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Goals for next 1 'z days

Protein structure and sequence conservation

Homology-based inference and sequence similarity
searches

P- and E-value

Sequence alignment (dynamic programming)
— Role of algorithms in bioinformatics

Sequence profiles: information is power!

MMsegs, basic analyses of metagenomics dataset
(Genome assembly)

Structure databases

AlphaFold



Protein structure is highly conserved even

without obvious seq

3'0 T T T

uences similarity

Root mean square deviation /A
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Percent residue identity

Sequence identity

60% 0.85 A
40% 1.2A
20% 1.8 A

RMSD in
conserved core

Fraction in core
95%

80%
55%




Protein sequence determines structure!
Anfinsen’s experiment

1. Reduce 1. Remove urea
2.8 M urea 2. Oxidize
é é
Native Denatured Native
(100% active) (inactive) (>90% active)

Anfinsen CB. "Principles that govern the folding of protein chains". Science 1973

If all the information to correctly fold a protein is contained in its amino acid
sequence, we should be able to predict its structure from its sequence!

Computational chemistry: uncover the rules of protein folding from first
physical principles

Do you know “exceptions” to Anfinsen? (3) Allostery; misfolded proteins
(Alzheimer’s, prions); chaperones (GroEL, Hsp70,Hsp90,...)



From comparative protein structure
modeling to deep learning and AlphaFold

Comparative modeling has been the mainstay of protein
structure prediction up to now. It relied on the fact that
homologous proteins (those related by common ancestry)
usually have very similar structures. If a protein with
known structure can be found that has sufficiently high
sequence similarity, the two are likely to be homologous,
and the unknown structure can be modeled using the
known structure as a template.

Comparative modeling is now superseded by deep neural
networks (transformers) such as AlphaFold, trained on all
~160k protein structures.



Homologous =
descended from common ancenstor

ancestral protein

2B years

similar structure

similar function

qguery protein homologous protein



Homology-based inference
of protein structure and function

query protein When are two sequences

I —— similar enough to ascertain
: FTR-AREE - > homology?

sequence search — E-value < 0.01

equence

predict structure
and/or function of
query from those of
database match

= GYCBVITISIPESESLEE

homologous

sequence found
with known structure
or functions




When are two sequences similar enough to
ascertain homology?

Null hypothesis (boring “hypothesis of randomness”): query sequence is not
in any way related to database sequence, similarity score is “random”.

Can we reject this null hypothesis (assume the db sequence is homologous)?

The sequence similarity score (our “test statistic”) has a distribution with only
two parameters which we can compute. ©

>

distribution of similarity
scores between query and
unrelated sequences

P-value = prob(Score > S)

Prob. density

n Score

S = Score between query and
matched db sequence




Small P-value: reject null hypothesis

Given: a null hypothesis (boring “hypothesis of randomness”) and
a score (“test statistic”) with known distribution under the null hypothesis

Goal: find interesting cases for which the null hypothesis can be rejected

P-value = the probability to obtain a score as observed or more extreme,
under the null hypothesis.

A small P-value (e.g. < 0.01) indicates the null hypothesis can be rejected.

>

Score distribution
If null hypothesis
IS correct

P-value = area

Prob. density

Score



E-values

P-value = the probability to obtain a score as observed or more extreme
under the null hypothesis

Suppose you searched a sequence database with a query sequence and
you obtained a match with a P-value = 1E-6. Can you trust this matched
sequence to be homologous to your query?

Suppose your sequence database contains 108 sequences.
Can you trust the matched sequence with a P-value = 1E-6 to be
homologous to your query?

No! Each db sequence has a probability of 1E-6 to have a P-value < 1E-6
by pure chance alone. So the expected number of db sequences to
achieve a P-value < 1E-6 is

E=10% X1E-6 =100 !

Therefore, the match is not at all trustworthy.



E-value = expected number of observations
at least as extreme as the one observed

@ P-value = Probability for event with score = s under the
null hypothesis

@ E-value = Expected number of events out of N, . trials

with score = S under the null hypothesis similar to

Bonferroni
E-value = Ny X P-value multiple testing

correction

Score distribution
for non-homologous
sequences

E-value = N X P-value

density of
observations

total area = N4

Score



Distant homology can predict function

TAF1B Is a TF"B-Like cOmponent nbosomal DNA (rDNA) promoter (/3—15). Using

HHpred, a server for protein remote homolog

Of the Basal Tra nsc ri ption MaChinery detection and structure prediction (/6), we dis-

covered that the TAF1B (TBP-associated factor

fOI’ RNA PO Iymera Seé I 1B/TAF;63) subunit of human SL1 1s structurally
Srivatsava Naidu,* ]. Karsten Friedrich,* Jackie Russell, Joost C. B. M. Zomerdijkt S”ml‘m to TFIIB, havmg th? sngn.aturc N'temm?al

Zn ribbon and core domain with two potential
SCIENCE VOL 333 16 SEPTEMBER 2011 cyclin-like folds (Fig. 1, fig. S1, and tables S1 and

YeaSt an7 and Human TAF1 B factors (/3) because Pol T subunits share rela-

tively low protein sequence conservation with

Are TF"B_ReIated RNA Polyme rase I their Pol II and Pol Il counterparts (/4). Using

e am the homology detection program HHpred, which
G enera I Tl’a NScCri ptl on Fa Cto IS uses pairwise hidden Markov model profile com-
parisons that are more sensitive than traditional
Web-based approaches (15), we detected high-

SCIENCE VOL 333 16 SEPTEMBER 2011 probability matches between the Rm7 N-terminal

320 residues and the TFIIB family, indicating that

Bruce A. Knutson and Steven Hahn*

Table 1. HHpred results for Rrn7 using S.cerevisiae, B

H.sapiens, and P.abyssi genome databases | TFIIB-Homology Domain (BHD) C-Terminal Domain (CTD)'

Protein %Probability %ldentity Evalue  %Fold ZR BR BL Cyclin folds
HsTAF1B 100.00 16 0 84 TF"B- _|345

ScBrf1 97.91 10 51E-04 74

HsBrf1 97.76 11 1.6E-03 82

HsTFIIB 97.72 12 1.4E-03 83 o
ScTFIIB 97.45 8 6.9E-03 77 Gid
HsBrf2 96.23 12 54E-01 77

PaTFB 95.15 13 3.2E-01 80 588




Distant homology can predict function

Type VI secretion phage T4
(trimeric unit) needle and spike

99

Type VI secretion apparatus and phage
tail-associated protein complexes share
a common evolutionary origin

Petr G. Leiman®'2, Marek Basler®', Udupi A. Ramagopal©, Jeffrey B. Bonanno<, J. Michael Sauderd, Stefan Pukatzkie,
Stephen K. Burley, Steven C. Almo¢, and John J. Mekalanos®3

HHpred (26) analysis shows that E. coli CFT073 Hcp ortholog
(Table S1) is weakly similar to putative phage tail protein family
PF09540 (e-val = 1.5¢-4). As revealed by Hidden Markov Models
(HMM) -HMM comparison performed by HHalign (27), this
protein family exhibits significant homology (e-val = 9.3e-10) to the
family of T4-like tail tube proteins gp19 (PF06841). Moreover, the

164
Lysozyme domain




How can we infer common descent
over time spans of billions of years?



Hydrophobic residues form the domain cores

Example: protein with a aliphatic VLIMA

ferredoxin fold aromatic FWY
L . [ STPG

Most hydrophobic side chains ;2‘,2, N Q

extend into the protein core negative DE

positive KRH




Hydrophobic residues form the domain cores

The protein core is tightly aliphatic VLIMA

packed... aromatic FWY
small STP
polar N Q
negative DE

positive




Hydrophobic residues form the domain cores

The protein core is tightly aliphatic VLIMA
packed with mainly aronrlatlc g\ggG
I I sSma
hydrophobic residues olar NG
negative DE
positive KRH

e B %
-

< Molecular 3D Puzzle




Core residues are often well conserved
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The space of foldable sequences is like

small islands in a vast ocean ...
... of sequences that do not form stable structures

Island-hopping is therefore very rare

Less than ~ 10-10 is covered by islands of stability.
The rest is water.



Homology-based protein structure and
function prediction is powerful

Structures and functions of Homology (common descent)
proteins may be conserved can often be predicted
over billions of years from sequence similarity

W Bl CINT ~RUE TR -~ B DRERR. UIRE - UERD sasfl
| Jg g --MLIG\:!R)!ISHE?,ISLIE smol\m_smw

We can predict the structure and function of proteins
based on sequence similarity to homologous proteins



Homology-based protein structure and
function prediction is powerful

Homology (common descent)
can often be predicted
by aligning sequence profiles
built from closer homologs

Structures and functions of
proteins may be conserved
over billions of years

We can predict the structure and function of proteins
based on sequence similarity to homologous proteins



Homologous =
descended from common ancenstor

ancestral protein

2B years

similar structure

similar function

qguery protein homologous protein



How is it that we can infer common descent
over time spans of billions of years?

Sequence evolution is highly constrained by the requirement of
a stable structural core

Every fold has a specific 3D jig-saw
puzzle logic of how its side-chains
interlock, which is highly conserved

This logic is reflected in a protein’s
multiple sequence alignment:

in pattern of conserved hydrophobicity
and amino acid properties

By comparing multiple alignments we can detect similar
patterns that indicate the same 3D folding logic



Structure and function of protein domains
are often conserved over billions of years

Sequences are diverged beyond recognition at
those time scales

We and others develop tools to build and
compare multiple sequence alignments of closer
homologs

From the similarity score we obtain an E-value.
When E < 0.01, homology is likely.



Domains are the building blocks of proteins
— their structural, functional, and evolutionary units

* Most eurkaryotic proteins have multiple structural domains

 Domains have often been duplicated and rearranged during evolution

DEXD/H box DUR283 PA/S LONNeCtor helix
- - ™ —
Human Dicer a ==

G. intestinglis Dices B

We can often formulate hypotheses about protein function
based on its domains



Many parts in eukaryotic proteins are
disordered (or natively unfolded )
What do they do?

Natively unfolded residues in human proteome: 37% - 50%
Fewer in simpler eukaryotes

Much fewer in bacteria and archaea (only 3%-25% of their
proteins contain disordered regions > 50 aa)

disordered ordered




Disordered regions are interspersed with
short linear motifs that can bind to specific
target domains

pKID domain of CREB
binding to KIX domain
of CREB-binding protein (CBP)

Dyson and Wright, Mol Cell Biol (2005)

Short linear motifs fold upon binding to their target domain



Liquid-liquid phase separation —
a long-known phenomenon
now revolutionizing cell biology

) Many types of membraneless
droplets exist in cytosol and
nucleus of eukaryotic cells:
nucleolus, stress granules, P-
bodies, splicing speckles,...

Liquid Phase Condensation

Multivalent weak interactions Liquid-liquid

Multivalent Proteins | Disordered Proteins phase

Grb2 hnRNPA1 separation

is involved

Sos1 RNA in almost

every

cellular

process in

eukaryotic
cells

AL
Filtration

Shin & BrangwyT lence 2017 Alberti et al, Cell 2019



Time for a
bio-break,
bro,

_

5 minutes ©



Sequence searching




Sequence-sequence comparison

* A sequence alignment groups similar residues into same
column. These residues are assumed to occupy homologous
positions in the proteins

HBA human ... VKAAWGKVGA--HAGEYGAE ...
GLB1 glydi ... IAATWEEIAGADNGAGVGKD ...
« Alignment score = sum of similarity — gap penalties:

Score = S(V,I)+...+ +...+S(E,G)+...+5(G,G)-d —e

* Find alignment with maximum score, rank by score



Goal of sequence alignment:
maximize alignment score

Alighments correspond 1:1 to paths in dynamic progr. matrix

GAATTCAGTT
AT T 1 (=111
T AT 1] 111 seores:

T1-11-11-11 111 |-11-1]|- 11match=+1\
Al-111111-1]-1[-1} 1]-1]-1{-1| mismatch = -1 \
G
G

A1 121121121 21 1 1. Gap=_1 ‘—P

Corresponding GAATTCAG-TT-
alignment: - -ATT-AGGTTT




Dynamic programming finds the sequence-
sequence alignment with highest score

alignment
Y1 Y Vi1 Y engding in:
X, N o X X
Cor R
X, - | Vi
__ V(1
X; _\.}‘vé/ (j)
-- - Xia| X
- Y-
(0

- V(i-1,j-1) + S(x, ) o
V(i,j) = max"* V(ij-1) - gap.pe/{)a‘/ty\ similarity
( V(i-1,j) — gap.penalty =core




Exercise: find the alignment with highest
score by dynamic programming!

GAATTCAGTT

A10[111]010]0 similarity scores:
T{0]0[0[2]1]0 natch = +1
T1010(0|1 mismatch = -1
Al0O11]11]0
Gl1/01010 gap.penalty = -1
G|1(0(0]|0
T10(0]0]"
T10(0]0
T10(0]0

(0

Lo V(i-1,j-1) + S(x,y,)
V(i,j) = max < V(i,j-1)—gap.perj1alty

_ V(i-1,j) — gap.penalty




Exercise: find the alignment with highest
score by dynamic programming!

GAATT

AGTT

0

NINO|O

1
3
2
1

VO O|O=|N|O

OO OO0 |0O
OOCIOCIO0|IO0O|—=O(O|—

V(i,j) = max<

N | OO 1000|010 (—

0
V(i-1,j-1) + S(x; )
V(i,j-1) — gap.penalty

_ V(i-1,j) — gap.penalty

similarity scores:
match = +1
mismatch = -1

gap.penalty = -1



Exercise: find the alignment with highest
score by dynamic programming!

GAAT

—]

AGTT

(N

= INWO|O|(—

VO O|O=|N|O

OO OO0 |0O
OOCIOCIO0|IO0O|—=O(O|—

NIN|=[O|=[NW|[—|0O
OIO|IO|IO|I=ININO|O

V(i,j) = max<

N | OO 1000|010 (—

0
V(i-1,j-1) + S(x; )
V(i,j-1) — gap.penalty

_ V(i-1,j) — gap.penalty

similarity scores:
match = +1
mismatch = -1

gap.penalty = -1



Exercise: find the alignment with highest
score by dynamic programming!

GAAT

—]

AGT

0

VO O|O=|N|O

OO OO0 |0O
OOCIOCIO0|IO0O|—=O(O|—

NIN|=[O|=[NW|[—|0O
= =2 OO=[NINO|O
OIOCIO(=INWI—O|—
OI=INWIAINOIO|O

N(WIBWIW

AOABRININDI=2IN—=O|

V(i,j) = max<

N | OO 1000|010 (—

0
V(i-1,j-1) + S(x; )
V(i,j-1) — gap.penalty

_ V(i-1,j) — gap.penalty

similarity scores:
match = +1
mismatch = -1

gap.penalty = -1



Exercise: find the alignment with highest
score by dynamic programming!

GAAT

—]

AGTT

1

0 0

A OO0 |10 1=

olo|lo|=|~|lo|lo|lo|o
o|lo|lo|lo|lo|~|o|o

NN = o= |Nd|w|=|o
~la|o|ol=m|Nv|INv|o|o
olo|o|=|Nw|=|o|-
== SHMEN IS ell=) =

N(WIBWIW

EH-PI\)I\)AI\)AO

0

V(i) = max{ YT+ S0

(i.j-1) — gap.penalty
_ V(i-1,j) — gap.penalty

similarity scores:
match = +1
mismatch = -1

gap.penalty = -1



Exercise: find the alignment with highest
score by dynamic programming!

GAATT AGTT
Al0]1 010 similarity scores:
T10(0(0 111 match = +1
T/0(0]|0 2 | mismatch = -1
Al0[1]0 1
al1lolo 2 | gap.penalty = -1
G|1/0(0 2
T/0101(0 4
T[o]0]0
T10(0]0 4
0 . GAATTCAG-TT-
V(ij) = max< pi D R - -ATT-AGGTTT
_ V(i-1,j) — gap.penalty




Exercise: find the alignment with highest
score by dynamic programming!

GAATT AGTT
Al0]1 010 similarity scores:
T10(0(0 111 match = +1
T/0(0]|0 2 | mismatch = -1
Al0[1]0 1
al1lolo 2 | gap.penalty = -1
G|1/0(0 2
T/0101(0 4
T[o]0]0
T10(0]0 4
0 . GAATTCA-GTT-
V(ij) = max< pi D R - -ATT-AGGTTT
_ V(i-1,j) — gap.penalty




Sustitution matrices score the similarity
between amino acids

L-tyrosine (Y) L-phenylalanine (F) L-tyrosine (Y) L-aspartic acid (D)

Similar amino acids can frequently  Dissimilar amino acids can
substitute for each other since  rarely substitute for each other
without fitness loss without fitness loss

How to “measure” similarity between amino acids?

Count how often each pair of amino acids a,b is allgned together

P
Log-odds score ~ S(a,b) = log P(ef Y P(D) ESEF .




Log odds P(a,b) / P(a)P(b) measures how
much more frequently a and b are found
aligned than by random chance

,D(a,b) - —Probability for finding (a,b) among aligned

S(a,b) = log residue pairs (model prob.)
P(a) P(b) — Probability for finding (a,b) among
randomly drawn amino acids (null prob.)
Examples:
_ P(Y,F) _ 3.7E-3  _ ~
S(YVF) =109 5y B = 1092335 w a0g2 09229 =19
_ P(W.D)  _ 19E-4  _ _
S(W,D) = log, (W) P(D) = log, 3E5 x £ OF log, 0.25=-2.0



ilar amino acids
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Substitutions between s

have P(a,b) > P(a)P(b) = positive score
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Ino acids

ilar ami
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Substitutions between d

have P(a,b) < P(a)P(b) = negative score
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\ 7 = When searching for homologous

Q ] proteins, search with the protein
sequence, not the DNA sequence!

Selection of mutations iWchygE’egions acts on the
level of codons and amino acids, not on the level of
nucleotides.

When comparing nucleotides sequences we ignore the

differences in selection pressure between

 silent mutations (which don‘t change the amino acid),

« conservative muitations (which lead to substitution with
a similar amino acid)

* Non-conservative mutations (which lead to substitution
with a dissimilar amino acid) and

* Nonsense mutations (which introduce a stop codon)



Key message:
Information is power. Use it!

Are these sequences homologous?

gi|539437 EEQEC AN - ERpRTNoTEVEECRCo B BEEE B2 T - - B ESGEEE GC piEncEpETDCIEMEDSEE- - il ccEGnHcNE EfiE
dlbtea  ---ECE cnToocETRIENCRME2D RS VLS v ET TG EC nQTECHTSAERRoGN IRl e clicsRensnollT-- - -
BLAST E-value = 0.2

* * % * *%k  * % % Yeked % ok % Yok % % K%k
gi| 539437 : ----NQTE ——EP cli-Golip 2Tl - B 1 - ST e loc ———DD E.DSPE y coce@riicnEils
gi|91922 I E ----NQBGL--E CE GEQD LHCH2SM--PNS-SGTIEL c L---DD EC TEENPQ-- CCCEGNECNE I
gil213934 -ELE ----NQSG --E LHCRASH--BNN-SGRIE L---DD EENEQ--¥ CCCEGHECH
gi|54638211 -EQDCT----l--1--E CQ ETD VLM AHEE- TG AR TR c §---D EC NQTEC garBROGNM ccclieSnongng
gilll4724 I -EfDfT- - --N8NET--E CI-GDND 5Tl -l 1-5681T nGCHL---DDIncl ICTE DSED- -} CCCEGNECNE
gi|31418321 A -QoDLGIGE-SREsH- - En-GT- 18 1l- - exs - BepInivioc sl DPQEC -MEECVVTTTRPS - -1 CCCETDL
gil|2150128 ID ----N@SGY-- Ef-CE- GEE . ms -8GSIQLY] - --DD) ECHATEENPQ--H CCCEGD,
gi|47218579 A -ERDRT- - --NBSGI--EB-CPSGE 2 TH- - BN - SCAVEWY i-—-ID SNECE ESPD--W CCCEGNH
gill764144 IC2 -ODOGWEE- - SOWSE- - EN-GT-Vllc TRGN I CRGLY- - EX THEGEINLY SEVGDE c N-DECYMTTEPRY-- I cccilion
gil|47223056 V] -BTERT- - --noscl--ER-cE-G LH sl -INs- ST IRLY I---DD IQEc SMEENBQ- - CCCEGN
gi|47825379 LCAEDE---lo-oDHGT- - - - SESRISOEN-GT- THCH Ll--EXTHEGDT +. DEQECH-BEECIVTTITRSE--1 CCCETDL
gi|47218656 2 8TD000-0f- ENERM2GEEGQTSP- - EN- TT- VHCG E-Hsp-BGEN 78DB0S cBD- DRV INLPRQ-- | CCCESDH
dlbtea_ ---ECEQNDE ICNTTQQ- - -- CETRI- - EN- CH-ME2AD VLRSVET-TGII

PSI-BLAST E-value = 1E-17

Yes they are!



Sequence-sequence alignment uses
substitution matrix scores

gi|539437 ETQECHNANE- ERoRTNOTGHEECREDRO RN )= T)- - BrTsCST = TVloG JEroivcBoRToCH=MloSP: - - Wil cceGnicn e INE e
dlbtea  ---ECEfEDERMcNITOOCETRIEfCEMEAD RS VRSN ETTCILETRIHG TofffjEC-noTECHTS2EPRGN TRl ccolicSRonEnofl- - --



Sequence-sequence alignment uses
substitution matrix scores

gi| 539437 ETQ“@ C — — SITIDSPE
dlbtea S2EPfoGNT

< KESTHOWOHHEHIRHPHFHDETQOEHEHOQD Z WP
|
=

CCCEGNMCNE PEEE
cocliesh CNSN

A-column of substitution matrix
contains scores for substituting A
(alanine) with each of the 20 amino

acids “aa”
P(A
S(A,aa) = log P(,é(\) ;(Z)a)




What score to use for aligning an MSA

with a sequence?

gi|539437
gi|91922
gi|213934
gi|54638211
gi|114724
gi|31418321
gi|2150128
gi|47218579
gi|1764144
gi|47223056
gi|47825379
gi|47218656

DEfMcNE-EQDCT----Tl--
2 -l EBDBT- - - - NENGT-

: -Efpi----NOTeY-) TeTVloGClE- - - Do cioBToCEeMlDEPE--§
TR 2 - - - l- ELERT - - - -NOSGL- 'TELY] CHL---DD@NC ECWATEENEQ--W
12 - - -l ELERT- - - -NOSG ¥ T IELVIRG CliLl- - - DD CEDROEC v

Log-odds profile score Si(aa) = log

Scores for finding each of the
20 amino acids “aa” in this
position ?

Count how often amino acid
aa appears in MSA column |!

P(aa)
P(aa)




Sequence profiles are a condensed
representation of multiple alignments

They contain position-specific amino acid substitution scores

HBA_human W G K V. G A H A G E

HBB human W G K vV - - N V D E

Iphyca W G K V E A D V A G

LGB luplu W E E F N A N I P K

The profile scores quantify n o K VI G Al H Al o E
how mUC_h more freq.ue.nt Cl .| 23] 28] 29] 21| 27 4.8] 2.7 24| 2,6] 2,9
each amino acid aa is in D 37| -16] -1,6] 31| -14[ -21] 2,0] 28] 16 -15
; : E 34 21| 21| 28] 21| -2,0] 16| 25 19 25
column j of the MS'A_‘ than its F 08| -3,6] 32| 29| 33| 28] 28] 20 32| 33
average frequency in the db: [ G 33| 2,9 -2,3] 3,3 1] 1,8 2,0] 2,8 15 16
H 23] 2,2] 18] 2,4 19| 2,3] 24| -2,6] 23] 2,0

pi(aa) | 2,6] -3,3] -2,8] 1,2| 31| 2,3] 30 2,4 -2,9] -3,0

Sj(aa) =log —— K 32| 21| 3,2 2,7 1,9] 21| 1,8 2,5 21| 2,1
Pav(@a) L 22| 33| 2,8] 1,4 31| -2,4] 3,0] 1,5 -2,0] -3,0

A M 2,3] 3,0 25| 1,5 28] 2,2 27| 4,5 2,7 27

N 32| 1,8 1,7] 28] 28| 21| 33| 2,6 19 18

log-odds score P 3,7 2,4] 2,2] 28] 2,3 19 2,3] 2,5] 2,6] 2,3

Q 29 2,0] 1,5] 2,6] 18] 21| 1,7] 2,4 2,0 1,6

_ - R 25| 2,2] 1,3] 2,8 20| 2,2] 19 2,6] 22] 4,7
pj(aa)—f_requency of aa in S 34| 1,9 2,00 -2,5] 1.8 16| 1,8 -2,2] 1,8 19
column (incl. pseudo-counts) T 3.2[ 22| 2,0] 2,2 2,0 1,8 1,9 2,0] 2,0] 2,1
v 29 2,9 26] 2,9] 28] 2,0 28] 23] 26/ 27

W 6,1 -3.4] -3,2| 1,9 33| -3,2| -3,0] 28] 35 -3,3

Y 06| -3,2| 28] 1,4 28] -2,7] -26] 2,4 3,0 2,9




Profiles-sequence comparison

>0 HBA_human ... W G K VvV G A - - H A G E ...
mﬂg HBBhuman ... N G K Vv - - - - N V D E ...
&5 | MY 7phyca ...W G K V E A - - D V A G ...
IGB2 luplu ... W K D F N A - - N I P K ...
GIBl glydi ... W E E I A G A D N G A G ...

Matched Wl G| K| V] G| A H[ _A| G| E
database A 32| 19| 21| 22| 2,0 34 21| 14| 15| 20

C 23] 28] 29 21 27 18 27 21 26 209
sequence D 37| 16| 16| 31| -1.4] 2.1 20 28] 16| 15

E 34| 21| 24| 28] 21 20 16| 25| 19 25

F 08| -36] -32] 29 -33] 28 28] 20 32 33

G 33| 29 23] 33 19 1,8 20 2,8 15/ 1,6

H 23] 22 18] 24 19 23 24| 26 23] 2,0

I 26| 33| 28] 12| 31| -2.3 30| 24| 29] -30

K 32| 21| 32| 27| 19| 21 18] 25| 21| 24

L 22| 33 28] 14| 31| 24 30| 1,5 29| -3.0

M 23] 30| 25| 15| 2.8 2.2 27 5] 27 27

N 32| 18] 1.7] 28] 28] 2.1 3,3 26| 1,9 1,8

P 37| 24| 22| 28] 23] 1.9 23] 25 26| 23

Q 29 2,00 15| 2.6] 1.8 -2.1 7] 24 200 16

R 25 22| 13| 28] 2,0 2.2 0| 26| 22 47

S 31| -1,9] 20| 25| 18] -16 8] 22 18] 1.9

T 32| 22| 20 22 20 18 10| 2.0] -2.0] -2.1

Vv 20| 29 26| 29| 28] 20 28] 23] 26| 27 ...

W 6,1] -3.4] 32| 19| -3.3] 32 30] 2,8 35 33 .. | gap

Y 06| 32| 28] 14| 28] 27 26| 24| -30] - —1 penalties

Score =6.1+2.1 +2.1-1.2-2.0 -1.8 - 5.0 — 0.5 +3.3 —2.8 +1.5 +1.6

=) Find alignment with maximum score



Dynamic programming finds
sequence-sequence alignment
with highest score

alignment
Y1 Y Vi1 Y engding in:

‘. N o Xl X
Cor R
sl LT INT | v % -
Xi 1 é/ - _)/1_1 )/]
_ e Xiq| X

B Y-

(0

V(i-1,j-1) + S(x,y))
V(ij) = max * V(ij-1) — gap_pena‘/ty\ substitution
L V(i-1,j) — gap.penalty matrix




Dynamic programming finds
profile-sequence alignment
with highest score

alignment
b1 P2 Pr1 B engding in:
X1 . e X,'_1 Xi
Lo .-+ Pja Py
S vy -
Xi — 4 - pj-7 pj
- . = o= XI-1 XI
== . w om pj =

0 pix)

DU
V1) 799 b, )

V(i,j-1) — gap.penalty
_V(i-1,j) — gap.penalty Profile score




Dynamic programming finds
profile-profile alignment
with highest score

P1 P2 Pj-1 Pj ael;]gdri]rr%ei?]t:

o N - - Q1|9
Lo .+ - Pj1|P;
s L L LN | v g -
q 3 —\Yé/ - Pl
- -« Qi1|q;

- P |-

U < a(a) pfa)
V(i-1,j-1) +log 2, H&P

a=1 pav(a) ~
V(i,)-1) — gap.penalty  profile-profile
_ V(i-1,j) — gap.penalty score




Profile-profile comparison

HBA human W G K V G A - - H A G E

HBB human W G K V - - - - N V D E

_2_ph yca W G K V E A - - D V A G

LGBZ luplu W E E F N A - - N I P K

GLBl1 glydi W K D I A G A D NG A V

GLB3 chitp F D K V K 6 - - - - - N

GLB5 petma W A P V Y S A N T Y E T

W G K Vv G A H A G E

Al ... -3,20 1,91 -21| -2,2 -2,0] 3,4 -2,1 1,4 1,5 -2,0

cl ... | 23] 28] 2,9 21| -2,7[ 1,8 2,71 21] -2,6] 2,9

D| ... -3,74 1,6/ -1,6| -3,1 -1,4| -21 2,00 -2,8 1,6 -1,5

ji/f' 20| 29 26 29 28 20 28] 23] 26| 27

L~ W 6,1} -3,4| -3,2| -1,9| -3,3] -3,2 -3,0| -2,8| -3,5| -3,3

Compare_ Y -0,6) -3,2| -2,8| -1,4| -2,8| -2,7 -2,6| -2,4 -3,0|] -2,9
amino acid T

distributions\ Wl K[ D[ 1 A G[ Al D[ N G Al V

N, A -3,1 1,8 -2,01 -2,1 2,2 1,8/ 34| -21| -2,0( -2,2] 2,5 -1,8

el 23] 2,5 -3,0] 21 2,2 -2,4] -1,8] 31| -2,4] -2,4] 22| 2.4

D \ -3,7 2,0 2,71 31| -2,2| -1,9| -21 3,9 1,6/ -2,3] -1,6| -2,0

v 26l 24| 27| 27] 22 28] 20 30 24] 27 22| 25

w 5,6] -3,3| -3,5| -2,71 -1,8] -3,2| -3,2 -3,7| -3,2| -1,5] -3,3| -3,2

Y -0,5) -2,8( -2,9| -2,3| 2,71 -3,4| -2,7| -2,9| -2,5| 3,2| -2,8| -3,0

20
Various ad-hoc measures of column similarity are used, e.g. Score =aZ1qia Pia



A profile HMM is a sequence profile
extended by position-specific gap penalties

Record probability of insertions and deletions at each position




BLAST

Search with single sequence through sequence database

seq-seq
[ query sequence | Search

CRCHS S TS SEC TN GG CHERCDRCRINE COSNGC EEDRCRE SHEC quuences

accepted-seqs } E<10-3

’

:rﬁ'_t_ol_ jected seqgs

\
\ No new
b| sequences?
END




PSI-BLAST

Iterative search with sequence profile through sequence db

[ query sequence

N0 CNSSTSSECTONGCS SNGT CHRIRSVDIRC TS CDSNGCIEDIRCRS SNRC |

I‘L.m&m 34_3_ m: EE‘T

oL U
CIEGGCS DHD! 10 css ITD »- N
CINGOGCHHDED! ic e -C TC ci CODNNEC \
EEEE DhiC EN o i i e EE GIDDCNAC
.:l 5 ADGIDDC
C %r ED CD| TR a OIRSCNAGSCRSLETDDI
CSNGOCO T ISND GCYSOPENBCORNNCYTS DEIDDGN
E 5NN E%T CEA -: 5 -::T DGIDDGNAC 3
I R
¢ ADDLNECTYDTC -SNGYCIHTRIDD 1 O-
CHBORC R RORbUTT0Tc oo T TR PTPOCHIAR }I <

CDGRGCCTRDRNACTHDS CoN 16 isCTiDs
COpLECHPUDNACTIOTCHOEGECENT PRILCTLORCoRGT
FGCUNDSN SCNTGCCN C 2
3| 1 D

DD
NYDD
ENﬂmEg AT TG RETCCTNSNED - :{:. B
________ DD NGEGCRSLP-NN - - - - - %t
%T DACDETG E- GC:
BEakel A

CTIDSCYSPGACLEERTD

evo vmg alignment

gjected seqs

\ No new

add homologs M| sequences?
END

Much more sensitive than BLAST



PSI-BLAST, MMseqs2

Iterative search with sequence profile through sequence db

[ query sequence
e UniProt

profile-seq
search

‘.

accepted seqgs : | E<10-3
|
)

evolving profile N T S

\ No new
b| sequences?
END

add homologs

Much more sensitive than BLAST



HHblits
Iterative search with profile HMM through pyofile HMM db

fast db
Unip clustering
fast —
prefilter
| | | | | | | I(’ ________________ \\I \
Ml mpm{ M mp{m > m : accepted HMMs : LE<103
I I
D D D D D D D | I
Evolving profile HMM eeT————————— ey
MMs
\ No new
add homologs Al HMMs?
END

Best sensitivity, alignment quality, and speed

Remmert et al., Nature Methods 2011



See you back at 13:30h ©



Student feedback after lecture

| think the speed was good, the explanations were clear but | needed more breaks, specially for the first part
of the presentations. Small 5 min breaks would be fine

alignment for the section of profile based dynamic programming
| found the part of HMM a bit difficult to comprehend. | liked the dynamic programming exercise.
maybe could introduce a little more about the principles of clustering?

| was following the local alignment algorithm explanation until the part where position specific score was
introduced. Then started getting a bit confused

Everything was great. Actually, | would prefer to have more days of practice and more command line
exercises but | am not sure that you can change it. Thanks a lot!

The parts where sequence profiles are explained can be explained a bit more in detail. Also, overall the
presentation has gone fast for me as not everyone has the same background in bioinformatics.

The slides were presented well but it was a bit fast and sometimes was difficult to analyze some technical
stuff. otherwise the basics were very well explained. Thanks

| think the hardest topic was the matrix of similarity calculations. It was well explained, but | felt it a little fast.
Some more examples and exercises would have helped

explanation of the log odds score
The details of MMseqs2 was difficult to understand

The course was great, | really liked the tutors were very responsive to questions. Also the organization of
the course is very nice, with the breakout rooms, the breaks, and the general meetings. Many of the info
were new to me, but | finished the course feeling like | understood it very well. | liked the fact that some
exercises were put in the middle to help us figure things out ourselves. Thank you for your efforts!

| feel that we could go slower on the topic of HMM- profile, profile-profile comparison as there are many
complex things to understand and visualize.

| did not understand too much the part that covered MMSeq, BLAST, HHMER3 and HHblits. | think it was
too quick. In general, there are times where | think the professor spoke too fast. Everything else was great!



Small P-value: reject null hypothesis

The P-value is the probability to obtain a result as observed or more
extreme, given the null hypothesis (often a “hypothesis of randomness”).
A small P-value (e.g. < 0.05) indicates the null hypothesis can be rejected.

Suppose we suspect a die to be loaded. We throw it 30 times and never
observed a 6. Can we conclude that the die is loaded?

~ Lk ’: Exercise: Compute the P-value for the null hypothesis that the
Q is fair. What if we observed a 6 only once out of 30 throws?

What do you conclude from the P-value?

The probability to obtain a six only zero or one times, given the die is not
loaded (the null hypothesis), is
L (30 .
P(k <1six out of 30|p,. =1/6)= Z( . ](1/6)"(5/6)30 ‘
k=0

— (33(1 /6)'(5/6)" + [310)(1 /6)5/6)” =0.0042+0.0253=0.029

We can reject the null-hypothesis that the die is fair with a P-value of 3%.



Why ,,or more extreme“?

P-value = the probability to obtain a score as observed or more extreme
under the null hypothesis

Suppose we throw a die 6N times and observe a six N times. What do you
guess is the P-value?

Why “or more extreme” in the definition of the P-value?

Please type in your answers at

https://forms.google.com/??7?



The linux command line (bash)

1. Don’t forget spaces

2. Everything in linux is case-sensitive (flenames, commands,..)

3. Filenames = directory path and basename: /usr/local/soeding/my _file.txt
You can give only the basename if the file is in the current directory

s

Is -ItrF

cd <path/dir>
cd ..

gedit <file>
gedit <file> &
less <file>

cp <file> <dest>
mv <file> <dest>
rm <file>

mkdir <dir>

info Is, man Is
chmod +x <file>

list content of current directory

Is in long format, time-sorted in reverse order, with Filetype
change to directory <path/dir>

go up 1 step in directory hierarchy

open file in editor
open file in editor in background
look at raw file (g: quit, b: back,/: find); works for huge files

copy file to destination directory (cp file.txt ~/molbiol/day1/)
move file to destination directory

remove file (careful!)

create new directory (remove with rmdir <dir>)

show info / manual page of Is command
change settings of file to make it executable



