

Introduction to protein bioinformatics MPRS Molecular Biology University of Göttingen 08 November 2021

Ruoshi Zhang, Venket Raghavan, Michel van Kempen, Sasha Kolodyazhnaya, Johannes Söding Quantitative and Computational Biology MPI for Biophysical Chemistry

Söding lab in November 2021

Tools for metagenomics, protein structure & function

Milot

Mirdita

Annika Seidel

Venket Raghavan

Ruoshi Zhang

Kolodyazhnaya

Hong Su

Transcription / quant. medicine

Etienne Morice

Amelie Hilger

Michel van Kempen

Yazhini A

Louis Kraft

Goals for next 1 ¹/₂ days

- Protein structure and sequence conservation
- Homology-based inference and sequence similarity searches
- P- and E-value
- Sequence alignment (dynamic programming)
 → Role of algorithms in bioinformatics
- Sequence profiles: information is power!
- MMseqs, basic analyses of metagenomics dataset
- (Genome assembly)
- Structure databases
- AlphaFold

Protein structure is highly conserved even without obvious sequences similarity

Anfinsen CB. "Principles that govern the folding of protein chains". Science 1973

If all the information to correctly fold a protein is contained in its amino acid sequence, we should be able to predict its structure from its sequence!

Computational chemistry: uncover the rules of protein folding from first physical principles

Do you know "exceptions" to Anfinsen? (3) Allostery; misfolded proteins (Alzheimer's, prions); chaperones (GroEL, Hsp70,Hsp90,...)

From comparative protein structure modeling to deep learning and AlphaFold

Comparative modeling has been the mainstay of protein structure prediction up to now. It relied on the fact that *homologous* proteins (those related by common ancestry) usually have very similar structures. If a protein with known structure can be found that has sufficiently high sequence similarity, the two are likely to be *homologous*, and the unknown structure can be modeled using the known structure as a *template*.

Comparative modeling is now superseded by deep neural networks (transformers) such as AlphaFold, trained on all ~160k protein structures.

Homology-based inference of protein structure and function

When are two sequences similar enough to ascertain homology?

Null hypothesis (boring "hypothesis of randomness"): query sequence is not in any way related to database sequence, similarity score is "random".

Can we reject this null hypothesis (assume the db sequence is homologous)?

The sequence similarity score (our "test statistic") has a distribution with only two parameters which we can compute. ③

Small P-value: reject null hypothesis

Given: a *null hypothesis* (boring "hypothesis of randomness") and a score ("test statistic") with known distribution under the null hypothesis

Goal: find interesting cases for which the null hypothesis can be rejected

P-value = the probability to obtain a score as observed *or more extreme*, under the null hypothesis.

A small *P*-value (e.g. < 0.01) indicates the null hypothesis can be rejected.

E-values

P-value = the probability to obtain a score as observed or more extreme under the null hypothesis

Suppose you searched a sequence database with a query sequence and you obtained a match with a P-value = 1E-6. Can you trust this matched sequence to be homologous to your query?

Suppose your sequence database contains 10⁸ sequences. Can you trust the matched sequence with a P-value = 1E-6 to be homologous to your query?

No! Each db sequence has a probability of 1E-6 to have a P-value < 1E-6 *by pure chance alone*. So the expected number of db sequences to achieve a P-value < 1E-6 is

 $E = 10^8 \times 1E-6 = 100!$

Therefore, the match is not at all trustworthy.

E-value = expected number of observations at least as extreme as the one observed

- ① P-value = Probability for event with score ≥ s under the null hypothesis
- ② E-value = Expected number of events out of N_{tests} trials with score ≥ S under the null hypothesis

Distant homology can predict function

TAF1B Is a TFIIB-Like Component of the Basal Transcription Machinery for RNA Polymerase I

Srivatsava Naidu,* J. Karsten Friedrich,* Jackie Russell, Joost C. B. M. Zomerdijk†SCIENCEVOL 33316SEPTEMBER 2011

Yeast Rrn7 and Human TAF1B Are TFIIB-Related RNA Polymerase I General Transcription Factors

Bruce A. Knutson and Steven Hahn*

SCIENCE VOL 333 16 SEPTEMBER 2011

Table 1. HHpred results for Rrn7 using S.cerevisiae,										
H.sapiens,	and P.abyssi	genome da	tabases							
Protein	%Probability	%Identity	Evalue	%Fold						
HsTAF1B	100.00	16	0	84						
ScBrf1	97.91	10	5.1E-04	74						
HsBrf1	97.76	11	1.6E-03	82						
HsTFIIB	97.72	12	1.4E-03	83						
ScTFIIB	97.45	8	6.9E-03	77						
HsBrf2	96.23	12	5.4E-01	77						
PaTFB	95.15	13	3.2E-01	80						

ribosomal DNA (rDNA) promoter (*13–15*). Using HHpred, a server for protein remote homolog detection and structure prediction (*16*), we discovered that the TAF1B (TBP-associated factor 1B/TAF_I63) subunit of human SL1 is structurally similar to TFIIB, having the signature N-terminal Zn ribbon and core domain with two potential cyclin-like folds (Fig. 1, fig. S1, and tables S1 and

factors (13) because Pol I subunits share relatively low protein sequence conservation with their Pol II and Pol III counterparts (14). Using the homology detection program HHpred, which uses pairwise hidden Markov model profile comparisons that are more sensitive than traditional Web-based approaches (15), we detected highprobability matches between the Rm7 N-terminal 320 residues and the TFIIB family, indicating that

Distant homology can predict function

Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin

Petr G. Leiman^{a,1,2}, Marek Basler^{b,1}, Udupi A. Ramagopal^c, Jeffrey B. Bonanno^c, J. Michael Sauder^d, Stefan Pukatzki^e, Stephen K. Burley^d, Steven C. Almo^c, and John J. Mekalanos^{b,3}

HHpred (26) analysis shows that E. coli CFT073 Hcp ortholog (Table S1) is weakly similar to putative phage tail protein family PF09540 (e-val = 1.5e-4). As revealed by Hidden Markov Models (HMM) -HMM comparison performed by HHalign (27), this protein family exhibits significant homology (e-val = 9.3e-10) to the family of T4-like tail tube proteins gp19 (PF06841). Moreover, the

How can we infer common descent over time spans of billions of years?

Hydrophobic residues form the domain cores

Hydrophobic residues form the domain cores

Hydrophobic residues form the domain cores

Core residues are often well conserved

Multiple sequence

Note the conserved hydrophobic

columns in strands and helices.

The space of foldable sequences is like small islands in a vast ocean ... (... of sequences that do not form stable structures

Island-hopping is therefore very rare fold Y fold Y fold W, W⁴

Less than ~ 10⁻¹⁰ is covered by islands of stability. The rest is water.

Homology-based protein structure and function prediction is powerful

Structures and functions of proteins may be conserved over billions of years

Homology (common descent) can often be predicted from sequence similarity

We can predict the structure and function of proteins based on sequence similarity to *homologous* proteins

Homology-based protein structure and function prediction is powerful

Structures and functions of proteins may be conserved over billions of years

Homology (common descent) can often be predicted by aligning sequence profiles built from closer homologs

We can predict the structure and function of proteins based on sequence similarity to *homologous* proteins

How is it that we can infer common descent over time spans of billions of years?

- Sequence evolution is highly constrained by the requirement of a stable structural core
- Every fold has a specific 3D jig-saw puzzle logic of how its side-chains interlock, which is highly conserved
- This logic is reflected in a protein's multiple sequence alignment: in pattern of conserved hydrophobicity and amino acid properties

• By **comparing multiple alignments** we can detect similar patterns that indicate the same 3D folding logic

Structure and function of protein domains are often conserved over billions of years

Sequences are diverged beyond recognition at those time scales

We and others develop tools to build and compare multiple sequence alignments of closer homologs

From the similarity score we obtain an E-value. When E < 0.01, homology is likely.

Domains are the building blocks of proteins

- their structural, functional, and evolutionary units

- Most eurkaryotic proteins have multiple structural domains
- Domains have often been duplicated and rearranged during evolution

We can often formulate hypotheses about protein function based on its domains

Many parts in eukaryotic proteins are disordered (or natively unfolded) What do they do?

Natively unfolded residues in human proteome: 37% - 50% Fewer in simpler eukaryotes Much fewer in bacteria and archaea (only 3%-25% of their proteins contain disordered regions > 50 aa)

disordered

ordered

APIDGTNI PSG PPE PSAAF OGPDG PGPOVG PPGPOVG PPGPOPG PPGPOPG PPGPOPG PGPOPG PGPO
DWARWARVPPSDNTAGGWARVPCPCGSPRPCGCGPAPAGAWWDPCGCGPAPAGAWWDPCGCGPAPAGAWWDPCGCGPAPAGAWUDPCGCGCGPAPAGAWUDPCGCGPAPAGAWUDPCGCGCGGPAPAGAWUDPCGCGCGPAPAGAWUDPCGCGCGCGPAPAGAWUDPCGCGCGCGPAPAGAWUDPCGCGCGCGPAPAGAWUDPCGCGCGCGPAPAGAWUDPCGCGCGCGPAPAGAWUDPCGCGCGCGCGCGCGGAWUDPCGCGCGGPAPAGAWUDPCGCGCGCGCGCGCGCGCGGAWUDPCGCGCGCGCGCGCGGAWUDPCGCGCGCGCGCGCGCGCGCGCGCGCGCGGGAWUDPCGCGCGCGCGCGCGCGCGCGGAWUDPCGCGCGCGCGCGCGCGCGCGCGCGGGAWUDPCGCGCGCGCGGGAWUDPCGCGCGCGCGCGCGCGCGGGGGGGGGGGGGGGGGGGG
LALST USPEVALNPAGE SE PCATA MARKED SUBJECT AND A SUBJECT A

Disordered regions are interspersed with short linear motifs that can bind to specific target domains

Short linear motifs fold upon binding to their target domain

Liquid-liquid phase separation – a long-known phenomenon now revolutionizing cell biology

Many types of membraneless droplets exist in cytosol and nucleus of eukaryotic cells: nucleolus, stress granules, Pbodies, splicing speckles,...

Multivalent weak interactions

5 minutes ©

Sequence searching

Sequence-sequence comparison

 A sequence alignment groups similar residues into same column. These residues are assumed to occupy homologous positions in the proteins

> HBA_human ... VKAAWGKVGA--HAGEYGAE ... GLB1_glydi ... IAATWEEIAGADNGAGVGKD ...

- Alignment score = sum of similarity scores gap penalties:
 Score = S(V,I)+...+S(V,I)+...+S(E,G)+...+S(G,G) d e
- Find alignment with maximum score, rank by score

Goal of sequence alignment: maximize alignment score

Alignments correspond 1:1 to paths in *dynamic progr.* matrix

Corresponding alignment:

GAATTCAG-TT---ATT-AGGT

Dynamic programming finds the sequencesequence alignment with highest score

$$) = \max \begin{cases} V(i-1,j-1) + S(x_i,y_j) \\ V(i,j-1) - gap.penalty \\ V(i-1,j) - gap.penalty \end{cases}$$

mismatch = -1

similarity scores: match = +1 mismatch = -1

$$V(i,j) = \max \begin{cases} 0\\ V(i-1,j-1) + S(x_i,y_j)\\ V(i,j-1) - \text{gap.penalty}\\ V(i-1,j) - \text{gap.penalty} \end{cases}$$

similarity scores: match = +1 mismatch = -1

gap.penalty = -1

$$V(i,j) = \max \begin{cases} 0\\ V(i-1,j-1) + S(x_i,y_j)\\ V(i,j-1) - \text{gap.penalty}\\ V(i-1,j) - \text{gap.penalty} \end{cases}$$

similarity scores: match = +1 mismatch = -1

$$V(i,j) = \max \begin{cases} 0\\ V(i-1,j-1) + S(x_i,y_j)\\ V(i,j-1) - \text{gap.penalty}\\ V(i-1,j) - \text{gap.penalty} \end{cases}$$

similarity scores: match = +1 mismatch = -1

$$V(i,j) = \max \begin{cases} 0\\ V(i-1,j-1) + S(x_i,y_j)\\ V(i,j-1) - \text{gap.penalty}\\ V(i-1,j) - \text{gap.penalty} \end{cases}$$

similarity scores: match = +1 mismatch = -1

gap.penalty = -1

 $V(i,j) = \max \begin{cases} 0\\ V(i-1,j-1) + S(x_i,y_j)\\ V(i,j-1) - \text{gap.penalty}\\ V(i-1,j) - \text{gap.penalty} \end{cases}$

GAATTCAG-TT---ATT-AGGTTT

similarity scores: match = +1 mismatch = -1

gap.penalty = -1

 $V(i,j) = \max \begin{cases} 0\\ V(i-1,j-1) + S(x_i,y_j)\\ V(i,j-1) - \text{gap.penalty}\\ V(i-1,j) - \text{gap.penalty} \end{cases}$

GAATTCA-GTT---ATT-AGGTTT

Sustitution matrices score the similarity between amino acids

Similar amino acids can frequently substitute for each other since without fitness loss Dissimilar amino acids can rarely substitute for each other without fitness loss

How to "measure" similarity between amino acids?

Count how often each pair of amino acids a,b is aligned together

 $S(a,b) = \log$

Log-odds score

Log odds P(a,b) / P(a)P(b) measures how much more frequently a and b are found aligned than by random chance

$$S(a,b) = \log \frac{P(a,b)}{P(a)P(b)} \xrightarrow{\text{Probability for finding (a,b) among aligned residue pairs (model prob.)}}{\text{Probability for finding (a,b) among randomly drawn amino acids (null prob.)}}$$

Examples:
$$S(Y,F) = \log_2 \frac{P(Y,F)}{P(Y)P(F)} = \log_2 \frac{3.7E-3}{3.3E-2 \times 4.0E-2} = \log_2 2.9 = 1.5$$

 $S(W,D) = \log_2 \frac{P(W,D)}{P(W)P(D)} = \log_2 \frac{1.9E-4}{1.3E-2 \times 5.9E-2} = \log_2 0.25 = -2.0$

Substitutions between similar amino acids have P(a,b) > P(a)P(b) ⇒ positive score

	S(a)	(h)	_		a	F	<i>'(a</i>	,D)				Ι	l-tyrosin	ie <u>(Y)</u>				L-J	phenylal	anine <u>(F)</u>
	Ja	,0)	_	ΙŪį	y –	P (a) /	P(<i>k</i>)			-		Ę	7		Γ		1	b
Α	4						►						e la	1						
R	-1	5					١						7							and the second s
Ν	-2	0	6			L	og-	-00	ds			1								
D	-2	-2	1	6			60	or	h							,			с.	\square
С	0	-3	-3	-3	9		30		5										-	
Q	-1	1	0	0	-3	5							l.		ø					\mathbf{H}
Ε	-1	0	0	2	-4	2	5								MDL				6	V MDL
G	0	-2	0	-1	-3	-2	-2	6											_	
Η	-2	0	1	-1	-3	0	0	-2	8				F	rea	ue	ent	mι	ıtal	tion	is get
I	-1	-3	-3	-3	-1	-3	-3	-4	-3	4								I a		
\mathbf{L}	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4			p	OS	SITIV	e s	SUC	Stl	lution
Κ	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5					m	atri		onas
Μ	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5				IIIC			0000
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6						
Ρ	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7					
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4				
Т	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5			
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11		
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4
														V						
	A	R	N	D	С	Q	Ε	G	Н	I	L	K	Μ	F	Ρ	S	Т	W	Y	V

Substitutions between dissimilar amino acids have P(a,b) < P(a)P(b) ⇒ negative score

	S	h'	<u>ا = ۱</u>		a –	P	°(a,	,b)				Ι	-tyrosii	ne <u>(Y)</u>				L-	aspartic	acid (<u>D)</u>
	0(0	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, –		9 -	P(a	a) I	P(<i>k</i>)			-			a		Γ		1	h
Α	4						►							17						N
R	-1	5					Ι						-						1	0
Ν	-2	0	6			L	-pc	-od	ds			1						Q		
D	-2	-2	1	6					~						—			6	1	
С	0	-3	-3	-3	9		SC		5											- * *
0	-1	1	0	0	-3	5							l							
Ē	-1	0	0	2	-4	2	5								MDL					MDL
G	0	-2	0	-1	-3	-2	-2	6												
H	-2	0	1	-1	-3	0	0	-2	8					Ra	re	sul	hst	itut	ion	s det
I	-1	-3	-3	-3	-1	-3	-3	-4	-3	4										
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4			ne	ega	ativ	'e s	sub	stit	tution
- к	- -1	2	0	-1		1	1	-2	-1		-2	5			Ŭ			.+		
м	_1	-1	-2	_3	-1	0	-2	_3	-2	1	2	-1	5				111c		x So	cores
ਸ ਸ	-2	_ 3	_ 2	_3	-2	_3	_2 _3	_3	_1	<u> </u>	0	_ 3	0	6						
Ð	_1	-2	-2	_1	-3	_1	_1	-2		-3	-3	_1	-2	_1	7					
r C	 1	-Z	-Z 1	_T_	-J _1	_ ⊤	_T _T	-Z 0	-Z	-2	-2	_T_	-Z _1	- 1	, _1	Л				
с П		1		_1	1	_1	_1	_2	-1 -2	-Z _1	-Z	_1	1	-2	1	1	Б			
1 747	-3	-3 -T	_1		-2 -2	-7 -7	-3 -T	-Z	-2	-3 -T	-7 -7	-3 -T	-1	- <u>Z</u> 1	-1 -1	-3 T	-2	11		
W	-3	-3	-4		-2	-Z 1	-3	-2	-2	-5	-2	-3	-1	1 2	-4 2	-3	-2	<u>тт</u>	7	
1	-2	-2	-2	-3	-2	-T	-2	-3	2	-T	-1	-2	-1	3	-3	-2	-2	2	1	
V	U	-3	-3	U	-Τ	-2	-2	-3	-3	3	T	-2	T	-T	-2	-2	U	-3	-T	4
	A	R	N	D	С	Q	E	G	н	I	L	к	М	F	Р	S	т	W	Y	v

When searching for homologous proteins, search with the protein sequence, not the DNA sequence!

Selection of mutations in cooling regions acts on the level of codons and amino acids, not on the level of nucleotides.

When comparing nucleotides sequences we ignore the differences in selection pressure between

- silent mutations (which don't change the amino acid),
- conservative multations (which lead to substitution with a similar amino acid)
- Non-conservative mutations (which lead to substitution with a dissimilar amino acid) and
- Nonsense mutations (which introduce a stop codon)

Key message: Information is power. Use it!

Are these sequences homologous?

gi|539437 ETQECLFHNAN - ENDETNQTGVEPCVGDKDKRRHCHAT -- KNISGSIEIVKQGCVLDDINC DETDCIEKKDSPE--VYHCCCCEGNMCNEKESIEPEME d1btea ---ECEHFDEKMCNTTQQCETRIEHCKMEADKEPSCVVLVSVNETTGILRIKMKGCHTDMHEC-NQTECVTSAEPRQGNIHHCCCCKGSECNSNQKXI----

BLAST E-value = 0.2

	* * *	*	* **	*	* * *** * **	* * *	**	*	** * *	**
gi 539437	ETOECLFFNANW-ERDRTNOTGV	EP-C	-GDKDKRRHCFA	TWKNI-S	SGSIEIVKOGC	LDDINC	DRTDCIEKKDSP	E <mark>VY</mark>	FCCCEGN	IMCNEKESYEPEME
gi 91922	ETRECITYVNANW-ELERTNQSGI	E <mark>R</mark> -CE	S-GEODKREHCYA	SWPNS-S	GTIELV <mark>KK</mark> GCW	LDDFNC	DROEC VATEEN P	2 <mark>⊻</mark> ⊻	<mark>F</mark> CCCE <mark>G</mark> N	ECNERFTHLPE
gi 213934	ETRECIVYNANW-ELEKTNQSGV	E <mark>RLV</mark> E	S-GKKDKRLHC Y A	SMRNN-S	SG <mark>FIELV</mark> KKGCW	LDDFNC	DROEC LAKEENP	0 <mark>VF</mark>	<mark>F</mark> CCCE <mark>G</mark> N	VCNKKFTHLPEVE
gi 54638211	CEHYDEKMCNK-EQDCTVRI	E <mark>R</mark> -CQ	Q-VETDKEPSCVV	LWSANEE-I	IGAKK IKMKGC	TDMHEC-	NQTECVISAEPR	QGN <mark>MH</mark>	<mark>F</mark> CCC <mark>K</mark> GS	LCNSDQKWIP
gi 114724	ETKECIVYNANM-EKDKTNSNGT	E <mark>I</mark> -C	-GDNDKRKHCFA	TMKNI-S	SGS <mark>IEIVK</mark> QGC <mark>w</mark>	LDDINC	NKSKCTEKKDSP	DVE	FCCCEGN	I <mark>Y</mark> CNE <mark>KFYH</mark> SPE <mark>M</mark> E
gi 31418321	2ERLCAFKDPY-QQDLGIGE-SRISH	EN-GT	I- <mark>IL</mark> CSKGSTC <mark>V</mark> G	LWEKS-K	GD <mark>INLVK</mark> QGC <mark>W</mark>	SHIGDPQEC	I-YEECVVTTTPP	S <mark>I</mark> QNG	TYRFCCCST	LCNVNFT
gi 2150128	ETHECLYFNINW-EVEKTNRSGV	E <mark>R</mark> -CH	E-GE <mark>KDKRSH</mark> C <mark>V</mark> A	SMRNS-S	SGS <mark>IQLV</mark> KKGCW	LDDFNC	DRQEC <mark>VATEEN</mark> P	Q <mark>VF</mark>	<mark>F</mark> CCCE <mark>G</mark> I	FCNERFTHLPDI-
gi 47218579	ETQECAYYNSSW-EKDRTNRSGI	EP-CI	PSGE <mark>K</mark> DKRRHC <mark>F</mark> A	T <mark>W</mark> <mark>K</mark> NI-S	SGA <mark>V</mark> E <mark>VV</mark> KQGCW	LDD <mark>V</mark> NC	DSNEC <mark>VERK</mark> ESP	D <mark>VF</mark>	<mark>F</mark> CCCE <mark>G</mark> N	I <mark>M</mark> CNE <mark>KFL VVP</mark> E <mark>V</mark> Q
gi 1764144	EE <mark>RL</mark> CA <mark>YK</mark> DPN <mark>Y</mark> -QDQ <mark>GVS</mark> ESQ <mark>VSL</mark>	EN-GI	I – <mark>VK</mark> CTKGN I CFGI	LMEK T <mark>R</mark> e	EGE <mark>INLV</mark> RQGCW	SHVGDPHDC	N-DEC <mark>VVTTPPP</mark>	V <mark>IQ</mark> NG	TYRFCCCIK	MCNVNFT
gi 47223056	ETRECVYYNDNW-RTERTNQSGF	E <mark>R</mark> -CH	E- <mark>GEKDKRLH</mark> C <mark>V</mark> A	SWLNS-S	SGT <mark>IKLV</mark> KKGC <mark>W</mark>	LDDFNC	DRQEC <mark>VSM</mark> EENP	<u>Q</u> <mark>VP</mark>	FCCCEGN	YCNE <mark>RFTHLPDI</mark> -
gi 47825379	EERLCAFKDPYQ-QDHGISESRI	SQEN-GI	[- <mark>ILCMKGST</mark> C <mark>V</mark> G]	LMEK T <mark>R</mark> e	EGD <mark>IHLVK</mark> QGC <mark>N</mark>	SHIGDPQEC	I-FEECIVTTTPS	LIQN <mark>G</mark>	TYRFCCCST	LCNVNFT
gi 47218656	EERECAFTDQQQ-QW-EVERMAGGEGQISF	EN-T	[- <mark>VR</mark> CGKGS <mark>Y</mark> C <mark>F</mark> G]	L <mark>W</mark> E- <mark>K</mark> SP-F	PGE <mark>VRLVK</mark> QGC <mark>M</mark>	TH <mark>V</mark> SD <mark>RQ</mark> SC	D-DRC <mark>VVTNLPP</mark>	Q <mark>I</mark> QN <mark>G</mark>	TTHFCCCGSI	MCNVNFT
d1btea	ECEHIDEKMCNTTQQCETRI	EH-C	-MEADKEPSCYV	L <mark>MSV</mark> NET-I	IG <mark>ILR IKM</mark> KGC <mark>F</mark>	TDMHEC-	-NQTECVTSAEPR	QGN <mark>IH</mark>	ECCCKGS	RCNSNQKYI

PSI-BLAST E-value = 1E-17

Yes they are!

Sequence-sequence alignment uses substitution matrix scores

Sequence-sequence alignment uses substitution matrix scores

Α 4 R -1 -2 Ν -2 D С 0 Q -1 Е -1 G 0 Η -2 Ι -1 L -1 -1 K Μ -1 -2 F Ρ -1 S 1 Т 0 W -3 Y -2 V 0 aa S(A,aa)

gi|539437 ETQECL

A-column of substitution matrix contains scores for substituting A (alanine) with each of the 20 amino acids "aa"

EKKDSPE-

$$S(A,aa) = \log \frac{P(A,aa)}{P(A) P(aa)}$$

What score to use for aligning an MSA with a sequence?

Sequence profiles are a condensed representation of multiple alignments

They contain position-specific amino acid substitution scores

HBA human Ε HBB_human ... W MYG_phyca ... W Ε G LGB2 luplu ... Ε E F Ν Α Ι Ρ K W Ν The profile scores quantify G G н G Α -3,2 -1,9 -2,1 -2,2 -2,0 3,4 -2,1 1,4 1,5 -2,0 Α how much more frequent С -2,7 -2,7 -2,6 -2,9 -2,3 -2,8 -2,9 -2,1 -1,8 -2,1 each amino acid aa is in D -3,7 -1,6 -1,6 -3,1 -1,4 -2,1 2,0 -2,8 1,6 -1,5 Ε 2,1 -1,9 2,1 2,1 -2,8 -2,0 -1,6 -2,5 2,5 -3,4 column *j* of the MSA than its F -3,2 -3,3 -2,8 -2,0 -3,2 -3,3 -0,8 -3,6 2,9 -2,8 ... average frequency in the db: G 2,9 1,9 -2,3 -3,3 -1,8 -2,8 1,5 1,6 -3,3 -2,0 ... -2,2 Н -2,3 -1,8 -2,4 -1,9 -2,3 2,4 -2,6 -2,3 -2,0 . . . $S_j(aa) = \log \frac{p_j(aa)}{p_{av}(aa)}$ -3,1 -1,9 -2,9 -2,1 -2,3 -2,6 -3,3 -2,8 -1,2 -3,0 2,4 -3,0 ... 2,1 -2,1 -2,1 -1,8 -2,5 Κ -3,2 3,2 -2,7 -3,1 -2,8 -3,3 -3,0 L -2,9 -2,7 -3,0 -2,7 -2,2 -2,8 -2,4 -3,0 -1,5 -1,4 . . . • • • _____ Μ -2,2 -2,7 -2,3 -2,5 -1,5 -1,5 ... 2,8 -1,8 -2,1 -1,8 Ν -3,2 -1,7 -2,8 3,3 -2,6 -1,9 ... • • • log-odds score Ρ -2,4 -2,3 -2,3 -2,5 2,6 -2,3 ... -2,2 -2,8 -1,9 -3,7 ••• Q -2,0 -2,6 -1,8 -2,4 -2,0 -2,9 -1,5 -2,1 -1,7 -1,6 -2,2 -2,2 R -2,0 -2,2 -1,7 -2.5 -1,3 -2,8 -1,9 -2,6 ... $p_i(aa)$ = frequency of aa in -1,8 -2,0 -1,8 -2,0 S -1,9 -2,0 -2,5 -1,6 -1,8 -2,2 -3,1 -1,9 ... • • • column (incl. pseudo-counts) -2,0 Т -3,2 -2,2 -2,0 -2,2 -1,8 -1,9 -2,1 ... -2,8 -2,6 -2,9 -2,6 -2,0 2,3 -2,7 V -2,9 2,9 -2,8 ... W -3,3 -3,2 -2,8 -3,5 -3,4 -3,2 -3,0 -3,3 6,1 -1,9 • • • -2,8 Y -0,6 -3,2 -2,8 -1,4 -2,7 -2,6 -2,4 -3,0 -2,9

Profiles-sequence comparison

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ofile	HBA h	uman uman	•••	. W . W	G G	K K	V V	G	A _	_	_	H N	A V	G D	E E	•••
GLB1_glydi W E E I A G A D N G A G Matched database sequence \overline{A} $-3,2$ $-1,9$ $-2,1$ $-2,2$ $-2,0$ $3,4$ $-2,1$ $1,4$ $1,5$ $-2,0$ $$ C $-2,3$ $-2,8$ $-2,9$ $-2,7$ $-2,1$ $-2,7$ $-2,1$ $-2,6$ $-2,9$ $$ D $-3,7$ $-1,6$ $-1,6$ $-3,1$ $-1,4$ $-2,1$ $-2,7$ $-2,1$ $-2,6$ $-2,9$ $$ D $-3,7$ $-1,6$ $-1,6$ $-3,1$ $-1,4$ $-2,0$ $-2,8$ $1,6$ $-1,5$ $$ F $-0,8$ $-3,6$ $-3,2$ $2,9$ $-3,3$ $-2,8$ $-2,0$ $-2,8$ $1,6$ $-1,6$ $-2,0$ $-2,8$ $1,6$ $-1,6$ $-2,6$ $-2,3$ $-2,0$ $-3,2$ $-3,3$ $$ $-3,0$ $2,4$ $-2,6$ $-2,3$ $-2,0$ $-2,1$ $-1,8$ $-2,5$ $-2,$	ק פ	MYG_p LGB2	hyca luplu	••	. W . W	G K	K D	V F	E N	A A	_	_	D N	V I	A P	G K	•••
Watched W G K V G A H A G E A -3.2 -1.9 -2.1 -2.2 -2.0 3.4 -2.1 1.4 1.5 -2.0 C -2.3 -2.8 -2.9 -2.1 -2.7 -1.8 -2.7 -2.1 -2.6 -2.9 D -3.7 -1.6 -1.6 -3.1 -1.4 -2.1 2.0 -2.8 1.6 -1.5 E -3.4 2.1 -2.9 -3.3 2.9 -3.3 2.8 -2.8 -2.0 -3.2 3.3 G -3.3 2.9 -3.3 1.9 -1.8 -2.0 -2.8 1.6 H -2.3 -2.2 -1.8 -2.4 -1.9 -2.3 2.4 -2.6 -2.3 -2.0 H -2.2 -3.3 -2.8 -1.1 -1.8 -2.5 -2.1		GLB1_	glydi	•••	. W	E	E	I	Α	G	Α	D	N	G	Α	G	•••
database/ sequence A -3.2 -1.9 -2.1 -2.2 -2.0 3.4 -2.1 1.4 1.5 -2.0 Sequence D -3.7 -1.6 -1.6 -3.1 -1.4 -2.1 2.0 -2.8 1.6 -1.5 E -3.4 2.1 2.1 2.2 2.0 -1.6 -2.5 -1.9 2.5 F -3.4 2.1 2.1 2.2 2.9 -3.3 -2.8 -2.0 -2.8 1.6 -1.5 F -0.8 -3.6 -3.2 2.9 -3.3 -2.8 -2.0 -2.8 1.5 1.6 H -2.3 -2.2 -1.8 -2.4 -1.9 -2.3 -2.4 -2.9 -3.0 H -2.2 -3.3 -2.8 -1.2 -1.1 -2.3 -2.0 2.4 -2.9 -3.0 H -2.2 -3.3 -	Matc	hed 7			W	G	K	V	G	Α			Н	Α	G	Ε	
Sequence C -2,3 -2,8 -2,9 -2,1 -2,7 -1,8 -2,7 -2,1 -2,6 -2,9 D -3,7 -1,6 -1,6 -3,1 -1,4 -2,1 2,0 -2,8 1,6 -1,5 E -3,4 2,1 2,1 -2,0 -1,6 -2,5 -1,9 2,5 F -0,8 -3,6 -3,2 2,9 -3,3 -2,8 -2,0 -3,2 -3,3 G -3,3 2,9 -2,3 3,3 -2,8 -2,0 -2,8 1,5 1,6 H -2,6 -3,3 2,9 -3,3 1,9 -1,8 -2,0 -2,8 1,5 1,6 H -2,6 -3,3 -2,4 -1,9 -2,3 -3,0 2,4 -2,6 -2,3 -2,0 L -2,2 -3,3 -2,8 -1,1 -1,1 -2,5 -2,1	datak	base/		\	-3,2	-1,9	-2,1	-2,2	-2,0	3,4			-2,1	1,4	1,5	-2,0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	sean	ence			-2,3	-2,8	-2,9	-2,1	-2,7	-1,8			-2,7	-2,1	-2,6	-2,9	
E3,42,12,1-2,82,1-2,0-1,6-2,5-1,92,5F0,8-3,6-3,22,9-3,3-2,8-2,8-2,0-3,2-3,3G3,32,9-2,3-3,31,9-1,8-2,0-2,81,51,6H2,3-2,2-1,8-2,4-1,9-2,32,4-2,6-2,3-2,0I2,6-3,3-2,8-1,2-3,1-2,32,4-2,6-2,3-2,0I2,6-3,3-2,8-1,2-3,1-2,3-3,02,4-2,9-3,0K3,2-2,13,2-2,7-1,9-2,1-1,8-2,5-2,12,1L2,2-3,3-2,8-1,4-3,1-2,4-3,0-1,5-2,9-3,0M2,3-3,0-2,5-1,5-2,8-2,2-2,7-1,5-2,7-2,7N3,2-1,8-1,7-2,82,8-2,1-1,81,9-1,8P3,7-2,4-2,2-2,8-2,3-1,9-2,3-2,52,6-2,1Q2,9-2,0-1,5-2,6-1,8-2,1-1,7-2,4-2,2-1,8	seyu			<u> </u>	-3,7	-1,6	-1,6	-3,1	-1,4	-2,1			2,0	-2,8	1,6	-1,5	
H -0.8 -3.6 -3.2 2.9 -3.3 -2.8 -2.8 -2.0 -3.2 -3.3 G -3.3 2.9 -2.3 -3.3 1.9 -1.8 -2.0 -2.8 1.5 1.6 H -2.3 -2.2 -1.8 -2.4 -1.9 -2.3 2.4 -2.6 -2.3 -2.0 I -2.6 -3.3 -2.8 -1.2 -3.1 -2.3 -3.0 2.4 -2.9 -3.0 K -3.2 -2.1 3.2 -2.7 -1.9 -2.1 -1.8 -2.5 -2.1 2.1 L -2.2 -3.3 -2.8 -1.4 -3.1 -2.4 -3.0 -1.5 -2.9 -3.0 M -2.3 -3.0 -2.5 -1.5 -2.8 -2.2 -2.7 -1.5 -2.7 -2.7 N -3.2 -1.8 -1.7 -2.8					-3,4	2,1	2,1	-2,8	2,1	-2,0			-1,6	-2,5	-1,9	2,5	
G $-3,3$ $2,9$ $-2,3$ $-3,3$ $1,9$ $-1,8$ $-2,0$ $-2,8$ $1,5$ $1,6$ H $-2,3$ $-2,2$ $-1,8$ $-2,4$ $-1,9$ $-2,3$ $2,4$ $-2,6$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,3$ $-2,0$ $-2,1$ $-1,8$ $-2,5$ $-2,1$ $2,1$ $$ L $$ $-3,2$ $-2,1$ $3,2$ $-2,2$ $-2,3$ $-2,2$ $-2,3$ $-2,2$ $-2,7$ $-1,5$ $-2,7$ $-2,$					-0,8	-3,6	-3,2	2,9	-3,3	-2,8			-2,8	-2,0	-3,2	-3,3	
H2,3-2,2-1,8-2,4-1,9-2,32,4-2,6-2,3-2,0I2,6-3,3-2,8-1,2-3,1-2,3-3,02,4-2,9-3,0K3,2-2,13,2-2,7-1,9-2,1-1,8-2,5-2,12,1L2,2-3,3-2,8-1,4-3,1-2,4-3,0-1,5-2,9-3,0M2,3-3,0-2,5-1,5-2,8-2,2-2,7-1,5-2,7-2,7N3,2-1,8-1,7-2,82,8-2,13,3-2,6-1,9-1,8P3,7-2,4-2,2-2,8-2,3-1,9-2,3-2,52,6-2,3Q2,9-2,0-1,5-2,6-1,8-2,1-1,7-2,4-2,0-1,6R2,5-2,2-1,3-2,8-2,0-2,2-1,9-2,6-2,2-1,7S3,1-1,9-2,0-2,5-1,8-1,6-1,8-2,2-1,8-1,9T3,2-2,2-2,0-2,2-2,0-2,2-2,0-2,8-2,1V2,9-2,9-2,62,9-2,8-2,0-2,6-2,2-1,7				j	-3,3	2,9	-2,3	-3,3	1,9	-1,8			-2,0	-2,8	1,5	1,6	
I -2.0 -3.3 -2.8 -1.2 -3.1 -2.3 -3.0 2.4 -2.9 -3.0 K -3.2 -2.1 3.2 -2.7 -1.9 -2.1 -1.8 -2.5 -2.1 2.1 L -2.2 -3.3 -2.8 -1.4 -3.1 -2.4 -3.0 -1.5 -2.9 -3.0 M -2.3 -3.0 -2.5 -1.5 -2.8 -2.2 -2.7 -1.5 -2.7 -2.7 -2.7 N -3.2 -1.8 -1.7 -2.8 2.8 -2.1 3.3 -2.6 -1.9 -3.0 P -3.7 -2.4 -2.2 -2.8 -2.2 -2.7 -1.5 -2.7 -2.7 -1.8 Q -3.7 -2.4 -2.2 -2.8 -2.2 -2.7 -1.5 -2.7 -2.7 -1.8 Q -3.7 -2.4 -2.2 -2.8 -2.3 -1.9 -2.6 -2.9 -2.7 -1.8 Q -2.9 -2.0 -1.5 -2.6 -1.8 -2.1 -1.7 -2.4 -2.0 -1.6 $$ R -2.5 -2.2 -1.3 -2.6 -2.2 -1.7 $$ -2.6 -2.2 -1.7 $$ S -3.2 -2.2 -2.0 -2.2 -2.0 -2.6 -2.2 -1.7 $$			_ '	1	-2,3	-2,2	-1,8	-2,4	-1,9	-2,3			2,4	-2,6	-2,3	-2,0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				I	-2,6	-3,3	-2,8	-1, 2	-3,1	-2,3			-3,0	2,4	-2,9	-3,0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			_ ;	`	-3,2	-Z, I	3,2	-2,1	-1,9	-2,1			-1,8	-2,5	-2,1	2,1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				 1	-2,2	-3,3 3,0	-2,0	-1,4	-3,1 2,8	-2,4			-3,0	-1,5	-2,9	-3,0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				J	-2,3	-3,0	-2,3	-1,5	-2,0	-2,2			-2,7	-1,5	-2,7	-2,7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				• >	-3.7	-1,0	-1,7	-2,0	-2.3	-2,1			-2.3	-2,0	2.6	-2.3	
R -2,5 -2,2 -1,3 -2,8 -2,0 -2,2 -1,9 -2,6 -2,2 -1,7 S -3,1 -1,9 -2,0 -2,5 -1,8 -1,8 -2,2 -1,8 -1,9 T -3,2 -2,2 -2,0 -2,2 -2,0 -1,8 -2,2 -1,8 -1,9 V -3,2 -2,2 -2,0 -2,2 -2,0 -1,8 -1,9 -2,0 -2,1 V -2,9 -2,9 -2,6 2,9 -2,8 -2,0 -2,8 2,3 -2,6 -2,7 W 6,1 -3,4 -3,2 -1,9 -3,3 -3,2 -2,6 -2,8 -3,5 -3,3 Y -0,6 -3,2 -2,8 -1,4 -2,8 -2,7 -2,6 -2,4 -3,0 -2,9))	-2.9	-2.0	-1.5	-2.6	-1.8	-2 1			-1 7	-2.4	-2.0	-1.6	
S -3,1 -1,9 -2,0 -2,5 -1,8 -1,6 -1,8 -2,2 -1,8 -1,9 T -3,2 -2,2 -2,0 -2,2 -2,0 -1,8 -1,9 -2,0 -2,1 V -2,9 -2,9 -2,6 2,9 -2,8 -2,0 -2,8 2,3 -2,6 -2,7 W 6,1 -3,4 -3,2 -1,9 -3,3 -3,2 -3,0 -2,8 -3,5 -3,3 Y -0,6 -3,2 -2,8 -1,4 -2,8 -2,7			F	2	-2.5	-2.2	-1.3	-2.8	-2.0	-2.2			-1.9	-2.6	-2.2	-1.7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				S	-3.1	-1.9	-2.0	-2.5	-1.8	-1.6			-1.8	-2.2	-1.8	-1.9	
V -2,9 -2,9 -2,6 2,9 -2,8 -2,0 -2,8 2,3 -2,6 -2,7 W 6,1 -3,4 -3,2 -1,9 -3,3 -3,2 -3,0 -2,8 -3,5 -3,3 Y -0,6 -3,2 -2,8 -1,4 -2,8 -2,7				r	-3,2	-2,2	-2,0	-2,2	-2,0	-1.8			-1,9	-2,0	-2,0	-2,1	
W 6,1 -3,4 -3,2 -1,9 -3,3 -3,2 -3,0 -2,8 -3,5 -3,3 Y -0,6 -3,2 -2,8 -1,4 -2,8 -2,7 -2,6 -2,4 -3,0 -2,9				/	-2,9	-2,9	-2,6	2,9	-2,8	-2,0			-2,8	2,3	-2,6	-2,7	
Y0,6 -3,2 -2,8 -1,4 -2,8 -2,7 -2,6 -2,4 -3,0 -2,9			V	V	6,1	-3,4	-3,2	-1,9	-3,3	-3,2			-3,0	-2,8	-3,5	-3,3	
-				<u> </u>	-0,6	-3,2	-2,8	-1,4	-2,8	-2,7			-2,6	-2,4	-3,0	-2,9	·

Score = 6.1 +2.1 +2.1 -1.2 -2.0 -1.8 - 5.0 - 0.5 +3.3 -2.8 +1.5 +1.6

Find alignment with maximum score

Dynamic programming finds sequence-sequence alignment with highest score

alignment $y_1 y_2 y_{j-1} y_j$ ending in: **X**₁ **X**_{*i*-1} V(i,j) X_i $V(i,j) = \max \begin{cases} 0 \\ V(i-1,j-1) + S(x_i,y_j) \\ V(i,j-1) - gap.penalty \\ V(i-1,j) - gap.penalty \\ matrix \end{cases}$

Dynamic programming finds profile-sequence alignment with highest score

alignment $p_1 p_2 p_{j-1} p_j$ ending in: $\dots X_{i-1} X_i$ $\dots P_{j-1} P_j$ **X**₁ **X**_{i-1} V(i,j) X_i $V(i,j) = \max \begin{cases} 0 & p_j(x_i) \\ V(i-1,j-1) + \log \frac{p_j(x_i)}{p_{av}(x_i)}, \\ V(i,j-1) - gap.penalty \\ V(i-1,j) - gap.penalty \end{cases}$ Profile score

Dynamic programming finds profile-profile alignment with highest score

Profile-profile comparison

	HBA h	uman	• •	. W	G	K	V	G	Α	-	-	Η	Α	G	Ε	
	HBB h	uman		. W	G	K	v	_	_	-	-	Ν	V	D	Е	
	MYG r	hyca	•••	W	G	ĸ	v	ਸ	Δ	_	_	П	V	Δ	Ē	
		1	• •	. VI	U E		v Tr	N	7			NT	Ť		U V	•••
		Tubra	• •	. w	<u> </u>	<u> </u>	E	IN	A			IN		P	Г	• • •
	GLB1	glydi	• •	. W	K	D	I	Α	G	Α	D	Ν	G	Α	V	
	GLB3	chitp		. F	D	K	v	K	G	_	_	_	_	_	Ν	
			•••	 147	7	D	37	v	C C	7	NT	т	v	F	TT I	
	GTD2	peulla	• •		A	P	V	T	3	A	IN		T	Ľ		• • •
				W	G	K	V	G	Α			н	Α	G	E	
		Α		-3,2	-1,9	-2,1	-2,2	-2,0	3,4			-2,1	1,4	1,5	-2,0	
		С		-2,3	-2,8	-2,9	-2,1	-2,7	-1,8			-2,7	-2,1	-2,6	-2,9	
	D	<u></u>	-3,7	-1,6	-1,6	-3,1	-1,4	-2,1			2,0	-2,8	1,6	-1,5		
			· *													
-		V		-2,9	-2,9	-2,6	2,9	-2,8	-2,0			-2,8	2,3	-2,6	-2,7	
Compare w				6,1	-3,4	-3,2	-1,9	-3,3	-3,2			-3,0	-2,8	-3,5	-3,3	
omin		Y		-0,6	-3,2	-2,8	-1,4	-2,8	-2,7			-2,6	-2,4	-3,0	-2,9	
amm																
distril	butions			W	K	D	I	Α	G	Α	D	Ν	G	Α	V	
		A		-3,1	1,8	-2,0	-2,1	2,2	-1,8	3,4	-2,1	-2,0	-2,2	2,5	-1,8	
		S		-2,3	-2,5	-3,0	-2,1	-2,2	-2,4	-1,8	-3,1	-2,4	-2,4	-2,2	-2,4	
		D	\searrow	-3,7	2,0	2,7	-3,1	-2,2	-1,9	-2,1	3,9	-1,6	-2,3	-1,6	-2,0	
	V		-2,6	-2,4	-2,7	2,7	-2,2	-2,8	-2,0	-3,0	-2,4	-2,7	-2,2	-2,5		
		W		5,6	-3,3	-3,5	-2,7	-1,8	-3,2	-3,2	-3,7	-3,2	-1,5	-3,3	-3,2	
		Y		-0,5	-2,8	-2,9	-2,3	2,7	-3,1	-2,7	-2,9	-2,5	3,2	-2,8	-3,0	

Various ad-hoc measures of column similarity are used, e.g. Score = $\sum_{a=1}^{3} q_{ia} p_{ja}$

20

A profile HMM is a sequence profile extended by position-specific gap penalties

Record probability of insertions and deletions at each position

BLAST

Search with single sequence through sequence database

PSI-BLAST

Iterative search with sequence profile through sequence db

PSI-BLAST, MMseqs2

Iterative search with sequence profile through sequence db

HHblits

Best sensitivity, alignment quality, and speed

Remmert et al., Nature Methods 2011

See you back at 13:30h ③

Student feedback after lecture

- I think the speed was good, the explanations were clear but *I needed more breaks*, specially for the first part of the presentations. *Small 5 min breaks would be fine*
- alignment for the section of *profile based dynamic programming*
- I found the *part of HMM a bit difficult to comprehend*. I liked the dynamic programming exercise.
- maybe could introduce a little more about the principles of clustering?
- I was following the local alignment algorithm explanation until the part where *position specific score* was introduced. Then started getting a bit confused
- Everything was great. Actually, I would prefer to have more days of practice and more command line exercises but I am not sure that you can change it. Thanks a lot!
- The parts where sequence profiles are explained can be explained a bit more in detail. Also, overall the presentation has gone fast for me as not everyone has the same background in bioinformatics.
- The slides were presented well but it was a bit fast and sometimes was difficult to analyze some technical stuff. otherwise the basics were very well explained. Thanks
- I think the hardest topic was the matrix of similarity calculations. It was well explained, but I felt it a little fast. Some more examples and exercises would have helped
- explanation of the log odds score
- The details of MMseqs2 was difficult to understand
- The course was great, I really liked the tutors were very responsive to questions. Also the organization of the course is very nice, with the breakout rooms, the breaks, and the general meetings. Many of the info were new to me, but I finished the course feeling like I understood it very well. I liked the fact that some exercises were put in the middle to help us figure things out ourselves. Thank you for your efforts!
- I feel that we could *go slower on the topic of HMM- profile, profile-profile comparison* as there are many complex things to understand and visualize.
- I did not understand too much the part that covered *MMSeq*, *BLAST*, *HHMER3* and *HHblits*. I think it was too quick. In general, *there are times where I think the professor spoke too fast*. Everything else was great!

Small P-value: reject null hypothesis

The P-value is the probability to obtain a result as observed *or more extreme*, given the *null hypothesis* (often a "hypothesis of randomness"). A small P-value (e.g. < 0.05) indicates the null hypothesis can be rejected.

Suppose we suspect a die to be loaded. We throw it 30 times and never observed a 6. Can we conclude that the die is loaded?

Exercise: Compute the P-value for the *null hypothesis* that the is fair. What if we observed a 6 only once out of 30 throws? What do you conclude from the P-value?

The probability to obtain a six only zero or one times, given the die is not loaded (the null hypothesis), is

$$P(k \le 1 \text{ six out of } 30 | p_{\text{six}} = 1/6) = \sum_{k=0}^{1} \binom{30}{k} (1/6)^{k} (5/6)^{30-k}$$
$$= \binom{30}{0} (1/6)^{0} (5/6)^{30} + \binom{30}{1} (1/6) (5/6)^{29} = 0.0042 + 0.0253 = 0.029$$

We can reject the null-hypothesis that the die is fair with a P-value of 3%.

Why "or more extreme"?

P-value = the probability to obtain a score as observed or more extreme under the null hypothesis

Suppose we throw a die 6N times and observe a six N times. What do you guess is the P-value?

Why "or more extreme" in the definition of the P-value?

Please type in your answers at https://forms.google.com/???

The linux command line (bash)

- 1. Don't forget spaces
- 2. Everything in linux is case-sensitive (filenames, commands,..)
- 3. Filenames = directory path and basename: /usr/local/soeding/my_file.txt You can give only the basename *if the file is in the current directory*

ls	list content of current directory
Is -ItrF	Is in <u>long</u> format, <u>time-sorted</u> in <u>reverse</u> order, with <u>Filetype</u>
cd <path dir=""></path>	change to directory <path dir=""></path>
cd	go up 1 step in directory hierarchy
gedit <file> gedit <file> & less <file></file></file></file>	open file in editor open file in editor <i>in background</i> look at raw file (q: quit, b: back,/: find); works for huge files
cp <file> <dest> mv <file> <dest> rm <file> mkdir <dir></dir></file></dest></file></dest></file>	copy file to destination directory (cp file.txt ~/molbiol/day1/) move file to destination directory remove file (careful!) create new directory (remove with rmdir <dir>)</dir>
info Is, man Is	show info / manual page of Is command
chmod +x <file></file>	change settings of file to make it executable