 

introduced. Then started getting a bit confused
• Everything was great. Actually, I would prefer to have more days of practice and more command line 

exercises but I am not sure that you can change it. Thanks a lot!
• The parts where sequence profiles are explained can be explained a bit more in detail. Also, overall the 

presentation has gone fast for me as not everyone has the same background in bioinformatics. 
• The slides were presented well but it was a bit fast and sometimes was difficult to analyze some technical 

stuff. otherwise the basics were very well explained. Thanks 
• I think the hardest topic was the matrix of similarity calculations. It was well explained, but I felt it a little fast. 

Some more examples and exercises would have helped 
• explanation of the log odds score
• The details of MMseqs2 was difficult to understand
• The course was great, I really liked the tutors were very responsive to questions. Also the organization of 

the course is very nice, with the breakout rooms, the breaks, and the general meetings. Many of the info 
were new to me, but I finished the course feeling like I understood it very well. I liked the fact that some 
exercises were put in the middle to help us figure things out ourselves. Thank you for your efforts! 

• I feel that we could go slower on the topic of HMM- profile, profile-profile comparison as there are many 
complex things to understand and visualize.

• I did not understand too much the part that covered MMSeq, BLAST, HHMER3 and HHblits. I think it was 
too quick. In general, there are times where I think the professor spoke too fast. Everything else was great!

Student feedback after lecture



The probability to obtain a six only zero or one times, given the die is not 
loaded (the null hypothesis), is
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We can reject the null-hypothesis that the die is fair with a P-value of 3%. 

The P-value is the probability to obtain a result as observed or more 
extreme, given the null hypothesis (often a “hypothesis of randomness”). 
A small P-value (e.g. < 0.05) indicates the null hypothesis can be rejected.
Suppose we suspect a die to be loaded. We throw it 30 times and never 
observed a 6. Can we conclude that the die is loaded? 

Exercise: Compute the P-value for the null hypothesis that the 
die is fair. What if we observed a 6 only once out of 30 throws?

What do you conclude from the P-value?

Small P-value: reject null hypothesis



Why „or more extreme“? 
P-value = the probability to obtain a score as observed or more extreme
under the null hypothesis

Suppose we throw a die 6N times and observe a six N times. What do you 
guess is the P-value?
Why “or more extreme” in the definition of the P-value?

Please type in your answers at
https://forms.google.com/???



The linux command line (bash)
1. Don’t forget spaces
2. Everything in linux is case-sensitive (filenames, commands,..)
3. Filenames = directory path and basename: /usr/local/soeding/my_file.txt
You can give only the basename if the file is in the current directory

ls list content of current directory
ls -ltrF ls in long format, time-sorted in reverse order, with Filetype
cd <path/dir> change to directory <path/dir>
cd .. go up 1 step in directory hierarchy
gedit <file> open file in editor
gedit <file> & open file in editor in background
less <file> look at raw file (q: quit, b: back,/: find); works for huge files
cp <file> <dest> copy file to destination directory (cp file.txt ~/molbiol/day1/)
mv <file> <dest> move file to destination directory
rm <file> remove file (careful!)
mkdir <dir> create new directory (remove with rmdir <dir>)
info ls, man ls show info / manual page of ls command
chmod +x <file> change settings of file to make it executable


