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Abstract

High levels of carbon emissions and rising income inequality are
interconnected challenges for the global society. Commonly-applied
linear regression models fail to unravel the complexity of potential
bi-directional transmission channels. Specifically, consumption, energy
sources and the political system are potential determinants of the
strength and direction of the dependence between emissions and
inequality. To capture their impact, this study investigates the
conditional dependence between income inequality and emissions by
applying distributional copula models on an unbalanced panel data set
of 154 countries from 1960 to 2019. A comparison of high-, middle-, and
low-income countries contradicts a linear relationship and sheds light
on heterogeneous dependence structures implying synergies, trade-offs
and decoupling between income inequality and carbon emissions.
Based on the conditional distribution, we can identify determinants
associated with higher/lower probabilities of a country falling in an
area of potential social and environmental sustainability.

Keywords: Bivariate distributional copula model, income inequal-
ity, carbon emission, social sustainability, ecological sustainability

JEL: C14, C46, D63, Q56

∗University of Göttingen, Centre for Statistics, Email: fdorn@uni-goettingen.de
†Humboldt University Berlin, School of Business and Economics, Email:

simone.maxand@hu-berlin.de
‡University of Göttingen, Centre for Statistics, Email: Thomas.Kneib@wiwi.uni-

goettingen.de

1



1 Introduction

Climate change and rising income inequality are intersecting challenges for the
global society that require joint attention for a transition into a socially and
environmentally sustainable future. Recent studies provide increasing evidence
on the interconnected nature of income inequality and carbon emissions (Tor-
ras and Boyce, 1998; Yohe and Tol, 2002; Harlan et al., 2015; Jorgenson et al.,
2016, 2017; Grunewald et al., 2017). These analyses base their conclusions on
unidirectional linear mean regressions, which conceal bi-directional relation-
ships and differences of the dependence structure. The dependence between
income inequality and carbon dioxide emissions exhibits a strong variation
over the range of political systems, energy mix and income. Applying bivari-
ate distributional copula models allows us to study such varying effects. Based
on these regressions, we identify how these two challenges interact and calcu-
late probabilities of falling into a space of potential social and environmental
sustainability for specific country settings.

Different channels determine the dependence structure, which can lead to
synergies, trade-offs or decoupling of income inequality and carbon emissions.
Theories on the impact of income inequality on carbon emissions focusing on
individual consumption behavior find either positive or negative effects (Ve-
blen, 1899; Wilkinson et al., 2010; Boyce, 2018; Klasen, 2018). Political econ-
omy arguments centering around systemic structures like political framework
or energy mix suggest a positive impact of income inequality on carbon emis-
sions (Roemer, 1993; Martínez Alier, 2002; Roca, 2003; Boyce, 2018). These
theories are supported by empirical studies that specifically condition on the
countries’ income level (Jorgenson et al., 2016, 2017; Grunewald et al., 2017).
In the reverse direction, carbon dioxide emissions negatively influence inequal-
ity (Harlan et al., 2015). Furthermore, the carbon emissions of a country are
closely linked to its GDP (Ravallion et al., 2000; Weil, 2012; Hickel and Kallis,
2020), which itself is discussed to be positively correlated with economic in-
equality. The relationship is thus not necessarily unidimensional. Due to the
indeterminacy, we investigate the relationship itself to identify potential un-
derlying structures focusing on the political setting, energy mix and income.

We use bivariate distributional copula models to analyze the conditional
dependence structures between carbon emissions and income inequality. Mean
regression techniques – which assume a normal distribution and stable effects
over the range of the variables – investigate the transmission channels in one
correlation direction. By contrast, the present study analyses the correlation
by integrating income inequality and carbon emissions into a bivariate de-
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pendent vector. The copula captures the conditional dependence structure
within the vector of carbon emissions and income inequality. The distribu-
tional regression techniques incorporated in the copula model make it possible
to analyze non-linear effects of influencing factors on the relationship.

We apply the model to an unbalanced panel data set that comprises 154
countries over the period from 1960 to 2019. To measure income inequality,
we use the widely-applied GINI measure, which estimates the average income
inequality of a country (Solt, 2020). We use a consumption-based carbon mea-
sure, which locates the use of global carbon emissions by taking into account
spatial separation of production and consumption (Peters et al., 2011). For
GINI and carbon emissions, we determine threshold values that jointly define
a potential socially and environmentally sustainable space. We argue that
these national relationships proxy international relationships between carbon
dioxide emissions and inequality based on the political economy argument that
rich countries like rich elites can cushion the effects of climate change (Boyce,
1994). This accounts for the highly diverse regional impacts of climate change
mainly driven by carbon emissions (IPCC, 2014, 2018). Therefore, we expect
differences in the relation between income inequality and carbon emissions in
high-, middle- and low-income countries.

The analysis identifies trade-offs, synergies and decoupling of income in-
equality and carbon emissions, indicating a higher potential to achieve so-
cial than environmental sustainability. Strong variation in the direction and
strength of the relationship across the studied country groups reveals het-
erogeneous effects of the influencing factors of democracy score, fossil energy
share and GDP per capita. A higher democracy score leads either towards
synergy effects or decoupling of the two goals in all country cases under inves-
tigation. The decline of fossil energy leads to higher trade-offs in the middle-
income countries investigated, while the low- and high-income countries stud-
ied demonstrate stronger synergies. At the same time, high-income countries
have a higher probability of being below the GINI threshold for potential so-
cial sustainability. The reverse holds for middle- and low-income countries for
an increasing democracy score as well as a falling share of fossil energy. None
of the considered cases in high- and middle-income countries are likely to be
below the carbon threshold nor in the potential socially and environmentally
sustainable area. Only in low-income countries is change visible in the like-
lihood of being below the carbon threshold and in the potential social and
environmental sustainability space. Consequently, decoupling from fossil en-
ergy is not hampering equality but is rather favorable for a more equal society
in high-income countries. The reverse impact in middle- and low-income coun-
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tries reflects the high dependence on carbon emissions for their development
path (Klasen, 2018). The strong variation in the dependence structure and
the changing effect size indicate that marginal, average effects are not repre-
sentative for the dependence structure between carbon emissions and income
inequality.

The following Section 2 theoretically studies the relation between inequal-
ity and emissions and lays out how current literature develops respective
transmission channels. Section 3 explains the distributional copula model and
the empirical strategy, including a description of the cross-country panel data
set. Section 4 presents the different results by country groups, before finally
Section 5 concludes.

2 Relationship between inequality and emis-

sions

We consider potential channels and the associated direction of transmission in
detail by distinguishing between three potential directions: synergies, trade-
offs and decoupling. These relationships are summarized in Table 1.

2.1 Synergies

A positive relation between the two variables indicates synergy effects, meaning
that efforts in reducing one of them would help to reduce the other. One
channel is the emulation effect, whereby poor people seek to imitate rich people
who have carbon-intensive lifestyles, and the degree of emulation is stronger
in more unequal societies. In turn, in more egalitarian societies individuals
do not have to show their status by consuming carbon-intense status goods.
Consequently, this leads to a positive relation between income inequality and
carbon emissions (Veblen, 1899; Klasen, 2018).

As a second channel, higher income inequality leads to higher environmen-
tal degradation as the rich can lobby to block environmentally-friendly policies,
due to higher political power in unequal societies. From a political economy
perspective, political interests or policies shape individual behaviors, influenc-
ing the relationship between income inequality and carbon emissions. Unequal
power distributions result in lobbies that favor the interests of the rich. These
lobbies are most often in favor of less restrictive environmental policies. Rich
people often benefit from high emissions but at the same time are less affected
by them, as they can more easily adapt to a changing environment (Boyce,
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1994, 2018). Given that power is correlated with wealth within and between
countries, higher income inequality is most likely associated with higher power
inequalities, leading to more environmental degradation. This leads to more
losers of environmental damage, who lack the power to make the winners pay
the cost of the damage that they cause (Boyce, 1994).

Environmental degradation can have an impact on income inequality.
Human-made climate change leads to extreme weather events that cause
drought, food and water shortage, infectious diseases, floods or storms (Harlan
et al., 2015). These weather events disproportionately affect the poor. Social
groups like people of color, women or indigenous people are often more severely
affected in the long-term, due to discrimination, social norms or social hier-
archies (Mileti, 1999; Kasperson and Kasperson, 2001). This vulnerability is
associated with income inequality (Yohe and Tol, 2002).

2.2 Trade-offs

A negative association between income inequality and carbon emissions is
based on the so-called ‘individual Kuznets curve’. Individual carbon emissions
are low for both the very rich and the very poor, leading to a U-shape in the
relationship between individual carbon emissions and income, and an overall
negative relationship between income inequality and carbon emissions. This
theory argues that rich people live more environmentally-conscious lives, while
poor people drop out of the carbon economy as they have no direct access to
energy other than biofuels (Klasen, 2018). Especially considering low-income
countries, high inequality is coinciding with a higher share of persons without
access to electricity induces lower emissions.

A negative relation indicates that there are trade-offs between inequality
and carbon emissions. Consequently, working on one of them would demand
further effort for dampening the negative side effects on the other goal.

2.3 Channels for trade-offs or synergies

Previous studies have found that the dependence between inequality and emis-
sions varies across countries, depending on country income and other charac-
teristics. In line with this result, we detect channels that lead to either a
positive or negative association depending on further characteristics of the
country. For instance, GDP per capita is one of the main drivers of carbon
emissions. Worldwide carbon emissions are closely related to growth in GDP
(Hickel and Kallis, 2020). Furthermore, the relation between GDP and income
inequality is ambiguously described in the literature (see e.g. Chapter 13.3 of

5



Table 1: Summary of possible association structures between inequality and
emissions with correlation coefficient ρ, the related characteristics and channels
identified in the literature.

Association (Corr) Characteristics & consequences Channels (inequ ↔ emissions)

positive (ρ > 0) synergies,
reducing both jointly

– emulation effect (→)
– political economy, lobbies (→)
– environmental degradation (←)

negative (ρ < 0) trade-offs,
how to weaken relation – individual Kuznet curve (→)

positive or negative synergies or trade-offs – energy mix (←)
– GDP growth (↔)

decoupled (ρ = 0)
no synergies or trade-offs,
effort in both,
reducing separately

– none

Weil, 2012). We place a special focus on the impact of GDP per capita due to
a strong dependence with inequality and carbon emissions by separating the
analysis into income groups (namely high-, middle- and low-income countries).
This separation accounts for heterogeneous effects between income groups of
the covariates on the dependence. Including GDP as a covariate in the model
additionally controls for country-specific differences and the varying impact
over the observed time period.

Additionally, the energy mix can drive the relationship between income
inequality and carbon emissions. The energy mix influences the amount of a
country’s carbon emissions. For instance, France and Germany are neighboring
countries, with a similar standard of living and income inequality. However,
the countries differ in carbon emissions, with France having a lower average
than Germany. The share of fossil fuel energy varies between the countries
as France – like Portugal and UK – uses more nuclear or renewable energy.
In turn, Germany uses more fossil fuel energy, especially from coal plants
(Ritchie and Roser, 2021, own data). This may lead to a larger range of
carbon emissions in relation to one certain inequality level. Accounting for
the relative share of fossil fuel energy can to some extent control for these
differences.

2.4 Decoupled

If inequality and emissions are not related – i.e. the correlation is zero (or close
to zero) – they are decoupled and the goals can be achieved independently of
each other. This case is difficult to justify empirically as observing no relation
might be caused by counteracting effects that conceal the underlying mecha-
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nisms. However, in our empirical analysis we can identify influencing factors
that have a decoupling effect on either a positive or negative relationship
between income inequality and carbon emissions.

2.5 Distributional description of the relation

A standard empirical model might face difficulties covering the large variety
of channels between inequality and emissions and their interconnected nature.
According to Oswald et al. (2020), energy use increases non-linearly with in-
come, which suggests heterogeneous dependencies between income and carbon
emissions. Thus, mean regressions do not appropriately account for the de-
pendence and we apply distributional regression techniques instead.

Figure 1 displays possible examples of a negative, positive (with asymmet-
ric distribution) and no association between inequality and carbon emissions,
illustrated by contour lines. In general, the efforts for sustainable developments
aim for low inequality and low emissions which is represented by the location
of the red contour lines. No relation between inequality and emissions means
decoupled variables (red), a positive association (yellow) implies synergies and
a negative association (cyan) implies trade-offs. The intersecting area of the
two thresholds defines the potential socially and environmentally sustainable
space.
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Figure 1: Schematic bivariate distribution of GINI and carbon emissions: pos-
itive association with asymmetric distribution (yellow), negative symmetric
association (cyan) and decoupled (red); socially and environmentally sustain-
able (SES) space for low values of emissions and GINI (see Section 3.2 for more
details).
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3 Bivariate distributional copula regression

Bivariate distributional copula regression models focus analyzing the depen-
dence structure and allow for varying effects over the range of the covariates.
As a mathematical tool, the copula binds the marginal distributions of the
two variables GINI and carbon via a bivariate cumulative distribution func-
tion (CDF) to analyze their joint behavior. Bivariate distributional copula
models incorporate generalized additive models for location scale and shape
(GAMLSS) as building blocks for the marginals to study the shape of the
marginal probability distributions of GINI and carbon (Klein et al., 2019;
Marra and Radice, 2017).

By contrast, predominantly-used univariate regression techniques analyze
only mean effects and leave the varying dependence structure unconsidered.
However, as outlined in Section 2, recent research suggests that income in-
equality and carbon dioxide emissions are interconnected. As no clear causal
relation is identifiable, the strength and variety of the dependence matters
to understand the relationship between income inequality and carbon diox-
ide emissions. Therefore, we apply bivariate distributional copula regression
models.

3.1 Bivariate copula regression

Distributional copula regression for GINI and carbon combines two features:
first, it separately specifies the two marginal distributions, and subsequently
it specifies the dependence between income inequality and carbon emissions
with the option to model regression effects on all possible parameters of the
resulting bivariate distribution.

Copula regression combines the ability to separate the specification for
the marginal distributions and the dependence. It incorporates the option to
model regression effects on possibly all parameters of the resulting bivariate
distribution. More specifically, copulas allow specifying a bivariate distribution
for the vector of responses (Y1.Y2) via its CDF F1,2(Y1, Y2) = P (Y1 ≤ y1, Y2 ≤
y2) which can be represented as

F1,2(y1, y2) = C(F1(y1), F2(y2)), (1)

where F1(y1) = P (Y1 ≤ y1) and F2(y2) = P (Y2 ≤ y2) are the marginal CDFs
and C : [0, 1]2 → [0, 1] is the corresponding copula, i.e. a bivariate CDF with
uniform marginals.

Copula regression now links the parameters of both the marginals and the
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copula to regression predictors. Let θ = (θ′1,θ
′
2,θ

′
c)
′ be the J-dimensional

vector of parameters characterizing the marginals (θ1 and θ2) and the copula
(θc). Then we assume that each of the parameters is a function of the covariates
z such that θij = θj(zi), j = 1, . . . , J for observations i = 1, . . . , n.

In our application, we will consider various types of response distribu-
tions for continuous, non-negative responses including normal, log − normal,
gumbel, reverse gumbel, dagum and singh−maddala. For the copula, we will
consider all possible copula specifications provided by the GJRM package in
R (Marra and Radice, 2017). Copula regression then allows us to make any as-
pect of the bivariate distribution covariate-dependent. Further, we can flexibly
specify the marginal distribution with different types of dependencies, and in
particular use forms of dependence that are not reflected by linear correlation.

To achieve flexibility in the regression specification, we extend beyond
purely linear regression predictors in a semi-parametric specification where
the partially-linear predictor

η
θj
i = z′iβ

θj +
K∑
k=1

f
θj
k (xik) (2)

is linked to the distributional parameter θj via a strictly monotonically in-
creasing response function hj such that

θj(zi) = hj(η
θj
i ). (3)

The predictor combines linear effects z′iβ
θj based on covariates zi and regres-

sion coefficients βθj with non-linear effects f θjk (xik) of continuous covariates
xik. For the latter, we employ penalized splines, i.e. cubic B-splines of mod-
erate size supplemented with a second-order difference penalty to achieve a
data-driven amount of non-linearity in the effect estimates.

We continue by studying the worldwide data for GINI and consumption-
based carbon emissions per capita and introduce relevant covariables for the
analysis. Subsequently, we describe the model specification that allows us to
estimate the bivariate distribution in (1).

3.2 Data

The data studied comprise an unbalanced panel data set including 154 coun-
tries for the 1960–2019 period, collected from different sources. We focus our
analysis on the relationship between carbon dioxide emissions per capita and
GINI, which composes the bivariate outcome vector for our distributional cop-
ula model.
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3.2.1 Measures of carbon emissions and GINI

We use a consumption-based measure of carbon dioxide emissions to account
for trade. This measure assigns carbon emissions to the consuming rather than
the producing country. The Global Carbon Atlas provides the data on carbon
emissions. Carbon dioxide emissions are measured in millions of metric tons,
combining emissions from fossil fuel combustion, cement production, and gas
flaring (Peters et al., 2011; Global Carbon Project, 2020).

The GINI index is a country-level average measure of income inequality
which ranges from 0 (perfect equality) to 100 (perfect inequality). Other than
specific quantile measures of inequality, the GINI measure provides no informa-
tion about the location of the inequality, i.e. whether it is between the richest
10 percent and the rest or between other quantiles. It rather measures the
average inequality of a country (Jorgenson et al., 2017). This feature serves
our exploratory purposes. The GINI measure is particularly attractive due to
its internationally comparable data availability (Solt, 2016, 2020). The Stan-
dardized World Income Inequality Database (SWIID) comprises an adjusted
panel data set for inter-country comparison of the GINI based on the Luxem-
bourg Income Study. For our analysis, we apply the gini_disp variable, which
measures equalized (using the square root scale), post-tax and post transfer
household disposable income (Solt, 2016).

3.2.2 Factors influencing the relationship

Following the theoretically-specified channels and previous literature on the
topic (Jorgenson et al., 2016; Grunewald et al., 2017; Jorgenson et al., 2017), we
condition the relationship between GINI and carbon emissions on the following
control variables. The World Development Indicators (World Bank, 2020b)
provide the variables GDP per capita in constant 2010 US Dollars, agriculture
(agri), service (serv), and manufacturing (manu), with the reference category
construction measured in the share of value added as a percentage of total
GDP. Furthermore, the urban variable is defined as the percentage of the
total population of a country living in cities (following Grunewald et al., 2017;
Jorgenson et al., 2017) and the share of fossil fuel consumption fossil is given
in percentage of the total energy use (Dunlap and Brulle, 2015; Jorgenson
et al., 2017). The polity measure proxies institutional differences and power
relations in countries (Boyce, 1994; Torras and Boyce, 1998; Grunewald et al.,
2017). The polity measure is provided by the Center for Systemic Peace (2020)
and varies between -10 (strongly autocratic) and 10 (strongly democratic).
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3.2.3 Country groups and summary statistics

We classify the countries into low-, lower- and upper-middle- and high-income
countries as suggested by the World Bank (World Bank, 2020a), as we expect
differences between country groups in the influencing factors. For the further
analysis, we combine low- and lower-middle- (from here onwards, low-) income
countries due to a lack of observations in the group of low-income countries and
a rather similar pattern in comparison with lower- and upper-middle- (from
here middle-) income countries. A detailed list of the included countries is
provided in Table A1 in the Appendix.
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Figure 2: Scatter plot of the variables GINI and carbon, pooled over all years
and separated into the three income groups of, low- (red), middle- (blue) and
high-income countries (green).

Figure 2 displays the variables GINI and carbon as well as logarithmized
carbon in a scatter plot, revealing considerable heterogeneity between the three
income groups. The right-hand side plot displays the carbon variable in its
logarithmized form due to scaling reasons. Furthermore, the empirical analysis
in Section 3.3 suggests a logarithmized distribution of carbon. We can identify
heterogeneity between the three displayed income groups (low-, middle- and
high-income countries) in the level of both inequality and carbon emissions.
This finding suggests separating the analysis into these country groups, which
is in line with the empirical literature finding that the direction of correlation
depends on the level of income (see e.g. Grunewald et al., 2017; Jorgenson
et al., 2016). While the level of inequality decreases with higher income, the
level of emissions increases. Figure 2 indicates that certain countries follow a
path of rising emissions with fairly constant GINI indexes. It further suggest
differences in the strength of the dependence according to the level of income.

The summary statistics in Table 2 support the assumption of heterogeneity
over the country groups and increasing emissions from low-income countries
with a mean = 1.27 MtCO2 per capita over middle-income countries with a
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mean = 3.57 MtCO2 per capita, to high-income countries with a mean =

12.02 MtCO2 per capita. The variation in carbon is strongest in high-income
countries with a standard deviation sd = 7.17 MtCO2 per capita compared
with middle- and low-income countries, with sd = 2.18 and sd = 1.94 MtCO2
per capita, respectively. Inequality is highest in middle-income countries with
a mean = 42.59 and lowest in high-income countries with a mean = 30.51

with low-income countries in between mean = 42.08. The variation in the
GINI variable is strongest in middle-income countries sd = 8.16 and similar
over the other country groups.

To identify a potential ecologically and socially sustainable space, we spec-
ify thresholds for GINI and carbon.

Table 2: Summary statistics of the outcome variables GINI and carbon for
high-, middle- and low-income countries.

Variable N mean sd min max

High-income countries

carbon 1087 12.02 7.17 1.58 58.70
GINI 1626 30.51 5.77 19.50 50.60

Middle-income countries

carbon 840 3.57 2.18 0.36 13.98
GINI 1375 42.59 8.16 21.90 66.50

Low-income countries

carbon 939 1.27 1.94 0.06 17.26
GINI 1761 42.08 5.84 26.30 55.80

3.2.4 Socially and environmentally sustainable space

The target for a sustainable future comprises low levels of carbon emissions
and income inequality. To investigate the attainability of this goal, we define
two separate thresholds for GINI and carbon. The overlapping area defines
the potential socially and environmentally sustainable area. In order to limit
global temperature rise to 1.5 degrees, studies suggest a life within a necessary
global carbon budget. In this scenario, an individual could emit 0.5 MtCO2
per capita per year. This is an approximate value for a person born in 2017
with a life expectancy of 85 years. The estimated life budget is 45 metric tons.
However, the current global average emissions are at 4.9 MtCO2 per capita per
year. Thus, following the calculations, carbon emissions need to be reduced to
one-tenth. The carbon budget calculation assumes an equal budget for every
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global citizen, independent of their place of birth. Country differences and
historical responsibilities are not taken into account, which not only means
that some people have to cut drastically but also that some could increase
their footprint (Hausfather, 2019). Despite these limitations, we consider this
threshold as an example for a desirable equitable and sustainable distribution
of carbon emissions. For a socially sustainable future, we estimate the optimal
GINI coefficient as the lowest quantile of the GINI distribution of countries
with a polity score of 10. The estimated GINI threshold is 25.7.

Jointly, the limit of 0.5 MtCO2 per capita yearly carbon emissions and
a GINI of 25.7 define the potential socially and environmentally sustainable
space, which is schematized in Figure 1. The definition of a sustainable area in
terms of our two outcome variables can help to quantify these targets along the
lines of studies like O’Neill et al. (2018). The joint probability of being in the
socially and environmentally sustainable space is derived from our bivariate
distributional copula model specified in the following section.

3.3 Model specification

We define the model following the two-step procedure described in Section 3.1.
First, we identify the marginal distributions of the variables GINI and carbon
to build a GAMLSS model for each of the two variables. Second, we determine
the copula, which (together with the marginals) defines the joint distribution
of GINI and carbon. All selections of the specific type of the distribution are
made by comparing the values of the AIC and BIC selection criterion and QQ
plots of the model residuals for different choices of the distribution. We select
the distributions and copulas with the lowest values. We do not consider spec-
ifications whose models do not converge since this usually indicates that the
dependence observed in the data does not comply with the structure assumed
by the given copula.

The specific marginals and copulas are described by a set of parameters
θj, j = 1, . . . , J, as specified in Equations (2) and (3). The predictor ηθj of
parameter θj depends on the set of covariates introduced in Section 3.2. For
each of the three income groups i = 1, 2, 3, we obtain a set of predictors

η
θj
i = β

θj
0i + si(GDP )

θj + β
θj
3imanu+ β

θj
4i serv + β

θj
5i agri+ β

θj
6iurban

+β
θj
7i fossil + β

θj
8i polity + si(year)

θj .
(4)

The intertemporal variation of the GINI index is small within countries and
varies more across countries (see 2). For this purpose, we apply a fixed grouping
for the countries following the income classes and control for non-linear varia-
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tion in time by applying a nonlinear effect (modeled as a penalized spline) for
the years. Using the panel data structure, we implement splines si with ten in-
ner knots for year effects year. Likewise, we model GDP by using a penalized
splines with ten inner knots to account for non-linear effects. Splines enable
us to smooth the effects between knots and therefore allow for more flexibility
compared to a standard quadratic relation (Fahrmeir et al., 2013). According
to the distribution of the model residuals (see Figures A12, A17, and A22), the
explanatory variables seem to sufficiently control for heterogeneity between the
countries, which was directly observable as country-specific paths in Figure 2.
The parameters in (4) are estimated using the R package GJRM (Marra and
Radice, 2020).

Table 3 displays the selected marginal distributions and copula specifica-
tions for the three country groups based on the specification of the predictor
and the corresponding parameters. Carbon exhibits a log normal distribution
in all three income groups. GINI exhibits a normal distribution in middle-
and low-income countries, while it reveals a log normal distribution in high-
income countries. All selected distributions are determined by two parameters.
Conditioned on these choices for the marginal distribution, the copula speci-
fication is a normal copula for high-income countries and a Frank copula for
low- and middle-income countries.

Table 3: Selected marginal distributions for GINI and carbon and type of the
copula by country groups. The full list of AIC and BIC values for all model
specifications is displayed in Tables A2-A4, A10-A12 and A18-A20 for high-,
middle- and low-income countries, respectively.

Marginal distr. High-income Middle-income Low-income

GINI Log Normal Normal Normal
carbon Log Normal Log Normal Log Normal

Copula Normal Frank Frank

With the specified marginal distributions and copulas, all resulting bivari-
ate distributions D = F1,2 depend on five parameters θj, j = 1, . . . , 5: two
parameters for each of the two marginal distributions and one parameter for
the copula. These five parameters specify the bivariate distribution for each
income group i = 1, 2, 3, i.e.(

GINI

Carbon

)
∼ Di(θ1, θ2, θ3, θ4, θ5). (5)

We are primarily interested in the effect of the covariates on the depen-
dence. For this reason, our analysis focuses on the estimation output of Equa-

14



tion (4) for the copula parameter θ5. The results display the impact of the
covariates on the dependence. The following section presents the results for
the three country groups.

4 Results

The dependence structure exhibits a strong variation over the set of influenc-
ing factors and widely differs from the mean prediction. Thus, the mean is
not representative for the full range of the influencing factors. We therefore
take specific country cases into account to better illustrate the dependence
structure. In the groups of high-, middle- and low-income countries, effect
significances on the dependence parameter and the analysis of model residuals
(displayed in Figure A12, A17 and A22) support the grouping by income group.
In this sense, the grouping results in effect homogeneity on the dependence but
variety in the dependence structures. Most of the covariates included show a
significant impact but we do not further concentrate on their interpretation.
Our analysis specifically focuses on the covariates polity, fossil and GDP as
drivers of the relationship to deduce potential policy implications in line with
a sustainable future. The flexible copula model enables us to analyze the co-
variate effects in specific settings, with a focus on the varying impact over the
range of the variables. For each country group, we consider the mean copula
prediction – i.e. the prediction based on the average over all predictions for the
parameters θ1-θ5 – and compare it to a selection of country-specific predictions.

The country cases allow studying the effect on different aspects of the
resulting distributions. In particular, the resulting bivariate copula prediction
enables us to calculate joint probabilities for falling below both thresholds
for GINI (25.7) and carbon (0.5 MtCO2 per capita), specified as a potential
socially and environmentally sustainable space in Section 3.2.4. Besides the
joint probability, we additionally investigate the likelihood of falling below each
of the thresholds separately.

We describe our interpretation strategy in detail for the group of high-
income countries, which is studied first. The analysis for middle- and low-
income countries proceeds analogously.

4.1 High-income countries

The results for high-income countries reveal significant effects of polity, fossil
and GDP on the relationship between GINI and carbon. Table 4 displays
the estimates for the copula parameter θ5. Due to the distributional focus,

15



the estimates cannot be interpreted as mean effects, but they still indicate the
direction of the impact and its significance. To analyze the economic relevance,
we take into account specific cases later in the chapter.

Higher scores of polity – and hence democracy score – have a negative effect
on the predictor of the dependence between GINI and carbon. We deduce this
from the significant negative effect of the variable polity on the relationship
(c.f. Table 4). This can lead to an increase or decrease of the dependence,
depending on the intercept and level of the other variables. More specifically, if
the predictor for a given country is initially negative, then an increase in polity
leads towards an even stronger negative relationship, while if the predictor is
initially positive, an increase in polity leads to a weaker positive relation and
can result in a negative or decoupling scenario. Positive and negative impacts
have to be placed in relation to the initial predictor and can thus indicate
strengthening or weakening effects at the same time. Kendall’s τ measures the
change in the dependence, which we study for country-specific cases to account
for different covariate settings. The fossil variable – representing the share of
fossil energy in the energy mix – exhibits a significant decreasing impact on
the dependence parameter displayed in Table 4.

Table 4: High-income countries, n = 864: equation for copula parameter θ5.
The results for the other model parameters θ1-θ4 are in Table A5-A8.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.837 0.781 1.071 0.284
Manu 0.024 0.010 2.332 0.020
Serv 0.076 0.010 7.557 0.000
Agri 0.187 0.046 4.064 0.000

Urban -0.037 0.004 -8.778 0.000
fossil -0.031 0.004 -8.506 0.000
polity -0.157 0.017 -9.347 0.000

Smooth components’ approximate significance:
edf Ref.df Chi.sq

s(GDP) 8.782 8.977 503.95 < 2e-16
s(Year) 7.424 8.389 21.68 0.00642

For different levels of GDP , we can identify a varying impact on the
dependence. The effect of GDP – like the years effect – is estimated non-
parametrically by a spline, i.e., the smooth effects over the range of the vari-
able on the relationship between carbon and GINI. The estimated centered
spline is displayed in the left-hand graphic of Figure 3. The spline indicates
that GDP per capita has a non-linear effect on the dependence, which is sta-
tistically significant, as indicated in Table 4. By contrast, the spline for the
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year effect (right-hand graphic in Figure 3) does not strongly vary over the
time period, suggesting no variation in the dependence due to year effects.
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Figure 3: High-income countries: splines for GDP and year for the copula
parameter. The splines for the other model equations are in Figures A13-A16.

Figure 4: Average copula prediction for the conditional dependence between
GINI and carbon (left) and the histogram for the distribution of Kendall’s τ
of the individual predictions in high-income countries (right).

The strength and direction of the dependence between GINI and carbon
shows a strong deviation between the mean prediction and the prediction for
different country settings. The left-hand side of Figure 4 displays the mean
dependence structure as an average over the predictions of the parameters
θj, j = 1, . . . , 5. The right-hand side shows a histogram of the distribution of
the dependence structures for all observations, which is measured by Kendall’s
τ from the predicted copula for these observations. The average predicted
copula for high-income countries shows a weak association between carbon
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emissions and GINI. More precisely, in mean the relation is −0.08 with a con-
fidence interval containing zero, (−0.23, 0.08), suggesting that there is hardly
any relation between inequality and emissions. However, the widely spread
distribution in the histogram of Kendall’s τ indicates a large variety of posi-
tive and negative relations covering nearly all possible values, i.e. ranging from
−.95 to 0.93, whereby these values average to a mean around zero. This un-
covers the discrepancy between the average association and the possible range
of associations between GINI and carbon. Thus, the sole analysis of the mean
prediction is misleading and not representative for the entire distribution of the
relationship. Next, we consider different covariate settings and the resulting
copula prediction.

The results of exemplary copula predictions for Germany and the US dis-
played in Table 5 support the analysis of the covariate effects from the pooled
estimation for the whole country group in Table 4. Cases 1,2,3 and 4 for
Germany and 5,6,7 and 8 for the US represent real cases, while cases includ-
ing letters represent fictive changes in polity and fossil. The variation in the
strength of the dependence underpins the economic relevance, as – for instance
– a lower polity score leads to higher positive associations of GINI and carbon.
Specifically, cases 4c and 4d as well as 8c and 8d show the changes in the rela-
tionship for lower polity score in Germany and the US, respectively. Likewise,
cases 4a and 4b as well as 8a and 8b demonstrate fictive cases for lower fos-
sil share in Germany and the US, respectively. These fictive cases indicate a
strongly increasing relationship for lower fossil energy shares. For Germany,
this increase is around 0.5 points in Kendall’s τ and for the US around 0.1
points, adding to an already-high level of dependence.

We find a recognizable difference in the relationship between GINI and
carbon between 2008 and 2009, indicating the relevance of a change in GDP.
Between these two years, most macroeconomic factors remained stable, while
due to the financial crisis GDP fell in Germany and the US. The drop in GDP
per capita led to a change from a positive relationship between GINI and
carbon in 2008 to a negative relationship in 2009 in Germany. This amounts
to approximately 0.24 points in Kendall’s τ . For the US, the relationship
reduced by approximately 0.05 points in Kendall’s τ .

For all investigated cases in Table 5, Germany and the US are highly un-
likely to fall into the socially and environmentally sustainable area. The last
three columns of the table display the estimated probability of being below
the GINI threshold, the carbon threshold or both, i.e. in the socially and envi-
ronmentally sustainable area. Choosing a lower polity score for Germany, the
likelihood of being below the GINI threshold decreases, while with a falling
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Table 5: Specific copula prediction for high-income countries: Germany and
the US with the respective choices of the variables year, polity and fossil (the
remaining covariates are set to their actual value). In the last four columns:
Kendall’s τ (K’s τ) and the probability to of being the threshold for GINI
and carbon and in the socially and environmentally sustainable (SES) area in
the specific setting. Additional case studies in Table A9.

Case Country year polity fossil K’s τ TH TH SES
GINI carbon Area

1 Germany 1997 10 84.63 -0.302 0.079 0 0
2 Germany 2008 10 80.8 0.052 0.027 0 0
3 Germany 2009 10 79.97 -0.187 0.005 0 0
4 Germany 2015 10 78.86 0.428 0.101 0 0
4a Germany 2015 10 50 0.749 0.168 0 0
4b Germany 2015 10 10 0.925 0.436 0 0
4c Germany 2015 9 78.86 0.502 0.068 0 0
4d Germany 2015 3 78.86 0.797 0.001 0 0
5 USA 1997 10 86.46 0.311 0 0 0
6 USA 2008 10 84.97 0.827 0 0 0
7 USA 2009 10 84.15 0.775 0 0 0
8 USA 2015 10 82.43 0.877 0 0 0
8a USA 2015 10 50 0.954 0 0 0
8b USA 2015 10 10 0.986 0 0 0
8c USA 2015 9 82.43 0.895 0 0 0
8d USA 2015 3 82.43 0.959 0 0 0

fossil energy share the likelihood increases. However, in none of the settings
does Germany have a non-zero likelihood of falling below the carbon thresh-
old or in the socially and environmentally sustainable area. The US does not
show a positive likelihood of falling under the threshold of any of the target
variables.

Focusing on the shape of the copula prediction in different settings, Figure 5
illustrates the changes in the contour lines for changing polity scores, showing a
higher dependence for lower polity scores and fossil share. For example, we take
the case of Germany and compare the real situation in 2015 to a fictive situation
with a different polity score in Figure 5. All other factors correspond to the
actual values in 2015. For more autocratic frameworks, Germany exhibits
weaker variation in the relationship, and thus a higher dependency. Varying
the fossil energy share to a lower share in the same setting, the variation is also
lower. The contour plots for the US present a similar direction but the shape
of the contour lines differs, indicating the relevance of distributional aspects.
Both country settings lead to a distribution with higher variation in higher
levels of GINI. The center of the contour lines – which represents the highest
density of the correlation – is located in higher levels of GINI for the US. The
plots for Germany expose a stronger dependence at the lower tails of the joint
distribution, which is driven by the choice of the marginal distributions.
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Figure 5: Contour plots for Germany and the US in 2015, different choices
of polity (P) and fossil (F), the remaining covariates are set to their actual
value.

The results support the political economy argument described in Section
2. The increasing likelihood of being below the GINI threshold for falling
fossil share and polity score as well as the increasing relationship for falling
polity score and fossil share suggests that the relationship is determined by
political settings, which also influence environmental policy and thus the fossil
energy share. In less democratized countries, the political economy argument
suggests that the rich benefit more from short-term environmental degradation
and spending, while the reverse holds in more democratic and more egalitarian
countries. Higher income inequality is associated with higher power inequality
(Boyce, 1994). Accordingly, the rich are likely able to block a shift away from
fossil fuels and thereby increase emissions. Further, the emulation effect focus-
ing on the individual basis suggests a more carbon-intensive lifestyle for richer
people in more unequal societies, strengthening the mechanisms of the politi-
cal economy argument. The higher disposable income in high-income countries
compared to the average of middle- and low-income countries strengthens the
effect in richer countries, as GDP and carbon emissions are strongly correlated
(Hickel and Kallis, 2020). Most cases under investigation (Table 5) have a pos-
itive Kendall’s τ , whereby lower fossil energy shares strengthens the relation
between carbon and GINI. This implies that reducing the fossil energy share
likely leads to synergy effects between social and environmental sustainability.
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4.2 Middle-income countries

In the analysis of middle-income countries, polity, fossil and GDP signifi-
cantly influence the relationship between GINI and carbon, as displayed in
Table 6. In contrast to high-income countries, the impact of the variables
polity and fossil is positive.

Table 6: Middle-income countries, n = 636: equation for the copula parameter
θ5. Tables A13 -A16 report the results for the model parameters θ1-θ4.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 10.654 7.425 1.435 0.151
Manu -0.635 0.124 -5.120 0.000
Serv -0.188 0.078 -2.395 0.017
Agri 0.009 0.134 0.066 0.948

Urban -0.389 0.040 -9.611 0.000
fossil 0.279 0.056 4.996 0.000
polity 0.777 0.177 4.398 0.000

Smooth components’ approximate significance:
edf Ref.df Chi.sq

s(GDP) 7.696 8.499 127.52 <2e-16
s(Year) 4.557 5.584 56.74 2e-10

The impact of GDP on the dependence varies over the range of the vari-
able. GDP exhibits a non-linear impact on the relationship between GINI

and carbon, illustrated by the centered spline in Figure 6. The centered spline
for the year effect in Figure 6 indicates a non-linear impact on the relation-
ship between GINI and carbon. Both effects are statistically significant, as
displayed in Table 4.
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Figure 6: Middle-income countries: splines for GDP and year for the copula
parameter. The splines for the other model equations are in Figure A18-A21.

The mean copula prediction in middle-income countries (right graphic of
Figure 7) shows a negative dependence i.e. trade-offs between carbon and
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GINI. The Frank copula implies an oval shape. A Kendall’s τ of −0.39 joint
with a confidence interval of (−0.55,−0.21) indicate that there is a negative
relation between GINI and carbon. The presence of primarily negative asso-
ciations is supported by the histogram of country-specific Kendall’s τ ’s in the
right-hand graphic of Figure 7. However, the values range between a Kendall’s
τ of −0.89 to 0.75. Although we can state that the mean effect better rep-
resents the relationship for middle-income countries than its equivalent for
high-income countries, the diversity of the relationship justifies the need for
specific case studies.

Figure 7: Average copula for the conditional dependence between GINI and
carbon (left) and the histogram for the distribution of Kendall’s τ in middle-
income countries (right).

The specific cases of interest – China and South Africa – expose the eco-
nomic relevance of the impact of polity, fossil and GDP , as displayed in
Table 7. Cases 9, 10 and 11 for China and 12, 13, 14 and 15 for South Africa
represent real cases, while cases including letters represent fictive changes in
polity and fossil. Keeping fossil at its actual value for China in 2014, an
increase in the democracy score from the actual value of −7 to 10 increases
the Kendall’s τ from −0.75 to −0.09. Thus, in this alternative setting with
a high level of democratization, the dependence is close to decoupling. An
increase in the polity score from 9 to 10 in South Africa leads to a 0.06 point
increase. A decrease in fossil energy share leads to a higher negative relation
for China (cases 11a and 11b) as well as South Africa (15a and 15b), ranging
from a 0.1 to 1.0 point change in Kendall’s τ . The change in the relationship
between 2008 and 2009 ranges between a positive impact of 0.1 for China and
0.02 for South Africa. These significant changes support the economic impact
of the variables.
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Table 7: Specific copula prediction for middle-income countries: China and
South Africa with the respective choices of the variables year, polity and
fossil (the remaining covariates are set to their actual value). In the last four
columns: Kendall’s τ (K’s τ) and the probability of being below the thresh-
old for GINI and carbon and in the socially and environmentally sustainable
(SES) area in the specific setting. Additional case studies in Table A17.

Case Country year polity fossil K’s τ TH TH SES
GINI carbon Space

9 China 2008 -7 87.22 -0.87 0.213 0 0
10 China 2009 -7 87.64 -0.869 0.21 0 0
11 China 2014 -7 87.67 -0.747 0.303 0 0
11a China 2014 -7 50 -0.848 0.091 0 0
11b China 2014 -7 10 -0.893 0.001 0.032 0
11c China 2014 10 87.67 -0.088 0.229 0 0
11d China 2014 3 87.67 -0.522 0.261 0 0
12 South Africa 1997 9 84.91 0.338 0.036 0 0
13 South Africa 2008 9 88.15 0.196 0.047 0 0
14 South Africa 2009 9 87.68 0.216 0.065 0 0
15 South Africa 2014 9 86.79 0.327 0.089 0 0
15a South Africa 2014 9 50 -0.562 0.001 0 0
15b South Africa 2014 9 10 -0.799 0 0.057 0
15c South Africa 2014 10 86.79 0.385 0.085 0 0
15d South Africa 2014 3 86.79 -0.15 0.115 0 0

For South Africa, the likelihood of falling below theGINI threshold slightly
decreases with an increasing level of democracy, and it strongly decreases with
falling shares of fossil energy. The likelihood of being below the carbon thresh-
old is only different from zero for a low fossil energy share. Considering the
likelihood of falling in the potential socially and environmentally sustainable
space, none of the country settings in Table 7 show a positive probability. Ad-
ditionally, the probability of falling below the carbon threshold is zero or very
low in all cases. The probability for the threshold of GINI changes with the
macroeconomic setting. For higher levels of democracy, the likelihood of falling
below the GINI threshold slightly declines, while it more strongly declines for
changing fossil energy shares. However, a low fossil energy share increases the
likelihood of falling below the carbon threshold.

The contour plots for predictions based on variable choices represented in
cases 11a and 11c for China and 15a and 15c for South Africa in Figure 8
illustrate the varying dependence structure for changing fossil share and polity
score. The contour plots illustrate a stronger dependence for a falling fossil
energy share and a decoupling for changes in polity in China. The contour
plots for South Africa show a change in the direction and strength of the
dependence for a reduced fossil energy share. The same plots expose a stronger
dependence at the tails of the joint distribution, which is driven by the choice
of the marginal distributions.
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Figure 8: Contour plots for China and South Africa in 2014, different choices
of polity (P) and fossil (F), the remaining covariates are set to their actual
value.

The results for middle-income countries support the political economy ar-
gument as an increase in democracy has a positive effect on the relationship
between GINI and carbon. Due to primarily negative relationships, an in-
crease in the democracy score leads to a decline in the negative relationship
in most cases. Further, with an increasing level of democracy, the likelihood
of being below the GINI threshold increases. Although the direction of the
impact is opposite to high-income countries, most cases under investigation ex-
hibit negative Kendall’s τ , and thus the strength of the negative relationship
falls and may become positive with higher levels of democracy. Thus, more
democratic societies are more equal, which is associated with a decoupling or
positive effect on the relationship. This can be explained by less powerful
elites and democratic mechanisms that enable better environmental and in-
come equality supporting policies. However, falling fossil shares lead to higher
negative relationships. The individual Kuznet curve may hold in this case as
poor individuals drop out of the carbon economy. This is indicated by a de-
crease in the likelihood of being below the GINI threshold and an increase
in the likelihood of being below the carbon threshold. The overall significant
negative relationship suggests that higher levels of carbon emissions are real-
ized with less inequality, and thus more people can afford a carbon-intensive
lifestyle. Further, middle-income countries strongly rely on fossil energy to
realize their development path (Klasen, 2018).
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4.3 Low-income countries

The output table of the estimated copula equation (Table 8) shows that the
share of fossil energy has a significant negative impact on the copula parameter,
while polity is statistically insignificant.

Table 8: Low-income countries: equation for the copula parameter, n = 898.
All results for the model parameters are in Table A21-A24.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -22.475 6.782 -3.314 0.001
Manu 0.446 0.104 4.271 0.000
Serv 0.245 0.072 3.401 0.001
Agri 0.028 0.095 0.292 0.770

Urban 0.147 0.049 3.020 0.003
fossil -0.103 0.021 -4.968 0.000
polity -0.060 0.072 -0.839 0.402

Smooth components’ approximate significance:
edf Ref.df Chi.sq

s(GDP) 8.485 8.889 77.927 3.92e-13
s(Year) 1.000 1.000 1.393 0.238

GDP per capita exhibits a non-linear impact on the relationship, while the
year effect is less pronounced (see Figure 9). Table 8 indicates that both effects
are statistically significant.
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Figure 9: Low-income countries: splines for GDP and year for the copula
parameter. The splines for the other model equations are in Figures A23-A26.

The average copula prediction in low-income countries exhibits a negative
dependence, as displayed in Figure 10. The probability mass is located around
a GINI of 40 to 45 and carbon around 1 MtCO2 per capita. The Frank copula
itself suggests an oval shape, which – due to the marginal distributions – is
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slightly higher at higher GINI values, and hence with a lower variation in
emissions. A Kendall’s τ of −0.097 joint with a confidence interval of −0.27
to 0.08 suggests that there is hardly any relation. The individual-specific
dependence values range from a strongly negative association of −0.93 up to
a positive association of 0.67 (displayed in the histogram of Figure 10). The
mean effect is thus not representative for the strongly varying relationship,
which supports the need for case studies to better understand the relationship.

Figure 10: Average copula for the conditional dependence between GINI and
carbon (left graphic) and the histogram for the distribution of Kendall’s τ in
high-income countries.

The results for the specific cases of Bangladesh and Tanzania underpin the
economic relevance of the impact of fossil and GDP . Cases 16, 17, 18 and
19 for Bangladesh and 20, 21, 22 and 23 for Tanzania represent real cases,
while cases including letters represent fictive changes in polity and fossil.
Even though polity is insignificant in the parameter estimation in Table 8, a
change in polity leads to a sizable change in Kendall’s τ (see cases 19c and 19d
compared to 19 for Bangladesh and 23c and 23d compared to 23 for Tanzania).
Cases 19a and 19b show changes in Kendall’s τ for a lower fossil energy share
in Bangladesh, which leads to a strong increase in the relationship. Kendall’
τ is 0.06 for a share of fossil energy of 73.77 percent of the total energy mix
and rises to a Kendall’s τ of 0.567 for a fossil share of 10 percent, holding
all other variables fixed in Bangladesh. For Tanzania, the relationship even
becomes negative. Compared to the other country groups, it is difficult to
follow an impact of GDP from the change between 2008 and 2009. Specifically
in Bangladesh, the strong shift from a negative to positive polity score might
dominate any changes in the resulting prediction from 2008 to 2009.

Within all country-specific investigations, Bangladesh is the only country
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that exhibits a small likelihood of 0.1-0.4 percent of falling into the socially
and environmentally sustainable space in 2008-2014, although this probability
decreases over time. The considered cases for Tanzania exhibit no probability
of being in the socially and environmentally sustainable area. The likelihood
of being below the GINI thresholds increases and being below the carbon
threshold decreases over the years under consideration. A strong decrease in
fossil drastically increases the likelihood of being below the carbon threshold.
Tanzania is unlikely to be below the GINI threshold. However, a rise as well
as a decline in the share of fossil energy increases the likelihood of falling below
the GINI threshold, being higher for an increase in the fossil share. Likewise,
the likelihood of being below the carbon threshold decreases.

Table 9: Specific copula prediction for low-income countries: Bangladesh and
Tanzania with the respective choices of the variables year, polity and fossil
(the remaining covariates are set to their actual value). In the last four
columns: Kendall’s τ (K’s τ) and the probability of being below the thresh-
old for GINI and carbon and in the socially and environmentally sustainable
(SES) area in the specific setting. Additional case studies in Table A25.

Case Country year polity fossil K’s τ TH GINI TH carbon SES
Space

16 Bangladesh 1997 6 56.57 0.359 0 0.543 0
17 Bangladesh 2008 -6 67.58 0.328 0.014 0.114 0.004
18 Bangladesh 2009 5 69.01 0.244 0.016 0.049 0.002
19 Bangladesh 2014 1 73.77 0.06 0.051 0.009 0.001
19a Bangladesh 2014 1 50 0.306 0.004 0.057 0.001
19b Bangladesh 2014 1 10 0.567 0 0.774 0
19c Bangladesh 2014 10 73.77 0 0.045 0.003 0
19d Bangladesh 2014 3 73.77 0.046 0.05 0.007 0
20 Tanzania 1997 -1 7.69 0.248 0 1 0
21 Tanzania 2008 -1 9.8 0.349 0 0.953 0
22 Tanzania 2009 -1 9.29 0.359 0 0.956 0
23 Tanzania 2014 -1 14.38 0.142 0 0.766 0
23a Tanzania 2014 -1 80 -0.481 0.128 0.001 0
23b Tanzania 2014 -1 50 -0.243 0.009 0.037 0
23c Tanzania 2014 10 14.38 0.072 0 0.85 0
23d Tanzania 2014 3 14.38 0.118 0 0.796 0

The contour plots in Figure 11 exemplify the shape of the relationship
for GINI and carbon in Bangladesh and Tanzania, indicating a difference in
the variation for changing levels of fossil and polity. The illustrated cases
represent cases 19, 19a and 19c in the first row of Figure 11 and cases 23,
23a and 23c in the second row of Figure 11. The shape of the relationship
largely follows the oval shape of the Frank copula, with only slight asymmetric
relations for changing fossil energy shares. Graphic 2 in the first row (case
19a) reveals a stronger dependence for low GINI and carbon levels, while the
reverse asymmetry is visible in Graphic 2 in the second row (case 23c). The
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highest density of the relation – the center of the contour lines – varies for
reduced fossil energy shares. In Bangladesh, it centers around higher GINI
and lower carbon values than the real case and in Tanzania it centers around
lower GINI but higher carbon values.

Figure 11: Contour plots for Bangladesh and Tanzania in 2014, different
choices of polity (P) and fossil (F), the remaining covariates are set to their
actual value.

Even though polity exhibits no statistically significant impact, it leads to a
visible change in Kendall’s τ in the cases under investigation, indicating some
political economy effect. The negative impact of fossil on the relationship
suggests the mechanisms explained in the ’individual Kuznet’s curve’, namely
that rich people live more environmentally-conscious lives while poor people
drop out of the carbon economy as they have no direct access to energy other
than biofuels. The likelihood of being below the GINI threshold reduces with
a decline in fossil energy share. This supports the notion that these countries
rely on fossil energy for their development path (Klasen, 2018).

4.4 Summary

The strong variation of dependence structures between GINI and carbon in
all country groups suggests that according to the country cases, trade-offs,
synergies or decoupling can occur. Our analysis shows that the mean predic-
tion is not representative for the full range of the influencing factors, which
underlines the use of more complex regression models. We identify that polity,
fossil and GDP are (with large differences) associated with the dependence
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Table 10: Summary of the effect of fossil, polity and GDP on the relation
between inequality and emissions, the related effect on the probability to fall in
the socially and environmentally sustainable (SES) area and explaining chan-
nels identified in the literature.

Country Association range Variable’s impact Effect on prob. Explanation
group Kendall’s τ to be in SES area

High- −0.95 – 0.93 −fossil∗∗∗ SES –
income −polity∗∗∗ TH GINI ↑ Political economy

+/−GDP ∗∗∗ TH carbon –

Middle- −0.89 – 0.75 +fossil∗∗∗ SES – Political economy
income +polity∗∗∗ TH GINI ↓ Income effect

+/−GDP ∗∗∗ TH carbon ↑

Low- −0.93 – 0.67 −fossil∗∗∗ SES ↑(Minimal) Individual
income −polity TH GINI ↓ Kuznet’s Curve

+/−GDP ∗∗∗ TH carbon ↑

structure of GINI and carbon. Table 10 summarizes the results for high-,
middle- and low-income countries.

The varying significance and impact of polity suggests a particular rele-
vance of the political economy argument. In high- and low-income countries
the effect of polity is negative but not statistically significant in low-income
countries, while in middle-income countries it is positive. This implies that in
middle- as well as high-income countries, a positive change in the democracy
score leads to a decoupling of the relationship. At the same time, the likeli-
hood of being below the GINI threshold increases. This is associated to the
argument that more democratic societies are more equal, leading to a decou-
pling or positive effect on the dependence structure of GINI and carbon. Less
powerful elites and democratic mechanisms may enable better environmen-
tal and social policies, potentially leading to a socially and environmentally
sustainable society.

The varying effect direction of the impact of fossil indicates an association
between fossil fuels and the development path of countries. A falling share of
fossil energy is associated with a stronger positive association in the high- and
low-income country cases, suggesting synergies between GINI and carbon. In
middle-income countries, a decreasing share of fossil energy is associated with
a negative effect on the relationship, indicating stronger negative dependen-
cies. Further, in high-income countries a reduction in fossil increases while in
middle- and low-income countries it reduces the likelihood of being below the
GINI threshold. While in high-income countries we find no visible impact on
the carbon threshold nor on the joint area, in middle- and low-income countries
a falling fossil share has a positive impact on the likelihood of falling below
the carbon threshold. Only in certain low-income countries (e.g. Bangladesh)

29



is a small change in the likelihood of being in the socially and environmentally
sustainable area visible. These results indicate that a reduction of the share of
fossil fuel energy in high-income countries even supports more income equality.
This suggests that decoupling from fossil fuels is not hampering equality but
is even favorable for a more equal society. On the other hand, it affirms the
arguments that middle- and low-income countries depend on fossil fuels for
their development path and a reduction in income inequality. The findings
are also in line with the argument that poor people drop out of the carbon
economy (as suggested by the individual Kuznets curve) (Klasen, 2018).

5 Conclusions

The analysis of the dependence between income inequality and carbon emis-
sions clearly shows their heterogeneous dependency. To study the association
in detail, we have used distributional copula models stratified with respect
to high-, middle- and low-income countries. We find heterogeneous effects
indicating that synergies, decoupling and trade-offs occur depending on the
influencing factors.

Democracy score and fossil energy share have a varying influence in the dif-
ferent income groups. This highlights that the development path and sustain-
ability of societies depend on energy mix and political systems. For all studied
cases, it is unlikely to fall into the environmentally and socially sustainable
area, indicating the challenge of achieving both goals together. Further inves-
tigations are necessary to identify the channels that enable a joint transition
into an environmentally and socially sustainable area. Specifically, in high-
and middle-income countries, a positive change in the democracy score leads
to a decoupling of the dependency between GINI and carbon emissions and
an increasing likelihood of being in a potentially socially sustainable space.
A reduced fossil energy share is associated with an increasing positive depen-
dency between carbon emissions and income inequality in high- and low-income
countries, thus suggesting synergies, while the reverse holds for middle-income
countries suggesting trade-offs. In high- (low- and middle-) income countries, a
reduction in fossil energy increases (reduces) the likelihood of being potentially
socially sustainable. Unlike high-income countries, low- and middle-income
countries have an increasing likelihood of being environmentally sustainable
with a decreasing fossil energy share.

These findings support the argument that rich elites exploit the envi-
ronment, as in the short term the rich benefit from environmental degrada-
tion. In turn, more democratic societies are more environmentally-cautious, as
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environmentally-friendly policies may be implemented. In high-income coun-
tries, a reduction in the fossil fuel energy share increases the likelihood of
falling below the GINI threshold. Reducing the share of fossil fuel energy in
high-income countries leads to more income equality. Consequently, decou-
pling from fossil fuels is not hampering equality but favorable for a more equal
society. On the other hand, the results indicate a trade-off between income
equality and carbon emissions in low- and middle-income countries, underpin-
ning the dependence on fossil energy for their development path.

The effect differences among the country groups enable drawing conclusions
on global structures. The recorded fossil energy share does not necessarily in-
dicate the consumption of that country due to traded goods. Thus, some
countries rely on higher fossil energy to realize income, while others – espe-
cially in the group of high-income countries – rather consume carbon-intensive
goods. Different within-country findings for the effect of fossil energy share
and democracy sore likely reflect international dynamics, whereby poor coun-
tries disproportionately bear the costs of climate change, while rich countries
disproportionately benefit from environmental exploitation. This requires fur-
ther investigations into the driving factors to find global solutions to transition
into a socially and environmentally sustainable future.

Furthermore, the model precision can be improved by taking the dependen-
cies over the development paths (e.g. by cointegrating relations) into account.
This requires a theoretical extension of the present copula modeling frame-
work. The consideration of alternative measures of environmental pollution
is an interesting economic model variation. Countries might be more easily
convinced to target reducing emission variables such as SO2 or NOx due to a
higher immediacy of the results (Iwata et al., 2010). We suspect similar depen-
dence patterns for these alternative measures. Thus, social and environmental
dimension need to be addressed jointly by considering their heterogeneous in-
terdependence for the transition into a sustainable future.
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Table A1: Country groups by level of income; number of countries.

High-income Middle-income Low-income

Australia Albania Afghanistan Papua New Guinea
Austria Algeria Angola Philippines
Bahrain Argentina Bangladesh Rwanda
Belgium Armenia Benin Senegal
Canada Azerbaijan Bhutan Sierra Leone
Chile Belarus Bolivia Solomon Island
Croatia Bosnia and Herzegovina Burkina Faso Somalia
Cyprus Botswana Burundi Sudan
Czech Republic Brazil Cambodia Syria
Denmark Bulgaria Cameroon Tajikistan
Estonia China Cape Verde Tanzania
Finland Colombia Central African Republic Togo
France Costa Rica Chad Tunisia
Germany Dominican Republic Comoros
Greece Ecuador Djibouti Uganda
Hungary Equatorial Guinea Egypt Ukraine
Ireland Fiji El Salvador Uzbekistan
Israel Gabon Ethiopia Vietnam
Italy Georgia Gambia Yemen
Japan Guatemala Ghana Zambia
Kuwait Guyana Guinea Zimbabwe
Latvia Iran Guinea-Bissau
Lithuania Iraq Haiti
Luxembourg Jamaica Honduras
Netherlands Jordan India
New Zealand Kazakhstan Indonesia
Norway Kosovo Kenya
Oman Lebanon Kyrgyzstan

Libya Laos
Poland Malaysia Lesotho
Portugal Mauritius Liberia
Qatar Mexico Madagascar
Saudi Arabia Montenegro Malawi
Singapore Namibia Mali
Slovakia Paraguay Mauritania
Slovenia Peru Moldova
Spain Romania Mongolia

Russia
Sweden Serbia Morocco
Switzerland South Africa Mozambique
Trinidad and Tobago Sri Lanka Myanmar
United Arab Emirates Suriname Nepal
United Kingdom Thailand Nicaragua
United States of America Turkey Niger
Uruguay Turkmenistan Nigeria

Venezuela Pakistan

43 46 65

A.1 Specifications for high-income countries

This section displays the AIC and BIC levels for different choices of the
marginals and copula in Table A2-A4, plot of the model residuals for selected
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setting in Figure A12, the respective parameter estimates (Table A5-A8) and
splines (Figure A13-A16) for the distribution parameter of the marginals θ1−θ4
and several alternative country cases in Table A9.

Table A2: AIC and BIC values for alternative choices of the marginal dis-
tribution: variable GINI, high-income countries. We only include marginal
distributions that converge.

AIC BIC
Normal 4292.75 4485.35
Gumbel 4341.96 4541.87

rotated Gumbel 4327.22 4522.37
Log Normal 4285.79 4477.27

Dagum 62881.91 63239.01

Table A3: AIC and BIC values for alternative choices of the marginal dis-
tribution: variable carbon, high-income countries. We only include marginal
distributions that converge.

AIC BIC
Normal 4070.38 4262.20
Gumbel 4247.25 4440.75

rotated Gumbel 3999.47 4185.55
Log Normal 3958.81 4150.05

Table A4: AIC and BIC values for alternative copula specifications; high-
income countries. We only include marginal distributions that converge.

AIC BIC
N 7643.95 8152.33
F 7655.84 8142.45

AMH 8096.28 8519.15
FGM 8051.36 8472.11
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Figure A12: Histogram and Q-Q Plot for model residuals for high-income
countries

Table A5: High-income countries: equation for parameter θ1 of the marginal
distribution of GINI

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.211 0.057 38.519 0.000

Manu 0.009 0.001 12.051 0.000
Serv 0.016 0.001 19.763 0.000
Agri 0.027 0.003 10.754 0.000

Urban -0.000 0.000 -0.963 0.336
fossil 0.002 0.000 10.984 0.000
polity -0.016 0.001 -17.007 0.000
Smooth components’ approximate significance:

edf Ref.df Chi.sq
s(GDP) 8.198 8.744 350.3 <2e-16
s(Year) 7.640 8.440 192.7 <2e-16
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Figure A13: Spline for GDP and year for parameter θ1 for high-income coun-
tries

Table A6: High-income-countries: equation for parameter θ2 of the marginal
distribution of carbon

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.447 0.173 14.183 0.000

Manu 0.002 0.002 0.989 0.323
Serv -0.010 0.002 -4.774 0.000
Agri -0.052 0.007 -7.651 0.000

Urban 0.008 0.001 12.191 0.000
fossil 0.004 0.001 6.972 0.000
polity -0.027 0.003 -8.325 0.000
Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value
s(GDP) 8.825 8.981 613.6 <2e-16
s(Year) 2.430 3.063 172.8 <2e-16
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Figure A14: Spline for GDP and year for θ2 for high-income countries
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Table A7: High-income countries: equation for parameter θ3 of the marginal
distribution of carbon

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.577 0.462 3.413 0.001

Manu -0.063 0.008 -8.217 0.000
Serv -0.068 0.005 -12.323 0.000
Agri -0.102 0.022 -4.563 0.000

Urban 0.008 0.003 3.138 0.002
fossil 0.007 0.002 4.135 0.000
polity 0.035 0.008 4.201 0.000
Smooth components’ approximate significance:

edf Ref.df Chi.sq
s(GDP) 8.498 8.918 141.37 < 2e-16
s(Year) 3.564 4.442 60.07 1.04e-11
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Figure A15: Spline for GDP and year for θ3 for high-income countries
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Table A8: High-income countries: equation for parameter θ4 of the marginal
distribution of GINI

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.697 0.482 -1.447 0.148

Manu -0.006 0.007 -0.896 0.370
Serv -0.018 0.005 -3.274 0.001
Agri 0.053 0.030 1.742 0.081

Urban 0.020 0.002 8.304 0.000
fossil -0.014 0.002 -8.953 0.000
polity -0.021 0.008 -2.547 0.011
Smooth components’ approximate significance:

edf Ref.df Chi.sq
s(GDP) 8.785 8.975 154.47 < 2e-16
s(Year) 7.620 8.466 53.84 1.46e-08
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Figure A16: Spline for GDP and year for θ4 for high-income countries

Table A9: Additional country cases: high-income countries, with the respective
choices of the variables year, polity and fossil (the remaining covariates are
set to their actual value). In the last four columns: Kendall’s τ (K’s τ) and
the probability of being below the threshold for GINI and carbon and in the
socially and environmentally sustainable (SES) area in the specific setting.

Country year polity fossil K’s τ TH TH SES
GINI carbon Space

France 1997 10 52.9 0.483 0.021 0 0
France 2008 9 50.84 0.714 0.001 0 0
France 2009 9 50.85 0.617 0 0 0
France 2015 9 46.49 0.753 0.003 0 0
France 2015 9 80 0.362 0.002 0 0
France 2015 9 10 0.918 0.01 0 0
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France 2015 10 46.49 0.712 0.007 0 0
France 2015 3 46.49 0.902 0 0 0
Australia 1997 10 93.51 -0.237 0.18 0 0
Australia 2008 10 94.35 0.597 0.215 0 0
Australia 2009 10 95.51 0.5 0.261 0 0
Australia 2015 10 89.63 0.606 0.16 0 0
Australia 2015 10 50 0.879 0.251 0 0
Australia 2015 10 10 0.964 0.491 0.001 0.001
Australia 2015 9 89.63 0.66 0.125 0 0
Australia 2015 3 89.63 0.865 0.01 0 0
United Kingdom 1997 10 86.72 -0.433 0.036 0 0
United Kingdom 2008 10 90.18 -0.152 0.013 0 0
United Kingdom 2009 10 87.37 -0.253 0 0 0
United Kingdom 2015 10 80.35 0.106 0.037 0 0
United Kingdom 2015 10 50 0.589 0.056 0 0
United Kingdom 2015 10 10 0.875 0.161 0 0
United Kingdom 2015 9 80.35 0.203 0.022 0 0
United Kingdom 2015 3 80.35 0.65 0 0 0
Switzerland 1997 10 57.21 0.556 0.009 0 0
Switzerland 2008 10 52.51 -0.651 0 0 0
Switzerland 2009 10 53.24 -0.609 0 0 0
Switzerland 2015 10 50.17 -0.621 0 0 0
Norway 1997 10 54.57 -0.892 0.912 0 0
Norway 2008 10 61.67 -0.929 0.915 0 0
Norway 2009 10 63.11 -0.936 0.891 0 0
Sweden 1997 10 35.64 0.588 0.52 0 0
Sweden 2008 10 33.11 0.925 0.487 0 0
Sweden 2009 10 31.98 0.918 0.431 0 0
Sweden 2015 10 25.12 0.916 0.309 0 0
Chile 1997 8 74.66 -0.62 0.274 0 0
Chile 2008 10 75.18 -0.74 0.381 0 0
Chile 2009 10 73.47 -0.758 0.363 0 0
Chile 2015 10 74.65 -0.646 0.267 0 0
Canada 1997 10 74.74 -0.073 0.093 0 0
Canada 2008 10 75.08 0.67 0.386 0 0
Canada 2009 10 75.07 0.583 0.172 0 0
Canada 2015 10 74.09 0.811 0.155 0 0
Canada 1997 10 74.74 -0.073 0.093 0 0
Canada 2008 10 75.08 0.67 0.386 0 0
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Canada 2009 10 75.07 0.583 0.172 0 0
Canada 2015 10 74.09 0.811 0.155 0 0
Oman 2010 -8 100 -0.513 0 0 0
Bahrain 2014 -10 99.37 -0.331 0.05 0 0
Qatar 2013 -10 100 -0.888 0.62 0 0
United Arab Emirates 2008 -8 99.93 0.167 0.493 0 0
Saudi Arabia 2013 -10 99.57 -0.613 0.435 0 0

A.2 Specifications for middle-income countries

This section displays the AIC and BIC levels for different choices of the
marginals and copula in Table A10-A12, plot of the model residuals for the
selected setting in Figure A17, the respective parameter estimates (Table
A13-A16) and splines (Figure A18-A21) for the distribution parameter of the
marginals θ1 − θ4 and several alternative country cases in Table A17.

Table A10: AIC and BIC values for alternative choices of the marginal distri-
bution: variable GINI, middle-income countries. We only include marginal
distributions that converge.

AIC BIC
Normal 4248.93 4414.47
Gumbel 4264.29 4449.05

rotated Gumbel 4271.37 4427.94
Log Normal 4254.86 4420.91

Table A11: AIC and BIC values for alternative choices of the marginal distri-
bution: variable carbon, middle-income countries. We only include marginal
distributions that converge.

AIC BIC
Normal 4248.93 4414.47
Gumbel 4264.29 4449.05

rotated Gumbel 4271.37 4427.94
Log Normal 4254.86 4420.91
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Table A12: AIC and BIC values for alternative copula specifications; middle-
income countries. We only include marginal distributions that converge.

AIC BIC
N 5362.75 5763.16

G90 154799.67 155218.74
G270 5428.51 5895.59

F 5357.09 5771.30
AMH 5669.03 5988.71
FGM 5631.33 5946.47
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Figure A17: Histogram and Q-Q Plot for model residuals for middle-income
countries
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Table A13: Middle-income countries: equation for parameter θ1 of the marginal
distribution of GINI

Estimate Std. Error z value Pr(>|z|)
(Intercept) 44.684 2.711 16.485 0.000

Manu 0.127 0.034 3.749 0.000
Serv 0.199 0.035 5.641 0.000
Agri -0.030 0.043 -0.693 0.488

Urban -0.014 0.015 -0.928 0.353
fossil -0.181 0.008 -22.081 0.000
polity 0.118 0.026 4.476 0.000
Smooth components’ approximate significance:

edf Ref.df Chi.sq
s(GDP) 8.348 8.788 190.4 <2e-16
s(Year) 5.136 6.192 137.9 <2e-16
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Figure A18: Spline for GDP and year for θ1 for middle-income countries
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Table A14: Middle-income countries: equation for parameter θ2 of the marginal
distribution of carbon

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.137 0.137 0.998 0.318

Manu -0.000 0.002 -0.148 0.883
Serv -0.003 0.002 -1.677 0.093
Agri 0.001 0.003 0.390 0.696

Urban -0.007 0.001 -7.179 0.000
fossil 0.021 0.001 27.247 0.000
polity -0.021 0.003 -8.107 0.000
Smooth components’ approximate significance:

edf Ref.df Chi.sq
s(GDP) 8.769 8.953 473.88 < 2e-16
s(Year) 3.215 4.017 22.42 0.000172
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Figure A19: Spline for GDP and year for θ2 for middle-income-countries
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Table A15: Middle-income countries: equation for parameter θ3 of the marginal
distribution of GINI

Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.363 0.466 11.507 0.000

Manu -0.008 0.007 -1.206 0.228
Serv -0.045 0.005 -8.181 0.000
Agri -0.077 0.010 -8.065 0.000

Urban -0.021 0.002 -8.667 0.000
fossil 0.011 0.003 4.318 0.000
polity -0.010 0.008 -1.349 0.177
Smooth components’ approximate significance:

edf Ref.df Chi.sq
s(GDP) 5.881 7.027 266.39 < 2e-16
s(Year) 2.578 3.239 25.64 1.87e-05
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Figure A20: Spline for GDP and year for θ3 for middle-income countries
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Table A16: Middle-income countries: equation for parameter θ4 of the marginal
distribution of carbon

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.221 0.378 -0.584 0.559

Manu 0.003 0.007 0.408 0.683
Serv -0.011 0.004 -2.352 0.019
Agri -0.031 0.009 -3.510 0.000

Urban 0.000 0.003 0.043 0.966
fossil -0.003 0.002 -1.332 0.183
polity -0.006 0.009 -0.638 0.524
Smooth components’ approximate significance:

edf Ref.df Chi.sq
s(GDP) 7.956 8.673 79.615 1.12e-13
s(Year) 2.343 2.929 2.117 0.58
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Figure A21: Spline for GDP and year for θ4 for middle-income countries
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Table A17: Additional country cases: middle-income countries, with the re-
spective choices of the variables year, polity and possil (the remaining covari-
ates are set to their actual value). In the last four columns: Kendall’s τ (K’s τ)
and the probability of being below the threshold for GINI and carbon and in
the socially and environmentally sustainable (SES) area in the specific setting.

Country year polity fossil K’s τ TH TH SES
GINI carbon Space

Argentina 1997 7 86.9 -0.673 0 0 0
Argentina 2008 8 90.65 -0.626 0 0 0
Argentina 2009 8 89.61 -0.644 0 0 0
Argentina 2014 8 87.72 -0.584 0 0 0
Argentina 2014 8 50 -0.799 0 0 0
Argentina 2014 8 10 -0.871 0 0.012 0
Argentina 2014 10 87.72 -0.51 0 0 0
Argentina 2014 3 87.72 -0.7 0 0 0
Brazil 1997 8 56.68 -0.685 0 0 0
Brazil 2008 8 52.57 -0.796 0 0 0
Brazil 2009 8 51.32 -0.795 0 0 0
Brazil 2014 8 59.11 -0.828 0 0 0
Brazil 2014 8 80 -0.772 0 0 0
Brazil 2014 8 10 -0.892 0 0.002 0
Brazil 2014 10 59.11 -0.816 0 0 0
Brazil 2014 3 59.11 -0.853 0 0 0
Russia 2008 4 90.95 -0.593 0 0 0
Russia 2009 4 90.16 -0.372 0 0 0
Russia 2014 4 92.14 -0.595 0 0 0
Russia 2014 4 50 -0.813 0 0 0
Russia 2014 4 10 -0.877 0 0.001 0
Russia 2014 10 92.14 -0.323 0 0 0
Russia 2014 8 92.14 -0.438 0 0 0
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A.3 Specification for low-income countries

This section displays the AIC and BIC levels for different choices of the
marginals and copula in Table A18-A20, plot of the model residuals for the cho-
sen setting in Figure A22, the respective parameter estimates (Table A21-A24)
and splines (Figure A23-A26) for the distribution parameter of the marginals
θ1 − θ4 and several alternative country cases in Table A25.

Table A18: AIC and BIC values for alternative choices of the marginal dis-
tribution: variable GINI, low-income countries. We only include marginal
distributions that converge.

AIC BIC
Normal 5067.89 5243.94
Gumbel 5090.19 5276.19

rotated Gumbel 5187.36 5365.09
Log Normal 5092.13 5267.62

Table A19: AIC and BIC values for alternative choices of the marginal dis-
tribution: variable carbon, low-income countries. We only include marginal
distributions that converge.

AIC BIC
Normal 131.31 297.84
Gumbel 366.67 547.76

rotated Gumbel -15.09 155.12
Log Normal -52.12 101.75

Dagum 46077.65 46340.50

Table A20: AIC and BIC values for alternative copula specifications; low-
income countries. We only include marginal distributions that converge.

AIC BIC
F 3156.32 3570.82

AMH 3269.06 3644.73
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Figure A22: Histogram and Q-Q Plot for model residuals for low-income coun-
tries

Table A21: Low-income countries: equation for parameter θ1 of the marginal
distribution of GINI

Estimate Std. Error z value Pr(>|z|)
(Intercept) 57.667 2.533 22.768 0.000

Manu -0.198 0.040 -4.938 0.000
Serv -0.055 0.021 -2.585 0.010
Agri -0.322 0.032 -10.020 0.000

Urban 0.087 0.025 3.532 0.000
fossil -0.160 0.007 -22.650 0.000
polity 0.085 0.019 4.496 0.000
Smooth components’ approximate significance:

edf Ref.df Chi.sq
s(GDP) 8.393 8.871 334.91 <2e-16
s(Year) 3.165 4.017 95.11 <2e-16
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Figure A23: Spline for GDP and year for θ1 for low-income countries

Table A22: Low-income countries: equation for parameter θ2 of the marginal
distribution of carbon

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.020 0.183 -5.570 0.000

Manu 0.003 0.002 1.078 0.281
Serv -0.002 0.002 -0.839 0.401
Agri -0.004 0.002 -1.592 0.111

Urban -0.003 0.002 -1.628 0.103
fossil 0.020 0.001 36.995 0.000
polity -0.003 0.002 -1.114 0.265
Smooth components’ approximate significance:

edf Ref.df Chi.sq
s(GDP) 8.734 8.968 800.1 < 2e-16
s(Year) 2.555 3.234 50.9 1.4e-10
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Figure A24: Spline for GDP and year for θ2 for low-income countries
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Table A23: Low-income countries: equation for parameter θ3 of the marginal
distribution of GINI

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.597 0.578 2.763 0.006

Manu 0.017 0.008 2.210 0.027
Serv -0.021 0.007 -3.219 0.001
Agri -0.020 0.008 -2.369 0.018

Urban 0.012 0.004 2.774 0.006
fossil 0.006 0.002 3.519 0.000
polity 0.005 0.007 0.703 0.482
Smooth components’ approximate significance:

edf Ref.df Chi.sq
s(GDP) 8.124 8.756 56.03 9.66e-09
s(Year) 1.797 2.264 16.27 0.000636
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Figure A25: Spline for GDP and year for θ3 for low-income countries
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Table A24: Low-income countries: equation for parameter θ4 of the marginal
distribution of carbon

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.883 0.489 -7.943 0.000

Manu 0.018 0.008 2.342 0.019
Serv 0.014 0.006 2.387 0.017
Agri -0.015 0.007 -2.199 0.028

Urban 0.044 0.004 9.928 0.000
fossil 0.008 0.002 4.365 0.000
polity -0.019 0.007 -2.621 0.009
Smooth components’ approximate significance:

edf Ref.df Chi.sq
s(GDP) 8.867 8.988 260.67 < 2e-16
s(Year) 6.918 8.000 32.22 8.53e-05
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Figure A26: Spline for GDP and year for θ4 for low-income countries
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Table A25: Additional country cases: low-income countries, with the respective
choices of the variables year, polity and fossil (the remaining covariates are
set to their actual value). In the last four columns: Kendall’s τ (K’s τ) and
the probability of being below the threshold for GINI and carbon and in the
socially and environmentally sustainable (SES) area in the specific setting.

Country year polity fossil K’s τ TH TH SES
GINI carbon Space

India 1997 8 61.77 -0.137 0.001 0.11 0
India 2008 9 69.01 -0.232 0.002 0 0
India 2009 9 71.14 -0.251 0.002 0 0
India 2012 9 72.42 -0.406 0.004 0 0
India 2012 9 50 -0.211 0 0 0
India 2012 9 10 0.218 0 0.615 0
India 2012 10 72.42 -0.411 0.004 0 0
India 2012 3 72.42 -0.38 0.004 0 0
Egypt 2008 -3 96.16 -0.868 0.001 0 0
Egypt 2009 -3 96.4 -0.875 0.004 0 0
Egypt 2014 -4 97.93 -0.871 0.039 0 0
Egypt 2014 -4 50 -0.847 0 0 0
Egypt 2014 -4 10 -0.818 0 0.094 0
Egypt 2014 10 97.93 -0.874 0.028 0 0
Egypt 2014 3 97.93 -0.873 0.033 0 0
Bolivia 2008 8 82.6 -0.599 0.008 0 0
Bolivia 2009 7 80.96 -0.562 0.007 0.001 0
Bolivia 2014 7 84.15 -0.811 0.007 0.063 0
Bolivia 2014 7 50 -0.773 0 0.156 0
Bolivia 2014 7 10 -0.706 0 0.577 0
Bolivia 2014 10 84.15 -0.813 0.007 0.054 0
Bolivia 2014 3 84.15 -0.809 0.007 0.076 0

54


	Introduction
	Relationship between inequality and emissions
	Synergies
	Trade-offs
	Channels for trade-offs or synergies
	Decoupled
	Distributional description of the relation

	Bivariate distributional copula regression
	Bivariate copula regression
	Data
	Measures of carbon emissions and GINI
	Factors influencing the relationship
	Country groups and summary statistics
	Socially and environmentally sustainable space

	Model specification

	Results
	High-income countries
	Middle-income countries
	Low-income countries
	Summary

	Conclusions
	lit
	Appendix
	Specifications for high-income countries
	Specifications for middle-income countries
	Specification for low-income countries


