
HH-suite for sensitive sequence searching
based on HMM-HMM alignment

User Guide

Version 2.0.14, March 2012

c©Johannes Söding, Michael Remmert, Andreas Hauser

Available under the Gnu Public License (version 3)

We are very grateful for bug reports! Please contact us at soeding@genzentrum.lmu.de

Summary

The HH-suite is an open-source software package for sensitive sequence searching based on the
pairwise alignment of hidden Markov models (HMMs). It contains HHsearch [1] and HHblits [2]
among other programs and utilities. HHsearch takes as input a multiple sequence alignment (MSA)
or profile HMM and searches a database of HMMs (e.g. PDB, Pfam, or InterPro) for homologous
proteins. HHsearch is often used for protein structure prediction to detect homologous templates
and to build highly accurate query-template pairwise alignments for homology modeling. In the
CASP9 competition (2010), a fully automated version of HHpred based on HHsearch and HH-
blits was ranked best out of 81 servers in template-based structure prediction. HHblits can build
high-quality MSAs starting from single sequences or from MSAs. It transforms these into a query
HMM and iteratively searches through uniprot20 or nr20 databases by adding significantly simi-
lar sequences from the previous search to the updated query HMM for the next search iteration.
Compared to PSI-BLAST, HHblits is faster, up to twice as sensitive and produces more accurate
alignments. HHblits uses the same HMM-HMM alignment algorithms as HHsearch, but it employs
a fast prefilter that reduces the number of database HMMs for which to perform the slow HMM-
HMM comparison from tens of millions to a few thousands.

References:

[1] Söding J. (2005)
Protein homology detection by HMM-HMM comparison.
Bioinformatics 21, 951-960.

[2] Remmert M., Biegert A., Hauser A., and Söding J. (2011)
HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment.
Nat. Methods, epub Dec 25, doi: 10.1038/NMETH.1818.

1

Contents

1 Introduction 3

2 Installation of the HH-suite and its databases 4
2.1 Supported platforms . 4
2.2 Installation from source code . 5
2.3 Package installation . 6
2.4 HHblits databases . 7
2.5 HHsearch databases . 8

3 Brief tutorial to HH-suite tools 9
3.1 Overview of programs . 9
3.2 Searching databases of HMMs using HHsearch and HHblits 10
3.3 Generating a multiple sequence alignment using HHblits 11
3.4 Building customized databases . 13

4 Frequently asked questions 14
4.1 What is HMM-HMM comparison and why is it so powerful? 14
4.2 When can the HH-suite be useful for me? . 15
4.3 What does homology mean and why is it important? 15
4.4 How can I verify if a database match is homologous? 15
4.5 What does the maximum accuracy alignment algorithm do? 17
4.6 How is the MSA diversity NEFF (the number of effective sequences) calculated? . . 18
4.7 More frequently asked questions . 18

5 HHsearch/HHblits output: hit list and pairwise alignments 19
5.1 Summary hit list . 19
5.2 HMM-HMM pairwise alignments . 21

6 File formats 23
6.1 Multiple sequence alignment formats . 23
6.2 HHsearch/HHblits model format (hhm-format) . 26

7 Summary of command-line parameters 28
7.1 hhblits – HMM-HMM-based lighting-fast iterative sequence search 28
7.2 hhsearch – search a database of HMMs with a query MSA or HMM 30
7.3 hhmake – build an HMM from an input MSA . 31
7.4 hhfilter – filter an MSA . 32
7.5 hhalign – Align a query MSA/HMM to a template MSA/HMM 32
7.6 reformat.pl – reformat one or many alignments . 34
7.7 addss.pl – add predicted secondary structure to an MSA or HMM 35
7.8 hhmakemodel.pl – generate MSAs or coarse 3D models from HHsearch results file . 35
7.9 hhblitsdb.pl – Build an HHblits database . 36
7.10 multithread.pl – Run a command for many files in parallel using multiple threads 37

8 Changes from previous versions 37
8.1 2.0.2 (January 2012) . 37
8.2 1.6.0 (November 2010) . 38
8.3 1.5.0 (August 2007) . 39

9 License 40

2

1 Introduction

The HH-suite is an open-source software package for highly sensitive sequence searching and se-
quence alignment. Its two most important programs are HHsearch and HHblits. Both are based
on the pairwise comparison of profile hidden Markov models (HMMs).

Profile HMMs are a concise representation of multiple sequence alignments (MSAs) [?, 1]. Like
sequence profiles, they contain for each position in the master sequence the probabilities to observe
each of the 20 amino acids in homologous proteins. The amino acid distributions for each column
are extrapolated from the homologous sequences in the MSA by adding pseudocounts to the amino
acid counts observed in the MSA. Unlike sequence profiles, profile HMMs also contain position-
specific gap penalties. More precisely, they contain for each position in the master sequence the
probability to observe an insertion or a deletion after that position (the log of which corresponds
to gap-open penalties) and the probabilities to extend the insertion or deletion (the log of which
corresponds to gap-extend penalties). A profile HMM is thus much better suited than a single
sequence to find homologous sequences and calculate accurate alignments. By representing both
the query sequence and the database sequences by profile HMMs, HHsearch and HHblits are more
sensitive for detecting and aligning remotely homologous proteins than methods based on pairwise
sequence comparison or profile-sequence comparison.

HHblits can build high-quality multiple sequence alignments (MSAs) starting from a single sequence
or from an MSA. Compared to PSI-BLAST [2], HHblits is faster, finds up to two times more
homologous proteins and produces more accurate alignments. It uses an iterative search strategy,
adding sequences from significantly similar database HMMs from a previous search iteration to
the query HMM for the next search. Because HHblits is based on the pairwise alignment of
profile HMMs, it needs its own type of databases that contain multiple sequence alignments and
the corresponding profile HMMs instead of single sequences. The HHblits databases uniprot20
and nr20 are generated regularly by clustering the UniProt database [?] from EBI/SIB/PIR and
the nonredundant (nr) database from the NCBI into groups of similar sequences alignable over
at least 80 % of their length and down to ∼ 20% pairwise sequence identity. These databases
can be downloaded together with HHblits. HHblits uses the HMM-HMM alignment algorithms
in HHsearch, but it employs a fast prefilter (based partly on code from Michael Farrar, [3]) that
reduces the number of database HMMs for which to perform the slow HMM-HMM comparison
from tens of millions to a few thousands. At the same time, the prefilter is sensitive enough to
reduce the sensitivity of HHblits only marginally in comparison to HHsearch.

By generating highly accurate and diverse MSAs, HHblits can improve almost all downstream
sequence analysis methods, such as the prediction of secondary and tertiary structure [?, 4], of
membrane helices, functionally conserved residues, binding pockets, protein interaction interfaces,
or short linear motifs. The accuracy of all these methods depends critically on the accuracy and
the diversity of the underlying MSAs, as too few or too similar sequences do not add significant
information for the predictions. As an example, running the popular PSIPRED secondary structure
prediction program [4] on MSAs generated by HHblits instead of PSI-BLAST improved the accuracy
of PSIPRED significantly even without retraining PSIPRED on the HHblits alignments [?].

HHsearch takes as input an MSA (e.g. built by HHblits) or a profile HMM and searches a database
of HMMs for homologous proteins. Many HHsearch databases can be downloaded (see next section).
The pdb70 database, for instance, consists of profile HMMs for a set of representative sequences from
the PDB database [5]; the scop70 database has profile HMMs for representative domain sequences
from the SCOP database of structural domains [6]; the Pfam [7], InterPro [8] and CDD [9] domain
databases are large collections of curated MSAs and profile HMMs for conserved, functionally
annotated domains. HHsearch is often used to predict the domain architectures and the functions
of domains in proteins by finding similarities to domains in the pdb70, Pfam, InterPro or other

3

databases.

In addition to the command line package described here, two interactive web servers at http://

hhpred.tuebingen.mpg.de [10, 11] and http://hhblits.genzentrum.lmu.de run HHsearch and
HHblits. They offer extended functionality, such as Jalview applets for checking query and template
alignments, histogram views of alignments, and building 3D models with MODELLER [12].

In the CASP9 competition (Critical Assessment of Techniques for Protein Structure Prediction) in
2010, a fully automated version of HHpred based on HHsearch and HHblits was ranked best out of
the 81 servers in template-based structure prediction, the category most relevant for biological appli-
cations, while having an average response time of minutes instead of days like most other servers [?]
(http://predictioncenter.org/casp9/groups_analysis.cgi?type=server&tbm=on).

Other popular programs for sensitive, iterative protein sequence searching are PSI-BLAST [2]
and HMMER (http://hmmer.org/). Since they are based on profile-to-sequence and HMM-to-
sequence comparison, respectively, they have the advantage over HHblits and HHsearch of being
able to search raw sequence databases.

2 Installation of the HH-suite and its databases

The HH-suite source code, executable RPM and DPKG packages for most Linux 64 bit platforms,
MAC OS X, and BSD Unix, utility scripts in Perl, and databases for HHblits and HHsearch can
be downloaded at

ftp://toolkit.genzentrum.lmu.de/HH-suite/

2.1 Supported platforms

HH-suite has been extensively tested on Linux, in particular Debian, Ubuntu, Scientific Linux (SL),
and Red Hat. We have done limited testing under BSD, MAX OS X, and CygWin. We plan to
offer a Windows version compiled under MinGW in the future.

Support for SSE2 instruction set

HHblits needs to run on CPUs supporting at least the SSE2 (serial SIMD extension 2) instruction
set. (See http://en.wikipedia.org/wiki/SSE2 for an explanation of SSE2.) Starting with the
Pentium 4 in 2001, all Intel CPUs support SSE2. AMD introduced SSE2 with their Opteron and
Athlon 64 ranges of AMD64 64-bit CPUs in 2003. By default, the HH-suite binaries are compiled
using the SSE3 instruction set, which is a minor extension of the SSE2 set. Intel introduced SSE3
in early 2004 with the Prescott revision of their Pentium 4 CPU. AMD introduced SSE3 in revision
E (Venice and San Diego) of their Athlon 64 CPUs in April 2005. A simple way to find out if
your computer’s CPU supports SSE3 is to run the hhblits binary and see if you get an “‘Illegal
instruction” error.

If your computer’s CPU does support SSE2 but not SSE3, the precompiled standard binaries
will not work, but you can build the HH-suite from sources by running make NO_SSE3=1 with the
NO_SSE3 flag set (see next subsection). There will be no disadvantages except for a slightly (1%-2%)
reduced speed of hhblits and hhsearch.

If your computer does not run on Intel or AMD CPUs it probably does not support SSE2. In that
case, you can still run all executables except hhblits. Simply build the HH-suite from sources by

4

http://hhpred.tuebingen.mpg.de
http://hhpred.tuebingen.mpg.de
http://hhblits.genzentrum.lmu.de
http://predictioncenter.org/casp9/groups_analysis.cgi?type=server&tbm=on
http://hmmer.org/
http://en.wikipedia.org/wiki/SSE2

running make NO_SSE2=1 with the NO_SSE2 flag set (see next subsection). HHsearch speed will be
reduced by around 50%-70%.

2.2 Installation from source code

1. Download the sources from ftp://toolkit.genzentrum.lmu.de/HH-suite/, for example

$ mkdir ~/programs/hh/

$ cd ~/programs/hh/

$ wget ftp://toolkit.genzentrum.lmu.de/HH-suite/hhsuite-latest.tar.gz

2. Then unzip and untar the file

$ tar -xzvf hhsuite-latest.tar.gz

This will unpack the sources to hhsuite-<VERSION>.

3. Compilation: Run make in the source directory:

$ cd hhsuite-<VERSION>/

$ make

This compiles all programs and creates the binaries in src/. Binaries are by default static. If
you encounter missing library errors, also make sure you have installed the static versions of zlib,
libpng, and glibc, e.g. zlib-static, libpng-static, and glibc-static. If you don’t need to generate
dotplots with hhalign, zlib and libpng are not needed and you can compile without them:

$ make NO_PNG=1

A dynamically linked version of the programs can be compiled with:

$ make all

On Mac OS X only dynamic linking is supported.

4. Installation: Either install in current directory:

$ make install

Or set INSTALL_DIR to the absolute path of the base directory where you want install HH-suite.
(<install_dir> in the following). For example, to install into /usr/local:

$ make install INSTALL_DIR=/usr/local

The HH-suite binaries will then be put into <install_dir>/bin and the library files into
<install_dir>/lib/hh.

5. Set HHLIB and paths: In your shell, set the environment variable HHLIB to $INSTALL_DIR/lib/hh,
e.g, for bash, zsh, or ksh,

$ export HHLIB=<install_dir>/lib/hh

5

ftp://toolkit.genzentrum.lmu.de/HH-suite/

and, for csh or tcsh: $ setenv HHLIB=<install_dir>/lib/hh. HHsearch and HHblits look
for the column state library file cs219.lib and the context library file context_data.lib in
$HHLIB/data/. The hh-suite perl scripts also read HHLIB (via file HHPaths.pm) to locate hh-suite
binaries and data files.

Put the location of your hh-suite binaries and scripts into your search path:

$ export PATH=$PATH:<install_dir>/bin:$HHLIB/scripts

To avoid typing these commands every time you open a new shell, you may add the following lines
to the .bashrc, .kshrc, .cshrc or equivalent file in your home directory that is executed every
time a shell is started:

export HHLIB=/usr/local/lib/hh

PATH=$PATH:<install_dir/bin>:$HHLIB/scripts

alias hhblits=’hhblits -d <path_to/uniprot20 OR path_to/nr20>’

The last line defines a default database for hhblits.

6. If you compiled dynamically, the run-time linker needs to know about the lib subdirectory of
the hh-suite in <install_dir>/lib/. Otherwise, you will get an error message such as

ffindex_build: error while loading shared libraries: libffindex.so.0.1:

cannot open shared object file: No such file or directory

You can either add the <install_dir>/lib library to your shared library search path. Under
Linux, for example, these are configured in /etc/ld.so.conf. Or the <install_dir>/lib/ library
must be appended to a system-dependent environment variable containing the additional shared
library paths for the run-time linker. Under Linux, this variable is called LD_LIBRARY_PATH and
the bourne shell version (bash, zsh etc.) looks like this:

$ export LD_LIBRARY_PATH=<install_dir>/lib

Under Mac OSX, the equivalent command in bourne shell format is:

$ export DYLD_LIBRARY_PATH=<install_dir>/lib

2.3 Package installation

Installation under x86 64bit Linux with the red hat package manager RPM

If you use a RPM based distribution like Scientific Linux (SL), Red Hat Enterprise Linux (RHEL)
or CentOS we provide precompiled x86 64 packages for Version 6.x, which might also work on
Version 5.x and other RPM based distros like SuSE.

1. Download and install:

$ cd <path> # wherever you want to install HH-suite

$ wget ftp://toolkit.genzentrum.lmu.de/HH-suite/hhsuite-latest.x86_64.rpm

$ rpm -hvU hhsuite-latest.x86_64.rpm

6

2. Set paths: To allow the HH-suite perl scripts to find the binaries, set the HHLIB variable to
your hh directory and put the location of your hh-suite binaries and scripts into your search path:

$ export HHLIB=<path>/hhsuite-<version>-linux-x86_64/lib/hh

$ export PATH=$PATH:<path>/hhsuite-<version>-linux-x86_64/bin:$HHLIB/scripts

To avoid typing these commands every time you open a new shell, you may add the following lines
to the .bashrc, .kshrc, .cshrc or equivalent file in your home directory that is executed every
time a shell is started:

export HHLIB=<path>/hhsuite-<version>-linux-x86_64/lib/hh

PATH=$PATH:<path>/hhsuite-<version>-linux-x86_64/bin:$HHLIB/scripts

alias hhblits=’hhblits -d <path_to/uniprot20 or path_to/nr20>’

The last line defines a default database for hhblits.

Installation under x86 64bit Linux with the Debian package manager DPKG

To follow.

Installation under x86 64bit Max OS X

To follow.

Installation under x86 64bit BSD Unix

To follow.

2.4 HHblits databases

Databases for HHblits are of two types. The first type, uniprot20 and nr20, cover essentially all
of the known sequence space and are obtained by clustering UniProt [?] and the non-redundant
database from NCBI, respectively. Clusters contain sequences that need to be almost full-length
(80%) alignable and typically have pairwise sequence identities down to 20%-30%. The clustering
is done by kClust (Hauser M, Mayer CE, and Soeding J., to be published), a very fast algorithm
for all-against-all sequence comparison and clustering developed in our group. Sequences in each
cluster are globally aligned into an MSA (using ClustalOmega [?]). The clusters in uniprot20 and
nr20 thus treat all member sequences equally, and the annotatation of the cluster is a non-redundant
sum of all annotations found in the cluster member sequences. You need this type of database to
build MSAs using iterative HHblits searches. Both uniprot20 and nr20 yield MSAs of equivalent
quality and diversity, so which one you should choose depends on what sequence annotation and
name formats you prefer.

The second type of HHblits database, for example the pdb70, scop70, represent each master se-
quence by an MSA. The MSAs are typically built by HHblits searches starting with the master
sequence as a query (Pfam uses HMMER searches http://hmmer.org/). The MSAs and HMMs
typically carry the name and annotation of the master sequence. In contrast to the clusters in
the first type of database, sequences can in principle occur in several MSAs. These homologous
sequences merely serve to contribute evolutionary information to the master sequence. As the
second type of databases do not cover the entire sequence space, they are not suited for iterative

7

http://hmmer.org/

searches. The HHblits versions are useful as alternatives to the versions formatted for HHsearch
(next subsection), because HHblits is almost as sensitive as HHsearch while being much faster. See
section 3.4 for how to build your own type 2 databases.

The following HHblits databases can be downloaded at ftp://toolkit.genzentrum.lmu.de/
HH-suite/databases/:

1 uniprot20 based on UniProt db from EBI/SIB/PIR, clustered to 20 % seq. identity

2 nr20 based on nonredundant db from NCBI, clustered to 20% seq. identity

3 pdb70 representatives from PDB (70% max. sequence identity), updated weekly

4 scop70 representatives from SCOP (70% max. sequence identity)

5 pfamA Pfam A database from Sanger Inst., http://www.sanger.ac.uk/Software/Pfam/

The HHblits databases consist of eight files, which all start with the name of the database, followed
by different extensions:

<dbname>.cs219 column state sequences for prefiltering

<dbname>.cs219.sizes number of sequences and characters in <dbname>.cs219

<dbname>_hhm_db packed, concatenated HMM models in HHM format

<dbname>_hhm_db.index index file for packed HMM model file

<dbname>_hhm_db.index.sizes number of lines in <dbname>_hhm_db.index

<dbname>_a3m_db packed, concatenated file with MSAs in A3M format

<dbname>_a3m_db.index index file for packed MSA file

<dbname>_a3m_db.index.sizes number of lines in <dbname>_a3m_db.index

The packed files <dbname>_a3m_db and <dbname>_hhm_db contain simply the concatenated A3M
MSAs and HHMs, respectively, with a \0 character at the beginning of each file. They are therefore
human-readable and are parsable for specific MSAs or models using tools such as grep or search
functions in text editors (which however should be able to ignore the \0 character). The .index

files contain indices to provide fast access to these two packed files. The a3m files are not needed
for a single search iteration when no output MSA is requested.

To get started, download the uniprot20 or nr20 database files. For example:

$ cd /home/soeding/hh % change to hh-suite directory

$ mkdir databases; cd databases

$ wget ftp://toolkit.genzentrum.lmu.de/HH-suite/databases/uniprot20_<date>.tar.gz‘

$ tar -xzvf uniprot20_<date>.tar.gz‘

More databases will become available in HHblits format that are only available for HHsearch at
the time of writing (see next subsection).

2.5 HHsearch databases

HHsearch needs just the <dbname>_hhm_db file from the hhblits database. This file is simply a
concatenation of of all HMM files in HHsearch/HHblits hhm format with a leading \0 character.
The following HHsearch databases can be downloaded at ftp://toolkit.lmb.uni-muenchen.de/
HH-suite/databases/

1* pdb70 representatives from PDB (70% max. sequence identity), updated weekly

2* scop70 representatives from SCOP (70% max. sequence identity)

3* PfamA http://www.sanger.ac.uk/Software/Pfam/

4* SMART http://smart.embl-heidelberg.de/, downloaded from NCBI site

8

ftp://toolkit.genzentrum.lmu.de/HH-suite/databases/
ftp://toolkit.genzentrum.lmu.de/HH-suite/databases/
ftp://toolkit.lmb.uni-muenchen.de/HH-suite/databases/
ftp://toolkit.lmb.uni-muenchen.de/HH-suite/databases/

5* PfamB based on ProDom, downloaded from Pfam site

6* COG http://www.ncbi.nlm.nih.gov/COG/new/

7* KOG http://www.ncbi.nlm.nih.gov/COG/new/

8* CD/NCBI http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml

9 Panther http://www.pantherdb.org/, from InterPro

10 TIGRFAMs http://tigrblast.tigr.org/web-hmm/, from InterPro

11 PIRSF http://pir.georgetown.edu/pirsf/, from InterPro

12 Superfamily http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/, from InterPro

13 CATH/Gene3D http://cathwww.biochem.ucl.ac.uk/latest/, from InterPro

In the future, all these databases will become available for HHblits in the HHblits format described
in the previous subsection.

For the time being, however, these databases are formatted for as they have been in the past: The
eight databases marked by asterisks contain both HMMs in HHsearch format (*.hhm.tar files) and
the multiple sequence alignments (MSAs) in A3M format (*.a3m.tar files). The *.hhm.tar and
*.a3m.tar files untar into thousands of separate files, so before unzipping and untarring, first create
a directory for the database and untar the tar file within this directory. Under Linux, type

$ mkdir scop70_1.75

$ cd scop70_1.75

$ tar -xzvf scop70_1.75.hhm.tar.gz

To generate an HHsearch database file, concatenate all *.hhm files:

$ cat *.hhm > scop70_1.75.hhm

For the databases without asterisks, you can download the HMM models in HMMER format (http:
//hmmer.org/) as *.hmm.tar files. Each *.hmm.tar file untars into a single concatenated HMMER-
formatted database file that can be read by HHsearch. For theses databases, unfortunately no
alignments are publicly available. (Information to the contrary is welcome!)

The pdb70 and scop70 databases are built at the Gene Center using in-house scripts to select rep-
resentatives and using two iterations of HHblits to generate MSAs for the representative sequences.
They are distributed freely under the Lesser Gnu Public License. For the other databases, different
copy right regulations may apply. Please refer to the databases’ original web sites for the copy
right notes and references to cite.

3 Brief tutorial to HH-suite tools

3.1 Overview of programs

hhblits (Iteratively) search an HHblits database with a query sequence or MSA

hhsearch Search an HHsearch database of HMMs with a query MSA or HMM

hhmake Build an HMM from an input MSA

hhfilter Filter an MSA by max sequence identity, coverage, and other criteria

hhalign Calculate pairwise alignments, dot plots etc. for two HMMs/MSAs

reformat.pl Reformat one or many MSAs

addss.pl Add PSIPRED predicted secondary structure to an MSA or HHM file

hhmakemodel.pl Generate MSAs or coarse 3D models from HHsearch or HHblits results

hhblitsdb.pl Build HHblits database with prefiltering, packed MSA/HMM, and index files

multithread.pl Run a command for many files in parallel using multiple threads

9

http://hmmer.org/
http://hmmer.org/

splitfasta.pl Split a multiple-sequence FASTA file into multiple single-sequence files

Align.pm Utility package for local and global sequence-sequence alignment

HHPaths.pm Configuration file with paths to the PDB, BLAST, PSIPRED etc.

Call a program without arguments or with -h to get a more detailed description of its syntax.

3.2 Searching databases of HMMs using HHsearch and HHblits

We will use the MSA query.a3m in the data/ subdirectory of the HH-suite as an example query.
To search for sequences in the scop70_1.75 database that are homologous to the query sequence
or MSA in query.a3m, type

$ hhsearch -cpu 4 -i data/query.a3m -d databases/scop70_1.75.hhm

If the input file is an MSA or a single sequence, HHsearch calculates an HMM from it and then
aligns this query HMM to all HMMs in the scop70_1.75 database using the Viterbi algorithm.
You should see a dot printed for every twenty HMMs aligned. After the search, the most significant
HMMs are realigned using the more accurate Maximum Accuracy (MAC) algorithm (subsection
4.5). After the realignment phase, the complete search results consisting of the summary hit list and
the pairwise query-template alignments are written to the default output file, query.hhr (where
the query file extension is replaced with hhr). The hhr result file format was designed to be human
readable and easily parsable.

The -cpu 4 option tells HHsearch to start four POSIX threads for searching and realignment.
This will typically results in almost fourfold faster execution on computers with four or more cores.
Since the management of the threads costs negligible overhead, this option could be given by default
through an alias definition of hhsearch and hhblits (see section 2.2).

Figure 1: Benchmark of HHsearch and HHblits on a SCOP20 dataset.

The hhblits tool can be used in much the same way as hhsearch. Apart from the different database
format, it takes the same input data and produces a results file in the same format as hhsearch.
Most of the hhsearch options also work for hhblits, which has additional options associated with
its extended functionality for iterative searches. Due to its fast prefilter, hhblits runs between 30
and 3000 times faster than HHsearch at the cost of only a few percent lower sensitivity (Fig. 1).

The same search as above is performed here using hhblits instead of hhsearch:

10

$ hhblits -cpu 4 -i data/query.a3m -d databases/scop70_1.75 -n 1

HHblits first scans the column state sequences in scop70_1.75.cs219 with its fast prefilter. HMMs
whose column state sequences pass the prefilter are read from the packed file scop70_1.75_hhm_db

(using the index file scop70_1.75_hhm_db.index) and are aligned to the query HMM generated
from query.a3m using the slow Viterbi HMM-HMM alignment algorithm. The search results are
written to the default output file query.hhr. The option -n 1 tells hhblits to perform a single
search iteration. (The default is 2 iterations.)

3.3 Generating a multiple sequence alignment using HHblits

To generate an MSA for a sequence or initial MSA in query.a3m, the database to be searched
should cover the entire sequence space, such as uniprot20 or nr20. The option -oa3m <msa_file>

tells HHblits to generate an output MSA from the significant hits:

$ hhblits -cpu 4 -i data/query.seq -d databases/uniprot20 -oa3m query.a3m -n 1

At the end of the search, HHblits reads from the packed database file containing the MSAs the
sequences belonging to HMMs with E-value below the threshold. The E-value threshold for inclusion
into the MSA can be specified using the -e <E-value> option. After the search, query.a3m will
contain the MSA in A3M format.

We could do a second search iteration, starting with the MSA from the previous search, to add
more sequences. Since the MSA generated after the previous search contains more information
than the single sequence in query.seq, searching with this MSA will probably result in many more
homologous database matches.

$ hhblits -cpu 4 -i query.a3m -d databases/uniprot20 -oa3m query.a3m -n 1

Instead, we could start the search with query.seq and directly perform two search iterations, by
doing two search iterations using the option -n 2:

$ hhblits -cpu 4 -i data/query.seq -d databases/uniprot20 -oa3m query.a3m -n 2

In practice, it is recommended to use between 1 and 4 iterations for building MSAs, depending on
the trade-off between reliability and specificity on one side and sensitivity for remotely homologous
sequences on the other side. The more search iterations are done, the higher will be the risk of
non-homologous sequences or sequence segments entering the MSA and recruiting more of their
kind in subsequent iterations. This is particularly problematic when searching with sequences
containing short repeats, regions with amino acid compositional bias and, although less dramatic,
with multiple domains. Fortunately, this problem is much less pronounced in hhblits as compared
to PSI-BLAST due to hhblits’s lower number of iterations, its more robust Maximum Accuracy
alignment algorithm, and the higher precision of its HMM-HMMs alignments.

The parameter mact (maximum accuracy threshold) lets you choose the trade-off between sensi-
tivity and precision. With a low mact-value (e.g. -mact 0.01) very sensitive, but not so precise
alignments are generated, whereas a search with a high mact-value (e.g. -mact 0.9) results in
shorter but very precise alignments. The default value of mact in HHblits is 0.35 (changed from
0.5 in the beta version).

To avoid unnecessarily large and diverse MSAs, HHblits stops iterating when the diversity of the
query MSA – measured as number of effective sequences, see section 6.1 – grows passed a threshold

11

of 10.0. This threshold can be modified with the --neffmax <float> option. See subsection 6.2
for a description of how the number of effective sequences is calculated in HH-suite.

To avoid the final MSAs to grow unnecessarily large, by default the cluster MSAs are filtered with
the option -diff 1000 prior to merging them with the query MSA. The -diff 1000 option selects
the most representative sequences from an MSA such that every regions is covered by at least 1000
sequences. To turn off the filtering and obtain all sequences in the significantly similar uniprot20
clusters, use the -nodiff option:

$ hhblits -cpu 4 -i data/query.seq -d databases/uniprot20 -oa3m query.a3m -nodiff

The A3M format uses small letters to mark inserts and capital letters to designate match and delete
columns (see subsection 6.1), allowing to omit gaps aligned to insert columns. The A3M format
therefore uses much less space for large alignments than FASTA but looks misaligned to the human
eye. Use the reformat.pl script to reformat query.a3m to other formats, e.g. for reformatting
the MSA to Clustal and FASTA format, type

$ reformat.pl a3m clu query.a3m query.clu

$ reformat.pl a3m fas query.a3m query.fas

Next, to add secondary structure information to the MSA we call the script addss.pl. For
addss.pl to work, you have to make sure that the paths to BLAST and PSIPRED in the scripts/HHPaths.pm
are correctly filled in. Then type

$ addss.pl query.a3m

When the sequence has a SCOP or PDB identifier as first word in its name, the script tries to add
the DSSP states as well. For this to work, the path to the pdb and dssp directories needs to be
specified in the perl file HHPaths.pm. Open the query.a3m file and check out the two lines that
have been added to the MSA. Now you can generate a hidden Markov model (HMM) from this
MSA:

$ hhmake -i query.a3m

The default output file is query.hhm. By default, the option -M first will be used. This means
that exactly those columns of the MSAs which contain a residue in the query sequence will be
assigned to Match / Delete states, the others will be assigned to Insert states. (The query sequence
is the first sequence not containing secondary structure information.) Alternatively, you may want
to apply the 50%-gap rule by typing -M 50, which assigns only those columns to Insert states
which contain more than 50% gaps. The -M first option makes sense if your alignment can best
be viewed as a seed sequence plus aligned homologs to reinforce it with evolutionary information.
This is the case in the SCOP and PDB versions of our HMM databases, since here MSAs are
built around a single seed sequence (the one with known structure). On the contrary, when your
alignment represents an entire family of homologs and no sequence in particular, it is best to use
the 50% gap rule. This is the case for Pfam or SMART MSAs, for instance. Despite its simplicity,
the 50% gap rule has been shown to perform well in practice.

When calling hhmake, you may also apply several filters, such as maximum pairwise sequence
identity (-id <int>), minimum sequence identity with query sequence (-qid <int>), or minimum
coverage with query (-cov <int>). But beware of reducing the diversity of your MSAs too much,
as this will lower the sensitivity to detect remote homologs.

12

Previous versions of HH-suite (the ’HHsearch package’) included a perl script buildali.pl to
build MSAs for a query sequence using PSI-BLAST as its search engine. Because HHblits performs
better than PSI-BLAST in all aspects that we have tested, we decided to remove this script from
HH-suite. It can still be downloaded as part of HHsearch version 1.5.0.

3.4 Building customized databases

It is simple to build custom databases for HHsearch and HHblits using the same tools we use to build
the standard HH-suite databases (except uniprot20 and nr20). An example application is to search
for homologs among all proteins of an organism. To build your own HHsearch or HHblits database
from a set of sequences, you first need to generate an MSA with predicted secondary structure for
every sequence in the set. This can conveniently be done using the script multithread.pl in the
HH-suite. This script runs a command for many files in parallel, distributing the individual jobs
to multiple cores on your server, one file per thread. This will shorten the run-time roughly by the
number of cores.

To run multithread.pl, you need first to have each sequences in a separate FASTA-formatted file.
If your sequences are contained in a single multiple-sequence FASTA file <dbseqs.fas>, first split
them up into multiple single-sequence files using splitfasta.pl:

$ mkdir dbs/scop70_1.75; cd dbs/scop70_1.75

$ splitfasta.pl <dbseqs.fas>

Now, to build an MSA with HHblits for each sequence dbs/scop70_1.75/*.seq, run

$ multithread.pl ’dbs/scop70_1.75/*.seq’

’hhblits -i $file -d databases/uniprot20 -oa3m $name.a3m’

The first argument is the file globbing expression (protected from the shell by quotes), which selects
the files with which to run the command. The command is given as second argument within quotes.
In this command, the string $file is replaced by the actual, globbed file. You might also want to
pipe the stdout and stderr streams of the command into a log-file:
’hhblits -i $file -d databases/uniprot20 1> stdout.log 2>stderr.log’. The MSAs are
written to the file $name.a3m. Here, $name stands for the globbed file name without its extension.
The number of threads to launch can be specified with option -cpu <int> (default value is 8).
To be sure that everything went smoothly, check that the number of *.a3m files is the same as
the number of *.seq files, and browse the file ’stderr.log’ for error messages. The number of
HHblits search iterations and the HMM inclusion E-value threshold for hhblits can be changed from
their default values (2 and 0.01, respectively) using the ’-n <int>’ and ’-e <float>’ options.

Now, add PSIPRED-predicted secondary structure to all MSAs:

$ multithread.pl ’dbs/scop70_1.75/*.a3m’ ’addss.pl $file’ -cpu 16

Again, piping stdout and stderr into log files and inspecting the warnings and errors is recom-
mended. From here on, the steps to build an HHblits database differ from those needed to build
an HHsearch database.

HHblits databases

An HHblits database consists of eight files, as described in subsection 2.4. These files can be
generated by a single call to hhblitsdb.pl:

13

$ hhblitsdb.pl -o databases/scop70_1.75 -ia3m dbs/scop70_1.75/ -cpu 16

In order to build the file containing the column state sequence for prefiltering, hhblitsdb.pl will
generate a column state sequence for each A3M-formatted MSA in the directory given by the
-ia3m option. As this can take some time, the script calls multithread.pl to distribute the jobs
to multiple cores. The script also needs to generate an HHM files for each MSA file, for which again
multithread.pl is called. In the end, the ffindex utility generates the packed files containing the
A3M MSAs and HHM models with corresponding index files. The script will report the number
of files of each category (column-state, A3M, HHM) and warn if the numbers differ. The option
-log err.log pipes the stderr stream of each command executed into a log file. As with all perl
scripts in the HH-suite, a list of additional options can be retrieved by calling the scripts without
parameters.

Alternatively, if you have a set of HHM or HMMER model files but no MSA files, for example for
Pfam, you can build an HHblits database with the command

$ hhblitsdb.pl -o databases/pfamA_25 -ihhm dbs/pfamA_25/ -hhmext hmm -cpu 16

The script will then build the column state sequences from the HMMER files in the directory given
by the -ihhm option. It will then generate the five database files that are needed by hhblits for
non-iterative searches throug the database. (The three files referring to the A3M MSAs cannot be
built since no MSAs were supplied. However, these file are only needed to build output MSAs with
the -oa3m option or to build a query MSA for a second search iteration. They are dispensable for
non-iterative searches.)

Please note that HHblits and HHsearch lose quite a lot of performance when using HMMER-
formatted HMMs instead of HH-suite-formatted ones. We therefore strongly recommend to build
HH-suite formatted HMMs directly from the MSAs if possible. (Pfam MSAs can be retrieved from
our ftp site.)

HHsearch databases

An HHsearch database consists simply of concatenated hhm files. If you already have an hhblits
database, you can simply use the file <dbname>_hhm_db as HHsearch database. Otherwise, you
may generate the hhm files using multithread.pl:

$ multithread.pl ’dbs/scop70_1.75/*.a3m’ ’hhmake -i $file’ -cpu 8

The hhm files will have the same name but with a different extension as their a3m files. You can
then concatenate your individual HMMs into your database:

$ cat *.hhm > scop70_1.75_hhm

or, if the maximum command line buffer size is exceeded,

$ find $tmpdir -name ’*.seq219’ -exec cat ’{}’ + >> scop70_1.75_hhm

4 Frequently asked questions

4.1 What is HMM-HMM comparison and why is it so powerful?

When searching for remote homologs, it is wise to make use of as much information about the
query and database proteins as possible in order to better distinguish true from false positives and

14

to produce optimal alignments. This is the reason why sequence-sequence comparison is inferior
to profile-sequence comparison. Sequence profiles contain for each column of a multiple alignment
the frequencies of the 20 amino acids. They therefore contain detailed information about the
conservation of each residue position, i.e. how important each position is for defining other members
of the protein family, and about the preferred amino acids. Profile Hidden Markov Models (HMMs)
are similar to simple sequence profiles, but in addition to the amino acid frequencies in the columns
of a multiple sequence alignment they contain information about the frequency of inserts and
deletions at each column. Using profile HMMs in place of simple sequence profiles should therefore
further improve sensitivity. Using HMMs both on the query and the database side greatly enhances
the sensitivity/selectivity and alignment quality over sequence-profile based methods such as PSI-
BLAST. HHsearch is the first software to employ HMM-HMM comparison and HHblits is the first
profile-profile comparison method that is fast enough to do iterative searches to build MSAs.

4.2 When can the HH-suite be useful for me?

Sequence search methods such as BLAST, FASTA, or PSI-BLAST are of prime importance for
biological research because functional information of a protein or gene can be inferred from homol-
ogous proteins or genes identified in a sequence search. But quite often no significant relationship
to a protein of known function can be established. This is certainly the case for the most interesting
group of proteins, those for which no ortholog has yet been studied. In cases where conventional
sequence search methods fail, HHblits and HHsearch quite often allow to make inferences from
more remotely homologous relationships. HHblits builds better MSAs, with which more remote
homologs can then be found using HHsearch or HHblits, e.g. by searching the PDB or domain
databases such as Pfam. If the relationship is so remote that no common function can be assumed,
one can often still derive hypotheses about possible mechanisms, active site positions and residues,
or the class of substrate bound [13, 14]. When a homologous protein with known structure can
be identified, its stucture can be used as a template to model the 3D structure of the protein of
interest [15], since even protein domains that shared a common ancestor some 3 billion years ago
mostly have similar 3D structures [16–18]. The 3D model may then help to generate hypotheses
to guide experiments.

4.3 What does homology mean and why is it important?

Two protein sequences are homologous to each other if they descended from a common ancestor
sequence. Generally, homologous proteins (or protein fragments) have similar structure because
structures diverge much more slowly than their sequences [?]. Depending on the degree of diver-
gence between the sequences, the proteins may also have similar cellular functions, ligands, protein
interaction partners, or enzymatic mechanisms [13]. On the contrary, proteins that have a similar
structure by convergence (i.e. by chance) are said to be analogous. They don’t generally share
similar functions or biochemical mechanisms and are therefore much less helpful for making infer-
ences. HHsearch and HHblits are tools for homology detection and as such do not normally detect
analogous relationships [?, 18].

4.4 How can I verify if a database match is homologous?

Here is a list of things to check if a database match really is at least locally homologous.

Check probability and E-value: HHsearch and HHblits can detect homologous relationships far
beyond the twilight zone, i.e. below 20% sequence identity. Sequence identity is therefore not an
appropriate measure of relatedness anymore. The estimated probability of the template to be (at

15

least partly) homologous to your query sequence is the most important criterion to decide whether
a template HMM is actually homologous or just a high-scoring chance hit. When it is larger
than 95%, say, the homology is nearly certain. Roughly speaking, one should give a hit serious
consideration (i.e. check the other points in this list) whenever (1) the hit has > 50% probability,
or (2) it has > 30% probability and is among the top three hits. The E-value is an alternative
measure of statistical significance. It tells you how many chance hits with a score better than this
would be expected if the database contained only hits unrelated to the query. At E-values below
one, matches start to get marginally significant. Contrary to the probability, when calculating
the E-value HHsearch and HHblits do not take into account the secondary structure similarity.
Therefore, the probability is a more sensitive measure than the E-value.

Check if homology is biologically suggestive or at least reasonable: Does the database
hit have a function you would expect also for your query? Does it come from an organism that is
likely to contain a homolog of your query protein?

Check secondary structure similarity: If the secondary structure of query and template is
very different or you can’t see how they could fit together in 3D, then this is a reason to distrust
the hit. Note however that if the query alignment contains only a single sequence, the secondary
structure prediction is quite unreliable and confidence values are overestimated.

Check relationship among top hits: If several of the top hits are homologous to each other,
(e.g. when they are members of the same SCOP superfamily), then this will considerably reduce
the chances of all of them being chance hits, especially if these related hits are themselves not very
similar to each other. Searching the SCOP database is very useful precisely for this reason, since
the SCOP family identifier (e.g. a.118.8.2) allows to tell immediately if two templates are likely
homologs.

Check for possible conserved motifs: Most homologous pairs of alignments will have at least
one (semi-)conserved motif in common. You can identify such putative (semi-)conserved motifs by
the agglomeration of three or more well-matching columns (marked with a ’|’ sign between the
aligned HMMs) occurring within a few residues, as well as by matching consensus sequences. Some
false positive hits have decent scores due to a similar amino acid composition of the template. In
these cases, the alignments tend to be long and to lack conserved motifs.

Check residues and role of conserved motifs: If you can identify possible conserved motifs,
are the corresponding conserved template residues involved in binding or enzymatic function?

Check query and template alignments: A corrupted query or template alignment is the
main source of high-scoring false positives. The two most common sources of corruption in an
alignment are (1) non-homologous sequences, especially repetitive or low-complexity sequences in
the alignment, and (2) non-homologous fragments at the ends of the aligned database sequences.
Check the query and template MSAs in an alignment viewer such as Jalview or ALNEDIT.

Realign with other parameters: change the alignment parameters. Choose global instead
of local mode, for instance, if you expect your query to be globally homologous to the putative
homolog. Try to improve the probability by changing the values for minimum coverage or minimum
sequence identity. You can also run the query HMM against other databases.

Build the query and/or database MSAs more aggressively: If your query (or template)
MSA is not diverse enough, you could increase sensitivity substantially by trying to include more
remotely homologous sequences into the MSA. Try using our HHsenser web server at http:

//toolkit.tuebingen.mpg.de/hhsenser [19]. Check the HHsenser alignment manually using
an alignment editor. Have non-homologous sequences or sequence segments been accidentally in-
cluded? You can also try to build a more diverse MSA manually: Inspect the HHblits results
after the first iteration and consider including hits above the E-value inclusion threshold of 0.001,
based on biological plausibility, relatedness of the organism, a reasonable looking alignment, or

16

http://toolkit.tuebingen.mpg.de/hhsenser
http://toolkit.tuebingen.mpg.de/hhsenser

just guessing. Then start the second HHblits search iteration HHblits with this manually enriched
alignment.

Try out other tools: Try other tools (e.g. for profile-profil comparison) and servers for remote
homology detection and structure prediction. A list of servers can be found in [?] and [20].

Verify predictions experimentally: The ultimate confirmation of a homologous relationship
or structural model is, of course, the experimental verification of some of its key predictions, such
as validating the binding to certain ligands by binding assays, measuring biochemical activity, or
comparing the knock-out phenotype with the one obtained when the putative functional residues
are mutated.

4.5 What does the maximum accuracy alignment algorithm do?

HHblits and HHsearch use a better alignment algorithm than the quick and standard Viterbi
method to generate the final HMM-HMM alignments. Both realign all displayed alignments in a
second stage using the more accurate Maximum Accuracy (MAC) algorithm [?, 21]. The Viterbi
algorithm is employed for searching and ranking the matches. The realignment step is parallelized
(-cpu <int>) and typically takes a few seconds only.

Please note: Using different alignment algorithms for scoring and aligning has the disadvantage
that the pairwise alignments that are displayed are not always very similar to those that are used
to calculate the scores. This can lead to confusing results where alignments of only one or a few
residues length may have obtained significant E-values. In such cases, run the search again with
the -norealign option, which will skip the MAC-realignment step. This will allow you to check if
the Viterbi alignments are valid at all, which they will probably not be. The length of the MAC
alignments can therefore give you additional information to decide if a match is valid. In order to
avoid confusion for users of our HHpred server [10,11], the -norealign option is the default there,
whereas for you pros who dare to use the command line package, realigning is done by default.

The posterior probability threshold is controlled with the -mact [0,1[option. This parameter
controls the alignment algorithm’s greediness. More precisely, the MAC algorithm finds the align-
ment that maximizes the sum of posterior probabilities minus mact for each aligned pair. Global
alignments are generated with -mact 0, whereas -mact 0.5 will produce quite conservative local
alignments.

The -global and -local options now refer to both the Viterbi search stage as well as the MAC
realignment stage. With -global (-local), the posterior probability matrix will be calculated for
global (local) alignment. When -global is used in conjunction with -realign, the mact parameter is
automatically set to 0 in order to produce global alignments. In other words, both following two
commands will give global alignments:

$ hhsearch -i <query> -d <db.hhm> -realign -mact 0

$ hhsearch -i <query> -d <db.hhm> -realign -global

The first version uses local Viterbi to search and then uses MAC to realign the proteins globally
(since mact is 0) on a local posterior probability matrix. The second version uses global Viterbi to
search and then realigns globally (since mact is automatically set to 0) on a global posterior matrix.
To detect and align remote homologs, for which sometimes only parts of the sequence are conserved,
the first version is clearly better. It is also more robust. If you expect to find globally alignable
sequence homologs, the second option might be preferable. In that case, it is recommended to run
both versions and compare the results.

17

4.6 How is the MSA diversity NEFF (the number of effective sequences) cal-
culated?

The number of effective sequences of the full alignment, which appears as NEFF in the header
of each hhm file, is the average of local values Neff_M(i) over all alignment positions i. The
values Neff_M(i) are given in the main model section of the hhm model files (subsection ??).
They quantify the local diversity of the alignment in a region around position i. More precisely,
Neff_M(i) measures the diversity of subalignment AliM (i) that contains all sequences that have a
residue at column i of the full alignment. The subalignment contains all columns for which at least
90% of these sequences have no end gap. End gaps are gaps to the left of the first residue or to
the right of the last residue. The latter condition ensures that the sequences in the subalignment
AliM (i) cover most of the columns in it. The number of effective sequences in the subalignment
AliM (i) is exp of the average sequence entropy over all columns of the subalignment. Hence,
Neff_M is bounded by 0 from below and 20 from above. In practice, it is bounded by the entropy
of a column with background amino acid distribution fa: Neff <

∑20
a=1 fa log fa ≈ 16. Similarly,

Neff_I(i) gives the diversity of the subalignment AliI(i) of all sequences that have an insert at
position i, and Neff_D(i) refers to the diversity of subaligment AliD(i) of all sequences that have
a Delete (a gap) at position i of the full alignment.

4.7 More frequently asked questions

Do HHsearch and HHblits work fine with multi-domain sequences? HHblits and HH-
search have been designed to work with multi-domain queries. However, the chances for false
positives entering the query alginment during the HHblits iterations is greater for multi-domain
proteins. For long sequences, it may therefore be of advantage to first search the PDB or the
SCOP domain database and then to cut the query sequence into smaller parts on the basis of the
identified structural domains. Pfam or CDD are - in our opinion - not suitable to determine domain
boundaries.

Don’t I need to calibrate my query or database HMMs anymore? No. If you don’t
specify otherwise, the two parameters of the extreme-value distribution for the query are estimated
by a neural network from the lengths and diversities (Neff)) of query and database HMMs that was
trained on a large set of example queries-template pairs, in an approach simlar to the one used
in [?]. However, the old calibration is still available as an option in HHsearch.

How can I build my own UniProt datbase for HHblits? CD-hit only clusters down
to 40% sequence identity. The procedure to cluster the nr or UniProt databases is more
complicated than building a database for a genome or for the sequences in the pdb. As its first step
it involves clustering these huge databases down to 20%-30% sequence identity. The clustering is
done in our lab using a new method, kClust (Hauser M, Mayer CE, and Soeding J., to be published).
We will add all scripts to build these HHblits databases to the HH-suite in due time. These scripts
generate A3M files, HHM files, and consensus sequences. Because of the large number of files to
generate, these scripts need to be run on a computer cluster. For the time being, you can only
download the clustered uniprot20 or nr20 from the soeding lab’s ftp server.

How do I reconcile overlapping and conflicting domain predictions, for example domain
A predicted from residues 2-50 with 98% probability and domain B from 2-200 with
95% probability? The probability that a pair of residues is correctly aligned is the product
of the probability for the database match to be homologous (given by the values in the Probab

column of the hit list) times the posterior probability of the residue pair to be correctly aligned
given the database match is correct in the first place. The posterior probabilities are specified by
the confidence numbers in the last line of the alignment blocks (0 corresponds approximately to

18

0-10%, 9 to 90-100%). Therefore, an obvious solution is to prune the alignments in the overlapping
region such that the sum of total probabilities is maximized. There is no script yet that does this
automatically.

Why do I get different results when I search with the same query through the same
database using hhblits and hhsearch? There are two reasons. First, some hits that hhsearch
shows might not have passed the prefilter in hhblits. The option -prepre_smax_thresh <bits>

lets you modify the minimum score threshold of the first, gapless alignment prefilter (default is
10 bits). Option -pre_evalue_thresh <E-value> sets the maximum E-value threshold for the
second, gapped alignment prefilter (default is 1000). Second, while the probabilities and P-values
of hhblits and hhsearch should be the identical for the same matches, the E-values are only similar.
The reason is that hhblits heuristically combines the E-values of the second prefilter with the E-
values from the full HMM-HMM Viterbi alignment into total E-values [?]. These E-values are
slightly better in distinguishing true from false hits, because they combine the partly independent
information from two comparisons.

I want to build a phylogenetic tree for HMMs. Which measure of similarity should
I use? I would use something like the raw score per alignment length. (You might also add
the secondary structure score to the raw score.) Probabilities, E-values, and P-values are use-
ful for deciding whether a match is a reliable homolog or not. They are not suitable for mea-
suring similarities, because they strongly depend on the length of the alignment, roughly like
P− value ∝ exp(λ×average similarity× length), with some constant λ or order 1. The probability
has an even more complex dependence on length. The Similarity given above the alignment blocks
does not capture the evolutionary information contained in the MSAs (see subsection 5.2). One
note of caution: Large, diverse MSAs are usually more sensitive to find homologs than narrower
ones. Therefore, I would limit the diversity of all HMMs to some reasonable number (perhaps
around 5 or 7, depending on how far diverged your HMMs are). This filtering can be done using
$ hhfilter -i <MSA.a3m> -o <MSA_filt.a3m> -neff 5, for example.

Should I use the -global option to build MSAs for an hhblits database if I am intersted
in global alignments to these database HMMs? Never use -global when building MSAs with
HHblits. Remember that global alignments are very greedy alignments, where alignments stretch
to the ends of either query of database HMM, no matter what. Global alignments will therefore
often lead to non-homologous segments getting included in the MSA, which is catastrophic, as these
false segments will lead to many false positive matches when searching with this MSA. But you
may use -global when searching for global matches of your query HMMs through your customized
HHblits database, for example.

5 HHsearch/HHblits output: hit list and pairwise alignments

5.1 Summary hit list

Let’s do a search with the human PIP49/FAM69B protein, for which we generated an MSA in
query.a3m with two iterations of HHblits in subsection 3.3:

Search results will be written to query.hhr

query.a3m is in A2M, A3M or FASTA format

Read query.a3m with 272 sequences

Alignment in query.a3m contains 431 match states

149 out of 270 sequences passed filter (up to 91% position-dependent max pairwise sequence identity)

Effective number of sequences exp(entropy) = 5.2

.. 1000 HMMs searched

.. 2000 HMMs searched

.. 3000 HMMs searched

.. 4000 HMMs searched

19

.. 5000 HMMs searched

.. 6000 HMMs searched

.. 7000 HMMs searched

.. 8000 HMMs searched

.. 9000 HMMs searched

.. 10000 HMMs searched

.. 11000 HMMs searched

.. 12000 HMMs searched

.. 13000 HMMs searched

....................................

Realigning 183 query-template alignments with maximum accuracy (MAC) algorithm ...

Query sp|Q5VUD6|FA69B_HUMAN Protein FAM69B OS=Homo sapiens GN=FAM69B PE=2 SV=3

Match_columns 431

No_of_seqs 149 out of 272

Neff 5.2

Searched_HMMs 13730

Date Wed Jan 4 17:44:24 2012

Command /cluster/user/soeding/hh/src/hhsearch -i query.a3m -d /cluster/user/soeding/databases/scop.hhm -cpu 18

No Hit Prob E-value P-value Score SS Cols Query HMM Template HMM

1 d1qpca_ d.144.1.7 (A:) Lymphoc 99.7 4.5E-17 3.2E-21 154.3 10.2 99 203-320 56-157 (272)

2 d1jpaa_ d.144.1.7 (A:) ephb2 r 99.7 4.3E-17 3.1E-21 156.8 8.8 99 203-321 75-177 (299)

3 d1uwha_ d.144.1.7 (A:) B-Raf k 99.7 5.1E-17 3.7E-21 154.8 7.7 100 203-322 52-154 (276)

4 d1opja_ d.144.1.7 (A:) Abelson 99.7 6.2E-17 4.5E-21 154.8 8.3 100 203-321 61-164 (287)

5 d1mp8a_ d.144.1.7 (A:) Focal a 99.6 9.9E-17 7.2E-21 151.3 8.6 100 203-322 56-158 (273)

6 d1sm2a_ d.144.1.7 (A:) Tyrosin 99.6 1.2E-16 8.8E-21 150.3 8.8 99 203-321 48-150 (263)

7 d1u59a_ d.144.1.7 (A:) Tyrosin 99.6 2.4E-16 1.7E-20 150.9 9.5 99 203-321 57-158 (285)

8 d1xbba_ d.144.1.7 (A:) Tyrosin 99.6 2.2E-16 1.6E-20 150.2 8.6 97 203-320 56-155 (277)

9 d1vjya_ d.144.1.7 (A:) Type I 99.6 2.6E-16 1.9E-20 151.3 8.8 98 204-320 46-156 (303)

10 d1mqba_ d.144.1.7 (A:) epha2 r 99.6 4.4E-16 3.2E-20 148.0 8.7 193 203-422 57-272 (283)

...

64 d1j7la_ d.144.1.6 (A:) Type II 97.3 0.00014 1E-08 65.0 6.3 33 292-324 184-216 (263)

65 d1nd4a_ d.144.1.6 (A:) Aminogl 96.7 0.0012 8.5E-08 58.5 6.6 31 292-322 176-206 (255)

66 d1nw1a_ d.144.1.8 (A:) Choline 96.6 0.0011 7.8E-08 63.9 5.8 37 203-239 92-128 (395)

67 d2pula1 d.144.1.6 (A:5-396) Me 95.6 0.0071 5.2E-07 58.3 6.4 32 290-322 222-253 (392)

68 d1a4pa_ a.39.1.2 (A:) Calcycli 91.7 0.12 8.9E-06 40.0 5.4 62 140-202 18-80 (92)

69 d1ksoa_ a.39.1.2 (A:) Calcycli 91.2 0.17 1.2E-05 39.5 5.8 56 147-203 28-83 (93)

70 d1e8aa_ a.39.1.2 (A:) Calcycli 90.5 0.23 1.7E-05 38.3 6.0 56 147-203 27-82 (87)

...

175 d1qxpa2 a.39.1.8 (A:515-702) C 23.7 29 0.0021 28.8 3.8 49 137-197 69-118 (188)

176 d1tuza_ a.39.1.7 (A:) Diacylgl 23.5 55 0.004 25.3 5.3 55 143-201 44-106 (118)

177 d1ggwa_ a.39.1.5 (A:) Cdc4p {F 23.1 26 0.0019 27.0 3.2 66 129-197 35-101 (140)

178 d1topa_ a.39.1.5 (A:) Troponin 22.8 72 0.0052 24.5 6.0 58 140-199 65-123 (162)

179 d1otfa_ d.80.1.1 (A:) 4-oxaloc 22.5 66 0.0048 21.5 5.0 40 267-306 12-53 (59)

180 d1oqpa_ a.39.1.5 (A:) Caltract 22.2 32 0.0023 24.0 3.2 32 165-197 3-34 (77)

181 d1df0a1 a.39.1.8 (A:515-700) C 21.7 43 0.0032 27.0 4.5 51 137-199 67-118 (186)

182 d1zfsa1 a.39.1.2 (A:1-93) Calc 21.1 41 0.003 24.6 3.8 30 170-199 8-38 (93)

183 d1snla_ a.39.1.7 (A:) Nucleobi 20.9 23 0.0016 26.2 2.2 24 174-197 18-41 (99)

Done

The summary hit list that is written to the screen shows the best hits from the database, ordered
by the probability of being a true positive (column 4: ’Prob’). The meaning of the columns is the
following:

No: the index of the datbase match.

Hit: the first 30 characters of the name line.

Prob: the Probability of template to be a true positive. For the probability of being a true positive,
the secondary structure score in column SS is taken into account, together with the raw score
incolumn Score. True positives are defined to be either globally homologous or they are at
least homologous in parts, and thereby locally similar in structure. More precisely, the latter
criterion demands that the MAXSUB score between query and hit is at least 0.1. In almost

20

all cases the structural similarity will we be due to a global OR LOCAL homology between
query and template.

E-value: The E-value gives the average number of false positives (’wrong hits’) with a score better
than the one for the template when scanning the database. It is a measure of reliability: E-
values near to 0 signify a very reliable hit, an E-value of 10 means about 10 wrong hits are
expected to be found in the database with a score at least this good. Note that E-value and
P-value are calculated without taking the secondary structure into account!

P-value: The P-value is the E-value divided by the number of sequences in the database. It is
the probability that in a pairwise comparison a wrong hit will score at least this good.

Score: the raw score is what comes out of the (Viterbi) HMM-HMM alignment excluding the
secondary structure score. Informally speaking, it is the sum over the similarities of aligned
profile colmuns minus the gap penalties.

SS: the secondary structure score. This score tells you how well the PSIPRED-predicted (3-state)
or actual DSSP-determined (8-state) secondary structure sequences agree with each other.
PSIPRED confidence values are used in the scoring, low confidences getting less statistical
weight.

Cols: the number of aligned Match columns in the HMM-HMM alignment.

Query HMM: the range of aligned match states from query HMM.

Template HMM: the range of aligned match states from the database/template HMM and, in
parenthesis, the number of match states in the database HMM.

5.2 HMM-HMM pairwise alignments

The output file d1bpya1.hhr contains the same hit list plus the pairwise HMM alignments. One
example is give here:

No 68

>d1a4pa_ a.39.1.2 (A:) Calcyclin (S100) {Human (Homo sapiens), P11 s100a10, calpactin [TaxId: 9606]}

Probab=91.65 E-value=0.12 Score=40.00 Aligned_cols=62 Identities=16% Similarity=0.149 Sum_probs=42.0

Q ss_pred ccCCCCCCcHHHHHHHHHHHHHhhcccCccHHHHHHHHHhhhhccCCCCcCHHHHHHH-HHHHH

Q sp|Q5VUD6|FA69 140 FDKPTRGTSIKEFREMTLSFLKANLGDLPSLPALVGQVLLMADFNKDNRVSLAEAKSV-WALLQ 202 (431)

Q Consensus 140 ~d~p~~g~s~~eF~emv~~~i~~~lg~~~~l~~L~~~~~~~~d~nk~g~vs~~e~~sl-waLlq 202 (431)

||+..-..|.+||.+++.......++.+.+ ...+..++..+|.|+||+|++.|...+ ..|..

T Consensus 18 yd~ddG~is~~El~~~l~~~~~~~~~~~~~-~~~v~~~~~~~D~n~DG~I~F~EF~~li~~l~~ 80 (92)

T d1a4pa_ 18 FAGDKGYLTKEDLRVLMEKEFPGFLENQKD-PLAVDKIMKDLDQCRDGKVGFQSFFSLIAGLTI 80 (92)

T ss_dssp HHGGGCSBCHHHHHHHHHHHCHHHHHHSCC-TTHHHHHHHHHCTTSSSCBCHHHHHHHHHHHHH

T ss_pred HcCCCCEEcHHHHHHHHHHhccccccccCC-HHHHHHHHHHHhCCCCCCCcHHHHHHHHHHHHH

Confidence 444433449999999998876655554332 234566677899999999999997544 44443

This alignment shows an EF hand embedded in a kinase domain in PIP49/FAM69B. The first line,
which begins with with a “>”, contains the name and description line of the template/database
HMM. (We use “template HMM” and “matched database HMM” synonymously.) The next line
summarizes the main statistics for the alignment: The probability for the query and template
HMMs to be homologous (Probab), the E-value, the raw Score, and the number of aligned columns
are repeated from the summary hit list. The Identities give the percentage of aligned residue
pairs of the query and the template master sequences that are identical. The Similarity is the
arithmetic mean of the substitution scores between the aligned residue pairs from the query and
template master sequences. The substitution matrix is the same as the one used to calculate the

21

pseudocounts for the database HMMs, by default the Gonnet matrix. (The matrix can be changed
with the -Blosom<XX> option.)

The Sum_probs value is the sum over the posterior probabilities of all aligned pairs of match states.
These probabilities are calculated by the Forward-Backward algorithm. (They are used by the
maximum accuracy algorithm which computes the final alignments.) When the template HMM
has secondary structure annotation from DSSP, the sum_probs value runs only over aligned pairs
for which the template has a valid DSSP state, not a - sign. A - would indicate that the structural
coordinates of that residue are missing in the template. For homology modelling, this special
treatment of templates with known structure makes sum_probs a useful feature to use for ranking
templates.

The pairwise alignment consists of one or more blocks with the following lines:

Q ss_dssp: the query secondary structure as determined by DSSP (when available)

Q ss_pred: the query secondary structure as predicted by PSIPRED (when available)

Q <Q_name>: the query master sequence

Q Consensus: the query alignment consensus sequence

The predicted secondary structure states are shown in capital letters if the PSIPRED confidence
value is between 0.7 and 1.0, for lower confidence values they are given in lower-case letters. With
the option ’-ssconf’, ’ss conf’ lines can be added to the alignments which report the PSIPRED
confidence values by numbers between 0 and 9 (as in versions up to 1.5).

The consensus sequence uses capital letters for well conserved columns and lower case for partially
conserved columns. Unconserved columns are marked by a tilde ~. Roughly speaking, amino acids
that occur with >= 60% probability (before adding pseudocounts) are written as capital letters
and amino acids that have >= 40% probability are written as lower case letters, where gaps are
included in the fraction counts. More precisely, when the gap-corrected amino acid fraction

pi(a) ∗Neff (i)/(Neff + 1)

is above 0.6 (0.4) an upper (lower) case letter is used for amino acid a. Here, pi(a) is the emission
probability for a in column i, Neff is the effective number of sequences in the entire multiple
alignment (between 1 and 20) and Neff (i) is the effective number of sequences in the subalignment
consisting of those sequences that do not have a gap in column i. These percentages increase
approximately inversely proportionally with the fraction of gaps in the column, hence a column
with only cysteines and 50% gaps gets a lower case letter.

The line in the middle shows the column score between the query and template amino acid distri-
butions. It gives a valuable indication for the alignment quality.

= : column score below -1.5

- : column score between -1.5 and -0.5

. : column score between -0.5 and +0.5

+ : column score between +0.5 and +1.5

| : column score above +1.5

A unit of column score corresponds approximately to 0.6 bits. From the column score line the
excellent alignment around the conserved ’D.n.DG.i...E’ motif in the turn between two helices
is evident. The alignment around the gap by contrast scores only a bit better than zero per residue
and is therefore not very reliable.

After the template block, which consists of the following lines,

T Consensus: the template alignment consensus sequence

22

T <T_name>: the template domain sequence

T ss_dssp: the template secondary structure as determined by DSSP (when available)

T ss_pred: the template secondary structure as predicted by PSIPRED (when available)

The last line in the block (Confidence) reports the reliability of the pairwise query-template
alignment. The confidence values are obtained from the posterior probabilities calculated in the
Forward-Backward algorithm. A value of 8 indicates a probability that this pair of HMM columns
is correctly aligned between 0.8 and 0.9. The Confidence line is only displayed when the -realign
option is active.

6 File formats

6.1 Multiple sequence alignment formats

Multiple alignments can be read in A2M, A3M, or aligned FASTA format. (Check the -M option
for using an input format different from the default A3M). You can transform MSAs from Clustal
or Stockholm format to A3M or aligned FASTA with the reformat.pl utility supplied in this
package.

To reformat from Clustal format to A3M:

$ reformat.pl test.aln test.a3m

or explicitly, if the formats can not be recognized from the extensions:

$ reformat.pl clu a3m test.clustal test.a3m

To reformat from Stockholm to aligned FASTA:

$ reformat.pl test.sto test.fas

Example for aligned FASTA format:

>d1a1x__ b.63.1.1 (-) p13-MTCP1 {Human (Homo sapiens)}

PPDHLWVHQEGIYRDEYQRTWVAVVEE--E--T--SF---------LR----------ARVQQIQVPLG-------DAARPSHLLTS-----QL

>gi|6678257|ref|NP_033363.1|:(7-103) T-cell lymphoma breakpoint 1 [Mus musculus]

HPNRLWIWEKHVYLDEFRRSWLPVVIK--S--N--EK---------FQ----------VILRQEDVTLG-------EAMSPSQLVPY-----EL

>gi|7305557|ref|NP_038800.1|:(8-103) T-cell leukemia/lymphoma 1B, 3 [Mus musculus]

PPRFLVCTRDDIYEDENGRQWVVAKVE--T--S--RSpygsrietcIT----------VHLQHMTTIPQ-------EPTPQQPINNN-----SL

>gi|11415028|ref|NP_068801.1|:(2-106) T-cell lymphoma-1; T-cell lymphoma-1A [Homo sapiens]

HPDRLWAWEKFVYLDEKQHAWLPLTIEikD--R--LQ---------LR----------VLLRREDVVLG-------RPMTPTQIGPS-----LL

>gi|7305561|ref|NP_038804.1|:(7-103) T-cell leukemia/lymphoma 1B, 5 [Mus musculus]

----------GIYEDEHHRVWIAVNVE--T--S--HS---------SHgnrietcvt-VHLQHMTTLPQ-------EPTPQQPINNN-----SL

>gi|7305553|ref|NP_038801.1|:(5-103) T-cell leukemia/lymphoma 1B, 1 [Mus musculus]

LPVYLVSVRLGIYEDEHHRVWIVANVE--TshS--SH---------GN----------RRRTHVTVHLW-------KLIPQQVIPFNplnydFL

>gi|27668591|ref|XP_234504.1|:(7-103) similar to Chain A, Crystal Structure Of Murine Tcl1

-PDRLWLWEKHVYLDEFRRSWLPIVIK--S--N--GK---------FQ----------VIMRQKDVILG-------DSMTPSQLVPY-----EL

>gi|27668589|ref|XP_234503.1|:(9-91) similar to T-cell leukemia/lymphoma 1B, 5;

-PHILTLRTHGIYEDEHHRLWVVLDLQ--A--ShlSF---------SN----------RLLIYLTVYLQqgvafplESTPPSPMNLN-----GL

>gi|7305559|ref|NP_038802.1|:(8-102) T-cell leukemia/lymphoma 1B, 4 [Mus musculus]

PPCFLVCTRDDIYEDEHGRQWVAAKVE--T--S--SH---------SPycskietcvtVHLWQMTTLFQ-------EPSPDSLKTFN-----FL

>gi|7305555|ref|NP_038803.1|:(9-102) T-cell leukemia/lymphoma 1B, 2 [Mus musculus]

---------PGFYEDEHHRLWMVAKLE--T--C--SH---------SPycnkietcvtVHLWQMTRYPQ-------EPAPYNPMNYN-----FL

The sequence name and its description must be contained in a single name line beginning with the
> symbol and followed directly by the sequence name. The residue data is contained in one or more

23

lines of arbitrary length following the name line. No empty lines should be used. In aligned FASTA
the gaps are written with ’-’ and the n’th letter of each sequence (except newlines) is understood
to build the n’th column of the multiple alignment.

The same alignment in A2M format looks like this:

>d1a1x__ b.63.1.1 (-) p13-MTCP1 {Human (Homo sapiens)}

PPDHLWVHQEGIYRDEYQRTWVAVVEE..E..T..SF.........LR..........ARVQQIQVPLG.......DAARPSHLLTS.....QL

>gi|6678257|ref|NP_033363.1|:(7-103) T-cell lymphoma breakpoint 1 [Mus musculus]

HPNRLWIWEKHVYLDEFRRSWLPVVIK..S..N..EK.........FQ..........VILRQEDVTLG.......EAMSPSQLVPY.....EL

>gi|7305557|ref|NP_038800.1|:(8-103) T-cell leukemia/lymphoma 1B, 3 [Mus musculus]

PPRFLVCTRDDIYEDENGRQWVVAKVE..T..S..RSpygsrietcIT..........VHLQHMTTIPQ.......EPTPQQPINNN.....SL

>gi|11415028|ref|NP_068801.1|:(2-106) T-cell lymphoma-1; T-cell lymphoma-1A [Homo sapiens]

HPDRLWAWEKFVYLDEKQHAWLPLTIEikD..R..LQ.........LR..........VLLRREDVVLG.......RPMTPTQIGPS.....LL

>gi|7305561|ref|NP_038804.1|:(7-103) T-cell leukemia/lymphoma 1B, 5 [Mus musculus]

----------GIYEDEHHRVWIAVNVE..T..S..HS.........SHgnrietcvt.VHLQHMTTLPQ.......EPTPQQPINNN.....SL

>gi|7305553|ref|NP_038801.1|:(5-103) T-cell leukemia/lymphoma 1B, 1 [Mus musculus]

LPVYLVSVRLGIYEDEHHRVWIVANVE..TshS..SH.........GN..........RRRTHVTVHLW.......KLIPQQVIPFNplnydFL

>gi|27668591|ref|XP_234504.1|:(7-103) similar to Chain A, Crystal Structure Of Murine Tcl1

-PDRLWLWEKHVYLDEFRRSWLPIVIK..S..N..GK.........FQ..........VIMRQKDVILG.......DSMTPSQLVPY.....EL

>gi|27668589|ref|XP_234503.1|:(9-91) similar to T-cell leukemia/lymphoma 1B, 5;

-PHILTLRTHGIYEDEHHRLWVVLDLQ..A..ShlSF.........SN..........RLLIYLTVYLQqgvafplESTPPSPMNLN.....GL

>gi|7305559|ref|NP_038802.1|:(8-102) T-cell leukemia/lymphoma 1B, 4 [Mus musculus]

PPCFLVCTRDDIYEDEHGRQWVAAKVE..T..S..SH.........SPycskietcvtVHLWQMTTLFQ.......EPSPDSLKTFN.....FL

>gi|7305555|ref|NP_038803.1|:(9-102) T-cell leukemia/lymphoma 1B, 2 [Mus musculus]

---------PGFYEDEHHRLWMVAKLE..T..C..SH.........SPycnkietcvtVHLWQMTRYPQ.......EPAPYNPMNYN.....FL

A2M format is derived from aligned FASTA format. It looks very similar, but it distinguishes
between match/delete columns and insert columns. This information is important to uniquely
specify how an alignment is transformed into an HMM. The match/delete columns use upper case
letters for residues and the ’-’ symbol for deletions (gaps). The insert columns use lower case letters
for the inserted residues. Gaps aligned to inserted residues are written as ’.’ Lines beginning with
a hash # symbol will be treated as commentary lines in HHsearch/HHblits (see below).

The same alignment in A3M:

>d1a1x__ b.63.1.1 (-) p13-MTCP1 {Human (Homo sapiens)}

PPDHLWVHQEGIYRDEYQRTWVAVVEEETSFLRARVQQIQVPLGDAARPSHLLTSQL

>gi|6678257|ref|NP_033363.1|:(7-103) T-cell lymphoma breakpoint 1 [Mus musculus]

HPNRLWIWEKHVYLDEFRRSWLPVVIKSNEKFQVILRQEDVTLGEAMSPSQLVPYEL

>gi|7305557|ref|NP_038800.1|:(8-103) T-cell leukemia/lymphoma 1B, 3 [Mus musculus]

PPRFLVCTRDDIYEDENGRQWVVAKVETSRSpygsrietcITVHLQHMTTIPQEPTPQQPINNNSL

>gi|11415028|ref|NP_068801.1|:(2-106) T-cell lymphoma-1; T-cell lymphoma-1A [Homo sapiens]

HPDRLWAWEKFVYLDEKQHAWLPLTIEikDRLQLRVLLRREDVVLGRPMTPTQIGPSLL

>gi|7305561|ref|NP_038804.1|:(7-103) T-cell leukemia/lymphoma 1B, 5 [Mus musculus]

----------GIYEDEHHRVWIAVNVETSHSSHgnrietcvtVHLQHMTTLPQEPTPQQPINNNSL

>gi|7305553|ref|NP_038801.1|:(5-103) T-cell leukemia/lymphoma 1B, 1 [Mus musculus]

LPVYLVSVRLGIYEDEHHRVWIVANVETshSSHGNRRRTHVTVHLWKLIPQQVIPFNplnydFL

>gi|27668591|ref|XP_234504.1|:(7-103) similar to Chain A, Crystal Structure Of Murine Tcl1

-PDRLWLWEKHVYLDEFRRSWLPIVIKSNGKFQVIMRQKDVILGDSMTPSQLVPYEL

>gi|27668589|ref|XP_234503.1|:(9-91) similar to T-cell leukemia/lymphoma 1B, 5;

-PHILTLRTHGIYEDEHHRLWVVLDLQAShlSFSNRLLIYLTVYLQqgvafplESTPPSPMNLNGL

>gi|7305559|ref|NP_038802.1|:(8-102) T-cell leukemia/lymphoma 1B, 4 [Mus musculus]

PPCFLVCTRDDIYEDEHGRQWVAAKVETSSHSPycskietcvtVHLWQMTTLFQEPSPDSLKTFNFL

>gi|7305555|ref|NP_038803.1|:(9-102) T-cell leukemia/lymphoma 1B, 2 [Mus musculus]

---------PGFYEDEHHRLWMVAKLETCSHSPycnkietcvtVHLWQMTRYPQEPAPYNPMNYNFL

The A3M format is a condensed version of A2M format. It is obtained by omitting all ’.’ symbols
from A2M format. Hence residues emitted by Match states of the HMM are in upper case, residues
emitted by Insert states are in lower case and deletions are written ’-’. A3M-formatted alignments
can be reformatted to other formats like FASTA or A2M with the reformat.pl utility:

24

reformat.pl test.a3m test.a2m

Lines beginning with a hash # symbol will be treated as commentary lines in HHsearch/HHblits
(see below). Please note that A3M, though very practical and space-efficient, is not a standard
format, and the name A3M is our personal invention.

Secondary structure information in A3M/A2M or FASTA MSAs for HHsearch/HHblits

The alignments read in by HHblits, HHsearch or HHmake can also contain secondary structure
information. This information can be included in sequences with special names, like in this A3M
file:

>ss_dssp

CCSEEEEEETTEEEETTSCEEEEEEEECSSCEEEEEECCCCCCCSCCCHHHHTTCSSCSEEEEETTTEEEETTSC

>aa_dssp

PPDHLWVHQEGIYRDEYQRTWVAVVEEETSFLRARVQQIQVPLGDAARPSHLLTSQLPLMWQLYPEERYMDNNSR

>aa_pred

PPDHLWVHQEGIYRDEYQRTWVAVVEEETSFLRARVQQIQVPLGDAARPSHLLTSQLPLMWQLYPEERYMDNNSR

>ss_pred

CCCEEEEECCCEECCCCCEEEEEEEEECCCCCCEEEEEEECCCCCCCCCCCCCCCCCCCEEEECCCCCEECCCCC

>ss_conf

987689961870104587078999970578640132153103788788777774424614787217702035631

>d1a1x__ b.63.1.1 (-) p13-MTCP1 {Human (Homo sapiens)}

PPDHLWVHQEGIYRDEYQRTWVAVVEEETSFLRARVQQIQVPLGDAARPSHLLTSQLPLMWQLYPEERYMDNNSR

>gi|6678257|ref|NP_033363.1|:(7-103) T-cell lymphoma breakpoint 1 [Mus musculus]

HPNRLWIWEKHVYLDEFRRSWLPVVIKSNEKFQVILRQEDVTLGEAMSPSQLVPYELPLMWQLYPKDRYRSCDSM

>gi|7305557|ref|NP_038800.1|:(8-103) T-cell leukemia/lymphoma 1B, 3 [Mus musculus]

PPRFLVCTRDDIYEDENGRQWVVAKVETSRSpygsrietcITVHLQHMTTIPQEPTPQQPINNNSLPTMWRLESMNTYTGTDGT

>gi|11415028|ref|NP_068801.1|:(2-106) T-cell lymphoma-1; T-cell lymphoma-1A [Homo sapiens]

HPDRLWAWEKFVYLDEKQHAWLPLTIEikDRLQLRVLLRREDVVLGRPMTPTQIGPSLLPIMWQLYPDGRYRSSDSS

The sequence with name >ss_dssp contains the 8-state DSSP-determined secondary structure.
>aa_dssp and >aa_pred contain the same residues as the query sequence (>d1a1x__ in this case).
They are optional and used merely to check whether the secondary structure states have correctly
been assigned to the alignment. >ss_pred contains the 3-state secondary structure predicted by
PSIPRED, and >ss_conf contains the corresponding confidence values. The query sequence is the
first sequence that does not start with a special name. It is not marked explicitly.

Name lines in alignments

If you would like to create HMMs from alignments with a specified name which differ from the
name of the first sequence, you can do so by adding name lines to your FASTA, A2M, or A3M
alignment:

#PF02043 Bac_chlorC: Bacteriochlorophyll C binding protein

>ss_pred

CCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHCC

>ss_conf

9863234658887677777750019999999998878886403445886666775655576678777660667633039

>CSMA_CHLAU/1-79

ATRGWFSESSAQVAQIGDIMFQGHWQWVSNALQATAAAVDNINRNAYPGVSRSGSGEGAFSSSPSNGFRPKRIRSRFNR

>CSMA_CHLPH/2-51

NGGGVFTDILAASGRIFEVMVEGHWATVGYLFDSLGKGVSRINQNAYGNM-----------------------------

...

When creating an HMM from an A3M file with hhmake, the first word of the name line is used
as the name and file name of the HMM (PF02043 in this case). The following is an optional
description. The descriptions will appear in the hit list and alignment section of the search results.

25

The name lines can be arbitrarily long and there can be any number of name/description lines
included, marked by a ’#’ as the first character in the line. Note that name lines are read by
HHmake but are not a part of the standard definition of the FASTA or A2M format.

6.2 HHsearch/HHblits model format (hhm-format)

HMMs can be read by HHsearch/HHblits in HHsuite’s own hhm format, as well as in HM-
MER format (extension hmm) (http://hmmer.org/). Performance is severely reduced when us-
ing HMMER-format, because HMMER adds more pseudocounts than HHsearch/HHblits that we
cannot remove anymore. We therefore strongly advise against using models from HMMER with
HHsuite. We recommend to get the original MSA files and generate hhm-formatted models using
hhmake, as described in subsection 3.3.

If you absolutely need to use HMMER format, you can convert it to hhm format with hhmake:

$ hhmake -i test.hmm -o test.hhm

This works only for a single HMM per file, not for concatenated HMMs. You may add predicted
secondary structure to the hmm file with addss.pl as for hhm format.

HHsearch/HHblits uses a format HMM that is unchanged since HHsearch version 1.5. This is the
example of an HHM model file produced by HHmake:

HHsearch 1.5

NAME d1mvfd_ b.129.1.1 (D:) MazE {Escherichia coli}

FAM b.129.1.1

FILE d1mvfd_

COM hhmake1 -i d1mvfd_.a3m -o test.hhm

DATE Wed May 14 10:41:06 2011

LENG 44 match states, 44 columns in multiple alignment

FILT 32 out of 35 sequences passed filter (-id 90 -cov 0 -qid 0 -qsc -20.00 -diff 100)

NEFF 4.0

SEQ

>ss_dssp

CBCEEETTEEEEECCHHHHHHTTCCTTCBEEEEEETTEEEEEEC

>ss_pred

CCCCCCCCCCCCCCHHHHHHHHCCCCCCEEEEEEECCEEEEEEC

>ss_conf

93233467666600578899808998986889874993798739

>Consensus

sxIxKWGNSxAvRlPaxlxxxlxlxxgdxixxxxxxxxivlxPv

>d1mvfd_ b.129.1.1 (D:) MazE {Escherichia coli}

SSVKRWGNSPAVRIPATLMQALNLNIDDEVKIDLVDGKLIIEPV

>gi|10176344|dbj|BAB07439.1|:(1-43) suppressor of ppGpp-regulated growth inhibitor [Bacillus halodurans]

TTIQKWGNSLAVRIPNHYAKHINVTQGSEIELSLgSDQTIILKP-

>gi|50120611|ref|YP_049778.1|:(3-43) suppressor of growth inhibitory protein ChpA [Erwinia carotovora]

-TVKKWGNSPAIRLSSSVMQAFDMTFNDSFDMEIRETEIALIP-

>gi|44064461|gb|EAG93225.1|:(2-42) unknown [environmental sequence]

-SVVKWGSYLAVRLPAELVLELGLKEGDEIDLVKDDGPVRVR--

>gi|31442758|gb|AAP55635.1|:(1-44) PemI-like protein [Pediococcus acidilactici]

TRLAKWGNSKAARIPSQIIKQLKLDDNQDMTITIENGSIVLTPI

>gi|44419085|gb|EAJ13619.1|:(3-43) unknown [environmental sequence]

SAIQKWGNSAAVRLPAVLLEQIDASVGSSLNADVRPDGVLLSP-

>gi|24376549|gb|AAN57947.1|:(3-44) putative cell growth regulatory protein [Streptococcus mutans UA159]

SAINKWGNSSAIRLPKQLVQELQLQTNDVLDYKVSGNKIILEKV

>gi|11344928|gb|AAG34554.1|:(1-44) MazE [Photobacterium profundum]

TQIRKIGNSLGSIIPATFIRQLELAEGAEIDVKTVDGKIVIEPI

>gi|45681193|ref|ZP_00192636.1|:(2-44) COG2336: Growth regulator [Mesorhizobium sp. BNC1]

-TIRKIGNSEGVILPKELLDRHNLKTGDALAIVEEGSDLVLKPV

#

NULL 3706 5728 4211 4064 4839 3729 4763 4308 4069 3323 5509 4640 4464 4937 4285 4423 3815 3783 6325 4665

HMM A C D E F G H I K L M N P Q R S T V W Y

M->M M->I M->D I->M I->I D->M D->D Neff NeffI NeffD

0 * * 0 * 0 * * * *

26

http://hmmer.org/

S 1 * * * * * * * * * * * * * * * 1012 988 * * * 1

0 * * * * * * 2817 0 0

S 2 2307 * * * * * * * * * * * * 3178 3009 2179 1546 * * * 2

0 * * * * * * 3447 0 0

V 3 * * * * * * * 917 * 3009 * * * * * * * 1530 * * 3

0 * * * * * * 3447 0 0

.

.

.

V 44 * * * * * * * 1309 * * * * * * * * * 745 * * 44

0 * * 0 * * * 2533 0 0

//

The first line (HHsearch 1.5) gives the format version, which corresponds to the HHsearch version
for which this format was first introduced. Newer versions of HHsearch/HHblits may use previous
format versions. The NAME line gives the name of the HMM and an optional description. The first
30 characters of this field are used in the summary hit list of the search results in hhr format,
the full name line is given above the query-template alignments of the search results. The FAM

line contains the family if the sequence is from SCOP of PFAM (used for calibration). COM is the
command that was used to generate the file. NEFF is the diversity of the alignment, calculated as
exp of the negative entropy averaged over all columns of the alignment.

The SEQ section contains a number of aligned, representative (pseudo) sequences in A3M format
and is terminated with a line containing only a #. The first sequence represents the DSSP secondary
structure (if available, i.e. if contained in the A3M or FASTA alignment from which the HMM
model was built), the second and third sequences contain the predicted secondary structure and
the corresponding confidence values in the range 0–9 (if available). The fourth sequence is the
consensus annotation sequence that is shown in the pairwise query-template alignments in the
hhsearch output. The first real sequence after the pseudo sequences is the seed or master sequence
from which the alignment was built (>d1mvfd_, in our example). If the alignment does not represent
a single master sequence but an entire family, as in the case of PFAM alignments for example, the
first real sequence may be a consensus sequence calculated for the entire alignment. This master
sequence is shown in the pairwise query-template alignments in the hhsearch output.

The next line specifies the null model frequencies, which are extracted from the selected substitution
matrix used to add pseudocounts. Each of the positive integers is equal to 1000 times the negative
logarithm of the amino acid frequency (which is between 0 and 1):

− 1000× log2(frequency) (1)

After the two annotation lines that specify the order of columns for the emission and transition
probabilities that follow, there is a line which is not currently read by HHsearch and that lists the
transition frequencies from the begin state to the first Match state, Insert state and Delete state.

The last block contains two lines for each column of the HMM. The first line starts with the amino
acid in the master sequence at that column in the HMM and the column number. Following are 20
positive integers representing the match state amino acid emission frequencies (see eq. 1). Asterisks
* stand for a frequency of 0 (which would otherwise be represented by 99999). Please note that,
unlike in HMMER format, the emission frequencies do not contain pseudo-counts in the HHsearch
model format. The second line contains the seven transition frequencies (eq. 1) coded as in eq.
1. The three local diversities, Neff_M, Neff_I, and Neff_D are given in units of 0.001 (see next
paragraph). The end of the model is indicated by a line containing only //.

27

7 Summary of command-line parameters

This is just a brief summary of command line parameters for the various binaries and perl scripts
as they are displayed by the programs when calling them without command line parameters. On
the help pages of our HHpred/HHblits web servers

http://toolkit.tuebingen.mpg.de or http://toolkit.genzentrum.lmu.de

you can find more detailed explanations about some of the input parameters (’Parameters’ section)
and about how to interpret the output (’Results’ section). The FAQ section contains valuable
practical hints on topics such as how to validate marginally significant database matches or how to
avoid high-scoring false positives.

7.1 hhblits – HMM-HMM-based lighting-fast iterative sequence search

HHblits is a sensitive, general-purpose, iterative sequence search tool that represents both query
and database sequences by HMMs. You can search HHblits databases starting with a single query
sequence, a multiple sequence alignment (MSA), or an HMM. HHblits prints out a ranked list
of database HMMs/MSAs and can also generate an MSA by merging the significant database
HMMs/MSAs onto the query MSA.

Usage: hhblits -i query [options]

-i <file> input query (single FASTA-sequence, A3M- or FASTA-alignment, HMM-file)

Options:

-d <base> database basename (default=)

-n [1,8] number of iterations (default=2)

-e [0,1] E-value cutoff for inclusion in result alignment (def=0.001)

Input alignment format:

-M a2m use A2M/A3M (default): upper case = Match; lower case = Insert;

’ -’ = Delete; ’.’ = gaps aligned to inserts (may be omitted)

-M first use FASTA: columns with residue in 1st sequence are match states

-M [0,100] use FASTA: columns with fewer than X% gaps are match states

Directory paths

-contxt <file> context file for computing context-specific pseudocounts (default=)

-cslib <file> column state file for fast database prefiltering (default=)

-psipred <dir> directory with PSIPRED executables (default=)

-psipred_data <dir> directory with PSIPRED data (default=)

Output options:

-o <file> write results in standard format to file (default=<infile.hhr>)

-oa3m <file> write multiple alignment of significant matches in a3m format

-ofas <file> write MSA of significant matches in FASTA format

-opsi <file> write MSA of significant matches in PSI format

-ohhm <file> write HHM file for MSA of significant matches

-oalis <name> write MSAs in A3M format after each iteration

-Ofas <file> write pairwise alignments of significant matches in FASTA format

-qhhm <file> write query input HHM file of last iteration (default=off)

-seq <int> max. number of query/template sequences displayed (default=1)

-addss add predicted 2ndary structure in output alignments

-aliw <int> number of columns per line in alignment list (default=80)

-p [0,100] minimum probability in summary and alignment list (default=20)

-E [0,inf[maximum E-value in summary and alignment list (default=1E+06)

-Z <int> maximum number of lines in summary hit list (default=500)

28

http://toolkit.tuebingen.mpg.de
http://toolkit.genzentrum.lmu.de

-z <int> minimum number of lines in summary hit list (default=10)

-B <int> maximum number of alignments in alignment list (default=500)

-b <int> minimum number of alignments in alignment list (def=ault10)

Prefilter options

-nofilter disable all filter steps

-noaddfilter disable all filter steps (except for fast prefiltering)

-nodbfilter disable additional filtering of prefiltered HMMs

-noblockfilter search complete matrix in Viterbi

-maxfilt max number of hits allowed to pass prefilter 2 (default=20000)

Filter result alignment (options can be combined):

-id [0,100] maximum pairwise sequence identity (%) (def=90)

-diff [0,inf[filter query and db MSAs by selecting most diverse set of sequences,

keeping at least this many seq’s in each MSA block of length 50 (def=1000)

-nodiff do not filter sequences in output alignment (def=off)

-cov [0,100] minimum coverage with query (%) (def=0)

-qid [0,100] minimum sequence identity with query (%) (def=0)

-neff [1,inf] target diversity of alignment (default=off)

-qsc [0,100] minimum score per column with query (def=-20.0)

HMM-HMM alignment options:

-norealign do NOT realign displayed hits with MAC algorithm (def=realign)

-mact [0,1[posterior probability threshold for MAC re-alignment (def=0.350)

Parameter controls alignment greediness: 0:global >0.1:local

-glob/-loc use global/local alignment mode for searching/ranking (def=local)

-realign_max <int> realign max. <int> hits (default=1000)

-alt <int> show up to this many significant alternative alignments(def=2)

-premerge <int> merge <int> hits to query MSA before aligning remaining hits (def=3)

-shift [-1,1] profile-profile score offset (def=-0.03)

-ssm 0-4 0: no ss scoring

1,2: ss scoring after or during alignment [default=2]

3,4: ss scoring after or during alignment, predicted vs. predicted

-ssw [0,1] weight of ss score (def=0.11)

Pseudocount options:

-pcm 0-2 Pseudocount mode (default=2)

tau = substitution matrix pseudocount admixture

0: no pseudo counts: tau = 0

1: constant tau = a

2: divergence-dependent: tau = a/(1 + ((Neff-1)/b)^c)

Neff=((Neff_q^d+Neff_t^d)/2)^(1/d)

Neff_q = av number of different AAs per column in query

3: constant divergence pseudocounts

-pca [0,1] overall pseudocount admixture (def=1.0)

-pcb [1,inf[threshold for Neff (def=1.5)

-pcc [0,3] extinction exponent for tau(Neff) (def=1.0)

-pcw [0,3] weight of pos-specificity for pcs (def=0.0)

-pre_pca [0,1] PREFILTER pseudocount admixture (def=0.8)

-pre_pcb [1,inf[PREFILTER threshold for Neff (def=1.8)

Gap cost options:

-gapb [0,inf[Transition pseudocount admixture (def=1.00)

-gapd [0,inf[Transition pseudocount admixture for open gap (default=0.15)

-gape [0,1.5] Transition pseudocount admixture for extend gap (def=1.00)

-gapf]0,inf] factor to increase/reduce gap open penalty for deletes (def=0.60)

-gapg]0,inf] factor to increase/reduce gap open penalty for inserts (def=0.60)

29

-gaph]0,inf] factor to increase/reduce gap extend penalty for deletes(def=0.60)

-gapi]0,inf] factor to increase/reduce gap extend penalty for inserts(def=0.60)

-egq [0,inf[penalty (bits) for end gaps aligned to query residues (def=0.00)

-egt [0,inf[penalty (bits) for end gaps aligned to template residues (def=0.00)

Other options:

-v <int> verbose mode: 0:no screen output 1:only warings 2: verbose (def=2)

-cpu <int> number of CPUs to use (for shared memory SMPs) (default=2)

-neffmax]1,20] stop iterative search when number of effective sequences Neff in

evolving query MSA becomes larger than neffmax (default=10.0)

-scores <file> write scores for all pairwise comparisions to file

-atab <file> write all alignments in tabular layout to file

-maxres <int> max number of HMM columns, scales linearly with needed memory (def=15002)

Example: hhblits -i query.fas -oa3m query.a3m -n 2

7.2 hhsearch – search a database of HMMs with a query MSA or HMM

Usage: hhsearch -i query -d database [options]

-i <file> input query alignment (A2M, A3M, FASTA) or HMM

-d <file> HMM database of concatenated HMMs in hhm, HMMER, or A3M format,

OR, if file has extension pal, list of HMM file names, one per

line. Multiple dbs, HMMs, or pal files with -d ’<db1> <db2>...’

Output options:

-o <file> write results in standard format to file (default=<infile.hhr>)

-Ofas <file> write pairwise alignments of significant matches in FASTA format

-ofas <file> write multiple alignment of significant matches in FASTA format

Analogous for output in a2m, a3m, hhm format (e.g. -ohhm, -Oa3m)

-e [0,1] E-value cutoff for inclusion in multiple alignment (def=0.001)

-v <int> verbose mode: 0:no screen output 1:only warings 2: verbose

-seq <int> max. number of query/template sequences displayed (def=1)

-nocons don’t show consensus sequence in alignments (default=show)

-nopred don’t show predicted 2ndary structure in alignments (default=show)

-nodssp don’t show DSSP 2ndary structure in alignments (default=show)

-ssconf show confidences for predicted 2ndary structure in alignments

-aliw <int> number of columns per line in alignment list (def=80)

-p <float> minimum probability in summary and alignment list (def=20)

-E <float> maximum E-value in summary and alignment list (def=1E+06)

-Z <int> maximum number of lines in summary hit list (def=500)

-z <int> minimum number of lines in summary hit list (def=10)

-B <int> maximum number of alignments in alignment list (def=500)

-b <int> minimum number of alignments in alignment list (def=10)

Remark: you may use ’stdin’ and ’stdout’ instead of file names

Prefilter input alignment (options can be combined):

-id [0,100] maximum pairwise sequence identity (%) (def=90)

-diff [0,inf[filter most diverse set of sequences, keeping at least this

many sequences in each block of >50 columns (def=100)

-cov [0,100] minimum coverage with query (%) (def=0)

-qid [0,100] minimum sequence identity with query (%) (def=0)

-qsc [0,100] minimum score per column with query (def=-20.0)

Input alignment format:

-M a2m use A2M/A3M (default): upper case = Match; lower case = Insert;

’-’ = Delete; ’.’ = gaps aligned to inserts (may be omitted)

30

-M first use FASTA: columns with residue in 1st sequence are match states

-M [0,100] use FASTA: columns with fewer than X% gaps are match states

HMM-HMM alignment options:

-realign realign displayed hits with max. accuracy (MAC) algorithm

-norealign do NOT realign displayed hits with MAC algorithm (def=realign)

-mact [0,1[posterior probability threshold for MAC re-alignment (def=0.350)

Parameter controls alignment greediness: 0:global >0.1:local

-glob/-loc use global/local alignment mode for searching/ranking (def=local)

-alt <int> show up to this many significant alternative alignments(def=2)

-excl <range> exclude query positions from the alignment, e.g. ’1-33,97-168’

-shift [-1,1] score offset (def=-0.03)

-corr [0,1] weight of term for pair correlations (def=0.10)

-ssm 0-4 0: no ss scoring

1,2: ss scoring after or during alignment [default=2]

3,4: ss scoring after or during alignment, predicted vs. predicted

-ssw [0,1] weight of ss score (def=0.11)

Other options:

-cpu <int> number of CPUs to use (for shared memory SMPs) (default=1)

An extended list of options can be obtained by using ’--help all’ as parameter

Example: hhsearch -i a.1.1.1.a3m -d scop70_1.71.hhm

7.3 hhmake – build an HMM from an input MSA

Build an HMM from an input alignment in A2M, A3M, or FASTA format or convert between
HMMER format (.hmm) and HHsearch format (.hhm). A database file is generated by simply
concatenating these HMM files.

Usage: hhmake -i file [options]

-i <file> query alignment (A2M, A3M, or FASTA), or query HMM

Output options:

-o <file> HMM file to be written to (default=<infile.hhm>)

-a <file> HMM file to be appended to

-v <int> verbose mode: 0:no screen output 1:only warings 2: verbose

-seq <int> max. number of query/template sequences displayed (def=10)

Beware of overflows! All these sequences are stored in memory.

-cons insert consensus as main representative sequence of HMM

-name <name> use this name for HMM (default: use name of first sequence)

Filter input alignment (options can be combined):

-id [0,100] maximum pairwise sequence identity (%) (def=90)

-diff [0,inf[filter most diverse set of sequences, keeping at least this

many sequences in each block of >50 columns (def=100)

-cov [0,100] minimum coverage with query (%) (def=0)

-qid [0,100] minimum sequence identity with query (%) (def=0)

-neff [1,inf] target diversity of alignment (default=off)

-qsc [0,100] minimum score per column with query (def=-20.0)

Input alignment format:

-M a2m use A2M/A3M (default): upper case = Match; lower case = Insert;

’-’ = Delete; ’.’ = gaps aligned to inserts (may be omitted)

-M first use FASTA: columns with residue in 1st sequence are match states

31

-M [0,100] use FASTA: columns with fewer than X% gaps are match states

Other options:

Example: hhmake -i test.a3m

7.4 hhfilter – filter an MSA

Filter an alignment by maximum pairwise sequence identity, minimum coverage, minimum sequence
identity, or score per column to the first (seed) sequence etc.

Usage: hhfilter -i infile -o outfile [options]

-i <file> read input file in A3M/A2M or FASTA format

-o <file> write to output file in A3M format

-a <file> append to output file in A3M format

Options:

-v <int> verbose mode: 0:no screen output 1:only warings 2: verbose

-id [0,100] maximum pairwise sequence identity (%) (def=90)

-diff [0,inf[filter most diverse set of sequences, keeping at least this

many sequences in each block of >50 columns (def=0)

-cov [0,100] minimum coverage with query (%) (def=0)

-qid [0,100] minimum sequence identity with query (%) (def=0)

-qsc [0,100] minimum score per column with query (def=-20.0)

-neff [1,inf] target diversity of alignment (default=off)

Input alignment format:

-M a2m use A2M/A3M (default): upper case = Match; lower case = Insert;

’-’ = Delete; ’.’ = gaps aligned to inserts (may be omitted)

-M first use FASTA: columns with residue in 1st sequence are match states

-M [0,100] use FASTA: columns with fewer than X% gaps are match states

Example: hhfilter -id 50 -i d1mvfd_.a2m -o d1mvfd_.fil.a2m

7.5 hhalign – Align a query MSA/HMM to a template MSA/HMM

Align a query alignment/HMM to a template alignment/HMM by HMM-HMM alignment. If only
one alignment/HMM is given it is compared to itself and the best off-diagonal alignment plus all
further non-overlapping alignments above significance threshold are shown. The command also
allows to sample alignments randomly, to generate png-files with dot plots showing alignments or
to print out a list of indices of aligned residue pairs.

Usage: hhalign -i query [-t template] [options]

-i <file> input query alignment (fasta/a2m/a3m) or HMM file (.hhm)

-t <file> input template alignment (fasta/a2m/a3m) or HMM file (.hhm)

-png <file> write dotplot into PNG-file (default=none)

Output options:

-o <file> write output alignment to file

-ofas <file> write alignments in FASTA, A2M (-oa2m) or A3M (-oa3m) format

-Oa3m <file> write query alignment in a3m format to file (default=none)

-Aa3m <file> append query alignment in a3m format to file (default=none)

-atab <file> write alignment as a table (with posteriors) to file (default=none)

32

-index <file> use given alignment to calculate Viterbi score (default=none)

-v <int> verbose mode: 0:no screen output 1:only warings 2: verbose

-seq [1,inf[max. number of query/template sequences displayed (def=1)

-nocons don’t show consensus sequence in alignments (default=show)

-nopred don’t show predicted 2ndary structure in alignments (default=show)

-nodssp don’t show DSSP 2ndary structure in alignments (default=show)

-ssconf show confidences for predicted 2ndary structure in alignments

-aliw int number of columns per line in alignment list (def=80)

-P <float> for self-comparison: max p-value of alignments (def=0.001

-p <float> minimum probability in summary and alignment list (def=0)

-E <float> maximum E-value in summary and alignment list (def=1E+06)

-Z <int> maximum number of lines in summary hit list (def=100)

-z <int> minimum number of lines in summary hit list (def=1)

-B <int> maximum number of alignments in alignment list (def=100)

-b <int> minimum number of alignments in alignment list (def=1)

-rank int specify rank of alignment to write with -Oa3m or -Aa3m option (def=1)

Dotplot options:

-dthr <float> probability/score threshold for dotplot (default=0.50)

-dsca <int> if value <= 20: size of dot plot unit box in pixels

if value > 20: maximum dot plot size in pixels (default=600)

-dwin <int> average score over window [i-W..i+W] (for -norealign) (def=10)

-dali <list> show alignments with indices in <list> in dot plot

<list> = <index1> ... <indexN> or <list> = all

Filter input alignment (options can be combined):

-id [0,100] maximum pairwise sequence identity (%) (def=90)

-diff [0,inf[filter most diverse set of sequences, keeping at least this

many sequences in each block of >50 columns (def=100)

-cov [0,100] minimum coverage with query (%) (def=0)

-qid [0,100] minimum sequence identity with query (%) (def=0)

-qsc [0,100] minimum score per column with query (def=-20.0)

Input alignment format:

-M a2m use A2M/A3M (default): upper case = Match; lower case = Insert;

’-’ = Delete; ’.’ = gaps aligned to inserts (may be omitted)

-M first use FASTA: columns with residue in 1st sequence are match states

-M [0,100] use FASTA: columns with fewer than X% gaps are match states

HMM-HMM alignment options:

-glob/-loc global or local alignment mode (def=local)

-alt <int> show up to this number of alternative alignments (def=1)

-realign realign displayed hits with max. accuracy (MAC) algorithm

-norealign do NOT realign displayed hits with MAC algorithm (def=realign)

-mact [0,1[posterior probability threshold for MAC alignment (def=0.300)

A threshold value of 0.0 yields global alignments.

-sto <int> use global stochastic sampling algorithm to sample this many alignments

-excl <range> exclude query positions from the alignment, e.g. ’1-33,97-168’

-shift [-1,1] score offset (def=-0.010)

-corr [0,1] weight of term for pair correlations (def=0.10)

-ssm 0-4 0:no ss scoring [default=2]

1:ss scoring after alignment

2:ss scoring during alignment

-ssw [0,1] weight of ss score (def=0.11)

Example: hhalign -i T0187.a3m -t d1hz4a_.hhm -png T0187pdb.png

33

7.6 reformat.pl – reformat one or many alignments

Read one or many multiple alignments in one format and write them in another format

Usage: reformat.pl [informat] [outformat] infile outfile [options]

or reformat.pl [informat] [outformat] ’fileglob’ .ext [options]

Available input formats:

fas: aligned fasta; lower and upper case equivalent, ’.’ and ’-’ equivalent

a2m: aligned fasta; inserts: lower case, matches: upper case, deletes: ’-’,

gaps aligned to inserts: ’.’

a3m: like a2m, but gaps aligned to inserts MAY be omitted

sto: Stockholm format; sequences in several blocks with sequence name at

beginning of line (HMMER output)

psi: format as read by PSI-BLAST using the -B option (like sto with -M first -r)

clu: Clustal format; sequences in several blocks with sequence name at beginning

of line

Available output formats:

fas: aligned fasta; all gaps ’-’

a2m: aligned fasta; inserts: lower case, matches: upper case, deletes: ’-’,

gaps aligned to inserts: ’.’

a3m: like a2m, but gaps aligned to inserts are omitted

sto: Stockholm format; sequences in just one block, one line per sequence

psi: format as read by PSI-BLAST using the -B option

clu: Clustal format

If no input or output format is given the file extension is interpreted as format

specification (’aln’ as ’clu’)

Options:

-v int verbose mode (0:off, 1:on)

-num add number prefix to sequence names: ’name’, ’1:name’ ’2:name’ etc

-noss remove secondary structure sequences (beginning with >ss_)

-sa do not remove solvent accessibility sequences (beginning with >sa_)

-M first make all columns with residue in first seuqence match columns

(default for output format a2m or a3m)

-M int make all columns with less than X% gaps match columns

(for output format a2m or a3m)

-r remove all lower case residues (insert states)

(AFTER -M option has been processed)

-r int remove all lower case columns with more than X% gaps

-g ’’ suppress all gaps

-g ’-’ write all gaps as ’-’

-uc write all residues in upper case (AFTER other options have been processed)

-lc write all residues in lower case (AFTER other options have been processed)

-l number of residues per line (for Clustal, FASTA, A2M, A3M formats)

(default=100)

-d maximum number of characers in nameline (default=1000)

Examples: reformat.pl 1hjra.a3m 1hjra.a2m

(same as reformat.pl a3m a2m 1hjra.a3m 1hjra.a2m)

reformat.pl test.a3m test.fas -num -r 90

reformat.pl fas sto ’*.fasta’ .stockholm

34

7.7 addss.pl – add predicted secondary structure to an MSA or HMM

Add PSIPRED secondary structure prediction (and DSSP annotation) to a multiple sequence
alignment (MSA) or HMMER (multi-)model file.

If the input file is an MSA, the predicted secondary structure and confidence values are added
as special annotation sequences with names >ss_pred, >ss_conf, and >ss_dssp to the top of
the output A3M alignment. If no output file is given, the output file will have the same name
as the input file, except for the extension being replaced by ’.a3m’. Allowed input formats are
A2M/FASTA (default), A3M (-a3m), CLUSTAL (-clu), STOCKHOLM (-sto), HMMER (-hmm).

If the input file contains HMMER models, records SSPRD and SSCON containing predicted sec-
ondary structure and confidence values are added to each model. In this case the output file name
is obligatory and must be different from the input file name.

Usage: perl addss.pl <ali file> [<outfile>] [-fas|-a3m|-clu|-sto]

or perl addss.pl <hmm file> <outfile> -hmm

7.8 hhmakemodel.pl – generate MSAs or coarse 3D models from HHsearch re-
sults file

From the top hits in an hhsearch output file (hhr), you can

• generate a MSA (multiple sequence alignment) containing all representative template se-
quences from all selected alignments (options -fas, -a2m, -a3m, -pir)

• generate several concatenated pairwise alignments in AL format (option -al)

• generate several concatenated coarse 3D models in PDB format (option -ts)

In PIR, PDB and AL format, the pdb files are required in order to read the pdb residue numbers
and ATOM records. The PIR formatted file can be used directly as input to the MODELLER [12]
homology modeling package.

Usage: hhmakemodel.pl [-i] file.hhr [options]

Options:

-i <file.hhr> results file from hhsearch with hit list and alignments

-fas <file.fas> write a FASTA-formatted multiple alignment to file.fas

-a2m <file.a2m> write an A2M-formatted multiple alignment to file.a2m

-a3m <file.a3m> write an A3M-formatted multiple alignment to file.a3m

-m <int> [<int> ...] pick hits with specified indices (default=’-m 1’)

-p <probability> minimum probability threshold

-e <E-value> maximum E-value threshold

-q <query_ali> use the full-length query sequence in the alignment

(not only the aligned part);

the query alignment file must be in HHM, FASTA, A2M,

or A3M format.

-N use query name from hhr filename (default: use same

name as in hhr file)

-first include only first Q or T sequence of each hit in MSA

-v verbose mode

Options when database matches in hhr file are PDB or SCOP sequences

-pir <file.pir> write a PIR-formatted multiple alignment to file.pir

35

-ts <file.pdb> write the PDB-formatted models based on *pairwise*

alignments into file.pdb

-al <file.al> write the AL-formatted *pairwise* alignments into file.al

-d <pdbdirs> directories containing the pdb files (for PDB, SCOP, or DALI

sequences)

-s <int> shift the residue indices up/down by an integer

-CASP formatting for CASP (for -ts, -al options)

(default: LIVEBENCH formatting)

7.9 hhblitsdb.pl – Build an HHblits database

Builds the HHblits database files from MSA and HMM files

Usage: hhblitsdb.pl -o <db_name> [-ia3m <a3m_dir>] [-ihhm <hhm_dir>] [-ics <cs_dir>]

[more_options]

Depending on the input directories, the following HHblits database files are generated:

<db_name>.cs219 column-state sequences, one for each MSA/HMM (for prefilter)

<db_name>.cs219.sizes number of sequences and characters in <db_name>.cs219

<db_name>_a3m_db packed file containing A3M alignments read from <a3m_dir>

<db_name>_a3m_db.index index file for packed A3M file

<db_name>_a3m.db.index.sizes number of lines in <db_name>_a3m_db.index

<db_name>_hhm_db packed file containing HHM-formatted HMMs read from <hhm_dir>

<db_name>_hhm_db.index index file for packed HHM file

<db_name>_hhm_db.index.sizes number of lines in <db_name>_hhm_db.index

Options:

-o <db_name> name of database

-ia3m <a3m_dir> input directory (or glob of directories) with A3M-formatted files

-ihhm <hhm_dir> input directory (or glob of directories) with HHM (or HMMER) files

(WARNING! HMMER format results in decreased performance over HHM format)

-ics <cs_dir> input directory (or glob of directories) with column state sequences

-log <logfile> log file recording stderr stream of cstranslate and hhmake commands

-csext extension of column state sequences (default: $csext)

-a3mext extension of A3M-formatted files (default: $a3mext)

-hhmext extension of HHM- or HMMER-formatted files (default: $hhmext)

-append if the packed db files exists, append input A3M/HHM files (def: overwrite)

-v [1-3] verbose mode (default: $v)

-cpu <int> numbers of threads for generating cs219 and hhm files (default = $cpu)

Example 1: only -ia3m given; cs sequences and hhm files are generated from a3m files

perl hhblitsdb.pl -o databases/mydb -ia3m mydb/a3ms

Example 2: only -ihhm given; cs sequences are generated from hhm files, but no a3m db file

perl hhblitsdb.pl -o databases/mydb -ihhm mydb/hhms

Example 3: -ia3m and -ihhm given; cs sequences are generated from a3m files

perl hhblitsdb.pl -o databases/mydb -ia3m mydb/a3ms -ihhm mydb/hhms

Example 4: -ics, -ia3m, and -ihhm given; all db files are created

perl hhblitsdb.pl -o databases/mydb -ia3m mydb/a3ms -ihhm mydb/hhms -ics mydb/cs

Example 5: using glob expression to specify several input databases

perl hhblitsdb.pl -o databases/mydb -ihhm ’mydbs*/hhms’

36

7.10 multithread.pl – Run a command for many files in parallel using multiple
threads

Usage: multithread.pl ’<fileglob>’ ’<command>’ [-cpu <int>] [-v {0,1,2}]

<command> can include symbol

$file for the full filename, e.g. /tmp/hh/1c1g_A.a3m,

$name the filename without extension, e.g. /tmp/hh/1c1g_A, and

$base for the filename without extension and path, e.g. 1c1g_A.

-cpu <int> number of threads to launch (default = 8)

-v {0,1,2} verbose mode (default = 1)

Example: multithread.pl ’*.a3m’ ’hhmake -i $file 1>$name.log 2>>error.log’ -cpu 16

8 Changes from previous versions

8.1 2.0.2 (January 2012)

• The iterative HMM-HMM search method HHblits has been added and the entire package is
now called HH-suite. HHblits brings the power of HMM-HMM comparison to mainstream,
general-purpose sequence searching and sequence analysis.

• Context-specific pseudocounts have been implemented HHsearch, improving its sensitivity
and quality of alignments.

• The speed of HHsearch was further increased through the use of SSE3 instructions.

• An option -atab for writing alignment as a table (with posteriors) to file was introduced

• HHsearch is now able to read HMMER3 profiles (but should not be used due to a loss of
sensitivity).

• An optional local amino acid compositional bias correction was introduced(options -sc 5 and
-scwin <window_halfsize>). No improvements are seen on a standard SCOP single domain
benchmark. However, their probably will be an improvement for more realistic sequences
containing multiple domains, repeats, and regions of strong compositional bias.

• The score shift parameter and mact parameter have been optimized together on the optimiza-
tion set of HHblits [?], which resulted in slight improvements of sensitivity and alignment
quality. New default values are shift -0.03 bits and -mact 0.30.

• Use of .hhdefaults still works but is deprecated. Use an alias in your .bashrc or equivalent
file instead (See Installation).

• We removed a bug in -neff <target_diversity> option that lead to the input MSA being
reduced to only the master sequence when the target diversity was higher than the diversity
of the input MSA.

• We removed a bug in addss.pl that could lead to errors for FASTA-formatted MSAs.

37

8.2 1.6.0 (November 2010)

• A new procedure for estimation of P- and E-values has been implemented that circumvents
the need to calibrate HMMs. Calibration can still be done if desired. By default, however,
HHsearch now estimates the lambda and mu parameters of the extreme value distribution
(EVD) for each pair of query and database HMMs from the lengths of both HMMs and the
diversities of their underlying alignments. Apart from saving the time for calibration, this
procedure is more reliable and noise-resistant. This change only applies to the default local
search mode. For global searches, nothing has changed. Note that E-values in global search
mode are unreliable and that sensitivity is reduced.
Old calibrations can still be used:
-calm 0 : use empirical query HMM calibration (old default)
-calm 1 : use empirical db HMM calibration
-calm 2 : use both query and db HMM calibration
-calm 3 : use neural network calibration (new default)

• Previous versions of HHsearch sometimes showed non-homologous hits with high probabilities
by matching long stretches of secondary structure states, in particular long helices, in the
absence of any similarity in the amino acid profiles. Capping the SS score by a linear function
of the profile score now effectively suppresses these spurious high-scoring false positives.

• The output format for the query-template alignments has slightly changed. A ’Confidence’
line at the bottom of each alignment block now reports the posterior probabilities for each
alignment column when the -realign option is active (which it is by default). These prob-
abilities are calculated in the Forward-Backward algorithm that is needed as input for the
Maximum ACcuracy alignment algorithm. Also, the lines ’ss conf’ with the confidence values
for the secondary structure prediction are omitted by default. (They can be displayed with
option ’-showssconf’). To compensate, secondary structure predictions with confidence values
between 7 and 9 are given in capital letters, while for the predictions with values between 0
and 6 lower-case letters are used.

• In the hhsearch output file in the header lines before each query-database alignment, the
substitution matrix score (without gap penalties) of the query with the database sequence
is now reported in bits per column. Also, the sum of probabilities for each pair of aligned
residues from the MAC algorithm is reported here (0 if no MAC alignment is performed).

• The buildali.pl script now uses context-specific iterative BLAST (CSI-BLAST) instead of
PSI-BLAST. This considerably increases the sensitivity of buildali.pl/HHsearch.

• Removed a bug which produced a segfault for input alignments with more than 15000 match
columns. Now, the HHsearch binaries will issue a warning and will transform only the first
15000 match columns into an HMM.

• Removed a bug in the multi-threading code that could lead to occasional hang-ups (race
condition) in situations where slow file access was impeding program execution and inter-
thread signaling was unreliable.

• Removed a memory leak and optimized memory management.

• Removed a bug in hhalign that could lead to unreasonably significant E-values and probabil-
ities due to calibration problems.

• HHsearch now performs realign with MAC-alignment only around Viterbi-hit.

38

8.3 1.5.0 (August 2007)

• By default, HHsearch realigns all displayed alignments in a second stage using the more
accurate Maximum Accuracy (MAC) alignment algorithm (Durbin, Eddy, Krough, Mitchi-
son: Biological sequence analysis, page 95; HMM-HMM version: J. Söding, unpublished). As
before, the Viterbi algorithm is employed for searching and ranking the matches. The realign-
ment step is parallelized (-cpu <int>) and typically takes a few seconds only. You can switch
off the MAC realignment with the -norealign option. The posterior probability threshold is
controlled with the -mact [0,1[option. This parameter controls the alignment algorithm’s
greediness. More precisely, the MAC algorithm finds the alignment that maximizes the sum
of posterior probabilities minus mact for each aligned pair. Global alignments are generated
with -mact 0, whereas -mact 0.5 will produce quite conservative local alignments. Default
value is -mact 0.35, which produces alignments of roughly the same length as the Viterbi
algorithm. The -global and -local (default) option now refer to both the Viterbi search stage
as well as the MAC realignment stage. With -global (-local), the posterior probability matrix
will be calculated for global (local) alignment. Note that ’-local -mact 0’ will produce global
alignments from a local posterior probability matrix (which is not at all unreasonable).

• An amino acid compositional bias correction is now performed by default. This increases
the sensitivity by 25% at 0.01 errors per query and by 5% at 0.1 errors per query. By
recalibrating the Probabilities, the increased selectivity of this new version allows to give
higher probabilities for the same P-values. Also, the score offset could be increased from -0.1
bits to 0 as a consequence.

• The algorithm that filters the set of the most diverse sequences (option -diff) has been im-
proved. Before, it determined the set of the N most diverse sequences. In the case of multi-
domain alignments, this could lead to severely underrepresented regions. E.g. when the first
domain is only covered by a few fairly similar sequences and the second by hundreds of very
diverse ones, most or all of the similar ones were removed. The ’-diff N’ option now filters
the most diverse set of sequences, keeping at least N sequences in each block of ¿50 columns.
This generally leads to a total number of sequences that is larger than N. Speed is similar.
The default is ’-diff 100’ for hhmake and hhsearch. Speed is similar. Use -diff 0 to switch this
filter off.

• The sensitivity for the -global alignment option has been significantly increased by a more
robust statistical treatment. The sensitivity in -global mode is now only 0-10% lower than
for the default -local option on a SCOP benchmark, i.e. when the query or the templates
represent single structural domains. The E-values are now more realistic, although still not
as reliable as for -local. The Probabilities were recalibrated.

• A new binary hhalign has been added. It is similar to hhsearch, but performs only pairwise
comparisons. It can produce dot plots, tables of aligned residues, and it can sample alternative
alignments stochastically. It uses the MAC algorithm by default.

• HHsearch and hhalign can generate query-template multiple alignments in FASTA, A2M, or
A3M format with the -ofas, -oa2m, -oa3m options

• Returned error values were changed to comply with convention that 0 means no errors:

1. Finished successfully

2. Format error in input files

3. File access error

4. Out of memory

39

5. Syntax error on command line

6. Internal logic error (please report)

7. Internal numeric error (please report)

8. Other

• Added script buildali.pl <file> to automatically build PSI-BLAST multiple sequence
alignments, including predicted and DSSP secondary structure. buildali.pl is much more
robust to alignment corruption by non-homologous fragment by pruning sequences individu-
ally from both ends as necessary (J. Söding, unpublished).

• Added script hhmakemodel.pl <file.hhr> that parses hhsearch results files and can generate
FASTA or PIR multiple alignments or build rough 3D models.

• Moved memory allocation from stack to heap to avoid segmentation faults under some Win-
dows systems.

• Removed a bug due to which pseudocounts where added to HMMer HMMs (which already
have their own pseudocounts added). This bug reduced sensitivity for HMMs read in HMMer
format.

• Removed a bug due to which the query-template alignments where not displayed on some
platforms when output was directed to stdout

• Removed a bug that caused occasional segfaults under SunOS when reading HMMer files

• Added multi-threading (-cpu <int>) for Windows x86 platform

• Cleaned up output formatting of summary list for Windows x86

• Stopped support for the Alpha/DEC platform

Is anyone still interested in Mac OSX/PPC or SunOS support?

9 License

The HHsearch/HHblits software package is distributed under Gnu Public License, Version 3.

This means that the HH-suite is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program in
the file LICENSE. If not, see http://www.gnu.org/licenses/.

The hhsuite contains in file hhprefilter.C code adapted from Michael Farrar (http://sites.
google.com/site/farrarmichael/smith-waterman and [3]) His code is marked in the file hhpre-
filter.C. The copy right of his code is shown below:

Copyright 2006, by Michael Farrar. All rights reserved. The SWSSE2

program and documentation may not be sold or incorporated into a

40

http://www.gnu.org/licenses/
http://sites.google.com/site/farrarmichael/smith-waterman
http://sites.google.com/site/farrarmichael/smith-waterman

commercial product, in whole or in part, without written consent of

Michael Farrar.

For further information regarding permission for use or reproduction,

please contact Michael Farrar at:

farrar.michael@gmail.com

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

References

[1] A. Krogh, M. Brown, I. S. Mian, K. Sjölander, D. Haussler, Hidden markov models in compu-
tational biology. Applications to protein modeling, J. Mol. Biol. 235 (1994) 1501–1531.

[2] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D. Lipman,
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,
Nucleic Acids Res. 25 (1997) 3389–3402.

[3] M. Farrar, Striped Smith-Waterman speeds database searches six times over other SIMD
implementations, Bioinformatics 23 (2007) 156–161.

[4] D. T. Jones, Protein secondary structure prediction based on position-specific scoring matrices,
J. Mol. Biol. 292 (1999) 195–202.

[5] P. E. Bourne, K. J. Addess, W. F. Bluhm, L. Chen, N. Deshpande, Z. Feng, W. Fleri, R. Green,
J. C. Merino-Ott, W. Townsend-Merino, H. Weissig, J. Westbrook, H. M. Berman, The dis-
tribution and query systems of the RCSB protein data bank, Nucleic Acid Res. 32 (2004)
D223–225.

[6] L. Lo Conte, B. Ailey, T. J. Hubbard, S. E. Brenner, A. G. Murzin, C. Chothia, SCOP: a
structural classification of proteins database, Nucleic Acids Res. 28 (2000) 257–259.

[7] R. D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J. Pollington, O. L. Gavin, P. Gunasekaran,
G. Ceric, K. Forslund, L. Holm, E. L. Sonnhammer, S. R. Eddy, B. A., The Pfam protein
families database, Nucleic Acids Res. 38 (2010) D211–222.

[8] S. Hunter, R. Apweiler, T. K. Attwood, A. Bairoch, A. Bateman, D. Binns, P. Bork, U. Das,
L. Daugherty, L. Duquenne, R. D. Finn, J. Gough, D. Haft, N. Hulo, D. Kahn, E. Kelly,
A. Laugraud, I. Letunic, D. Lonsdale, R. Lopez, M. Madera, J. Maslen, C. McAnulla, J. Mc-
Dowall, J. Mistry, A. Mitchell, N. Mulder, D. Natale, C. Orengo, A. F. Quinn, J. D. Selengut,
C. J. Sigrist, M. Thimma, P. D. Thomas, F. Valentin, D. Wilson, C. H. Wu, C. Yeats, InterPro:
the integrative protein signature database, Nucleic Acids Res. 37 (2009) D211–205.

[9] A. Marchler-Bauer, S. Lu, J. B. Anderson, F. Chitsaz, M. K. Derbyshire, C. DeWeese-Scott,
J. H. Fong, L. Y. Geer, R. C. Geer, N. R. Gonzales, M. Gwadz, D. I. Hurwitz, J. D. Jackson,
Z. Ke, C. J. Lanczycki, F. Lu, G. H. Marchler, M. Mullokandov, M. V. Omelchenko, C. L.

41

Robertson, J. S. Song, N. Thanki, R. A. Yamashita, D. Zhang, N. Zhang, C. Zheng, S. H.
Bryant, CDD: a Conserved Domain Database for the functional annotation of proteins, Nucleic
Acids Res. 39 (2011) D225–229.

[10] J. Söding, A. Biegert, A. N. Lupas, The HHpred interactive server for protein homology
detection and structure prediction, Nucleic Acids Res. 33 (2005) W244–W248.

[11] A. Hildebrand, M. Remmert, A. Biegert, J. Söding, Fast and accurate automatic structure
prediction with HHpred, Proteins 77 (2009) 128–132.

[12] A. Sali, T. L. Blundell, Comparative protein modelling by satisfaction of spatial restraints, J.
Mol. Biol. 234 (1993) 779–815.

[13] A. E. Todd, C. A. Orengo, J. M. Thornton, Evolution of function in protein superfamilies,
from a structural perspective, J. Mol. Biol. 307 (2001) 1113–1143.

[14] K. Pawlowski, L. Jaroszewski, L. Rychlewski, A. Godzik, Sensitive sequence comparison as
protein function predictor, Pac Symp Biocomput (2000) 42–53.

[15] L. Rychlewski, B. Zhang, A. Godzik, Fold and function predictions for Mycoplasma genitalium
proteins, Fold Des 3 (1998) 229–238.

[16] L. Kinch, N. Grishin, Evolution of protein structures and functions, Curr. Opin. Struct. Biol.
12 (2002) 400–408.

[17] J. Söding, M. Remmert, Biegert, HHrep: de novo protein repeat detection and the origin of
TIM barrels, Nucleic Acids Res. 34 (2006) W137–W142.

[18] V. Alva, M. Remmert, A. Biegert, A. N. Lupas, J. Söding, A galaxy of folds, Protein Sci 19
(2010) 124–130.

[19] J. Söding, M. Remmert, A. Biegert, A. N. Lupas, HHsenser: exhaustive transitive profile
search detection using HMM-HMM comparison, Nucleic Acids Res. 34 (2006) W374–W378.

[20] J. N. Battey, J. Kopp, L. Bordoli, R. J. Read, N. D. Clarke, T. Schwede, Automated server
predictions in CASP7, Proteins 69 (2007) 68–82.

[21] A. Biegert, J. Söding, De novo identification of highly diverged protein repeats by probabilistic
consistency, Bioinformatics 24 (2008) 807–814.

Good luck with your work!

Johannes Söding, Michael Remmert, Andy Hauser

Gene Center Munich
Ludwig-Maximilians-Universität München

Feodor-Lynen-Strasse 25
81377 Munich

http://www.soeding.genzentrum.lmu.de
soeding@genzentrum.lmu.de

42

	Introduction
	Installation of the HH-suite and its databases
	Supported platforms
	Installation from source code
	Package installation
	HHblits databases
	HHsearch databases

	Brief tutorial to HH-suite tools
	Overview of programs
	Searching databases of HMMs using HHsearch and HHblits
	Generating a multiple sequence alignment using HHblits
	Building customized databases

	Frequently asked questions
	What is HMM-HMM comparison and why is it so powerful?
	When can the HH-suite be useful for me?
	What does homology mean and why is it important?
	How can I verify if a database match is homologous?
	What does the maximum accuracy alignment algorithm do?
	How is the MSA diversity NEFF (the number of effective sequences) calculated?
	More frequently asked questions

	HHsearch/HHblits output: hit list and pairwise alignments
	Summary hit list
	HMM-HMM pairwise alignments

	File formats
	Multiple sequence alignment formats
	HHsearch/HHblits model format (hhm-format)

	Summary of command-line parameters
	hhblits – HMM-HMM-based lighting-fast iterative sequence search
	hhsearch – search a database of HMMs with a query MSA or HMM
	hhmake – build an HMM from an input MSA
	hhfilter – filter an MSA
	hhalign – Align a query MSA/HMM to a template MSA/HMM
	reformat.pl – reformat one or many alignments
	addss.pl – add predicted secondary structure to an MSA or HMM
	hhmakemodel.pl – generate MSAs or coarse 3D models from HHsearch results file
	hhblitsdb.pl – Build an HHblits database
	multithread.pl – Run a command for many files in parallel using multiple threads

	Changes from previous versions
	2.0.2 (January 2012)
	1.6.0 (November 2010)
	1.5.0 (August 2007)

	License

