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Abstract. We investigate the regional distribution of the COVID-19 outbreak in Ger-

many. We use a novel digital mobility dataset, that traces the undertaken trips on Easter

Sunday 2020 and instrument them with regional accessibility as measured by the regional

road infrastructure of Germany’s 401 NUTS III regions. We identify a robust negative

association between the number of infected cases per capita and accessibility by road in-

frastructure, measured by the average travel time to the next major urban center. What

has been a hinderance for economic performance in good economic times, appears to be a

benevolent factor in the COVID-19 pandemic: bad road infrastructure. Using road infras-

tructure as an instrument for mobility reductions we assess the causal effect of mobility

reduction on infections. The study shows that keeping mobility of people low is a main

factor to reduce infections. Aggregating over all regions, our results suggest that there

would have been about 63,000 infections less on May 5th, 2020, if mobility at the onset of

the disease were 10 percent lower.
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1. Introduction

COVID-19 is a pandemic of immense dimension, bringing social and economic disruptions

worldwide. An array of research papers emerged in the economics literature within a relatively

short amount of time. This literature is mainly concerned with the impact that COVID-19 has

on different sectors, regions, and countries in terms of economic and societal implications.

With our study we go another way. We address regional factors that are related to the

differentiated spread of the disease in Germany. Specifically, we focus on the regional accessibility

of NUTS III regions (Kreise and kreisfreie Staedte) through road infrastructure measuring the

average travel time on roads towards the next major urban center (Oberzentrum). Since most

regions do not contain a major urban center, the metric assesses both the quality of the network

of regional roads as well as the connectivity with the next population hub. We argue that the

accessibility measure is an interesting explanatory variable for the spread of COVID-19 as an

instrument for mobility as well as in its own right (in reduced form).

In reduced-form regressions we show that there is a “benefit of remoteness”: If roads are bad

or absent it takes more time to visit distant relatives and friends, a feature, which naturally leads

to more social distancing already without the implementation of lockdown policies. Inferior road

infrastructure, which has been shown to be an impediment to regional development in “normal”

times (Krenz, 2019a, 2019b), thus turns out to be beneficial in times of a pandemic because it

prevents or reduces social interaction, in particular with people from other areas.

Mobility has been regarded as a key variable in the spread of the COVID-19 pandemic. Several

German newspapers as well as the Robert Koch Institute, the leading German health institution

in the fight against the disease, publish mobility data, gleaned from mobil phone users. The data

are used to assess how well the population obeys social distancing policies. Mobility, however,

is problematic as an explanatory variable for the spread of the disease because it is certainly

endogenous and measured with error. Reverse causality could be an issue when people reduce

mobility if the stock of infections and thus the probability to become infected increases. There

are also myriads of channels conceivable that may cause omitted variable bias.

For road infrastructure, in contrast, we are convinced that it matters for the spread of a

disease only because it alleviates mobility. In particular, it is not the mere presence of roads

that allows the virus to travel from place to place but the fact that (potentially infected) people

use roads to get in touch with other (potentially infected) people, an activity that we measure as
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mobility. In our regressions, due to data availability, we consider road infrastructure from 2018,

which is certainly exogenous to the spread of COVID-19 but at the same time highly correlated

with current infrastructure due to long times to build and low depreciation rates. The fact

that road infrastructure changes only very slowly over time explains also our confinement on

cross-sectional regressions.

The cross-sectional approach implies that we assess mobility on a particular point of time

and here we take Easter Sunday. Easter Sunday, celebrated on April 12th in 2020, happened

well after the closing of schools and the ban of big sports events on March 13 and after the

shutdown of non-essential shops, hotels, restaurants, and other service providers and the ban

of public gatherings of more than two people, on March 22nd in Germany. However, unlike

in other European countries, the German federal government never ordered their citizens to

stay at home. Some of the federal governments, in particular those with Southern borders

(Bavaria, Saarland, Baden-Wuerttemberg, Rhineland-Palatinate) implemented stricter policies

of social distancing with the most drastic measures, which came close to a curfew, in Bavaria.

Nevertheless many politicians as well as scientists were afraid of compliance in particular around

Easter were Germans are used to visit friends and relatives and to go on short-term holidays.

Since also the weather stations predicted sunny and pleasant weather around 20 degrees for

basically all German regions on Easter 2020, many politicians, among them chancellor Angela

Merkel, were alarmed and admonished their citizens in several speeches on Holy Thursday to

comply to the social distancing rules (e.g. Der Tagesspiegel, 2020).

As mobility measure we source data provided by the Robert Koch Institute and Humboldt

University Berlin (Mobility Monitor, 2020a), which is gathered from mobile phone data. The

data provides for each of the 401 German NUTS III regions the number of trips per day, measured

relative to the average number of daily trips in the same month of the previous year. Figure

1, gleaned from the data in Mobility Monitor (2020b), shows the smoothed average change of

mobility in Germany (compared to March 2019). We see that mobility declined by up to 40

percent and that most of the decline happened after enactment of the first set of policy measures

on March 13 and before enactment of the second (more drastic) set of policy measures on March

22. Since the end of March, mobility is mildly on the rise again. The fact that the greatest

increase of new COVID-19 cases happened from early to mid March, 2020 (RKI, 2020a) suggests

that at least part of the mobility reduction is an endogenous response to increasing and/or high
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infection rates. Maloney and Taskin (2020) show that for the U.S. and other countries, mobility

is strongly negatively associated with lagged COVID-19 cases, controlling for policy measures

(non-pharmaceutical interventions) and interpret these results as a causal effect of infections on

mobility.

Figure 1. Change in Mobility in Germany
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Change of mobility compared to March 2019, 7 day moving averages. Source: Mobility Monitor
(2020b).

In order to assess the causal effect of mobility on infections, we exploit the fact that there

is large variation in mobility reductions across the German regions. Large mobility reductions

are found in regions with good road infrastructure because people stayed at home on Easter

2020 and did not travel and move as much as they did in April 2019 (e.g. in Bavaria). On the

other hand, mobility reductions are low in regions with bad road infrastructure because travel

behaviour on Easter 2020 was not much different from traveling in 2019 due to remoteness and

the constant low opportunities to leave home and travel smoothly and quickly on road networks

(e.g. in East German regions). Especially, a Sunday in remote, low quality road infrastructure

areas is tough: busses might not go on Sundays or have much less frequency to go. In other

words: the travel restrictions for Easter 2020 apparently did not change much in remote areas’

population mobility but changed greatly in highly accessible regions.

Our identification strategy assumes that road infrastructure affects the regional spread of

COVID-19 infections only through its impact on the mobility of people. We instrument mobility

reduction with regional road infrastructure and estimate the impact of (instrumented) mobility

reduction on infections.

We are aware of one other study so far, which addresses the regional variation of COVID

infections in Germany. Mense and Michelsen (2020) show that the number of newly infected
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cases significantly depends on the population density per region, on commuter flows and on

rain days. Our study differs by focussing on the regional distribution of the stock of infected

cases per capita and by using regional road infrastructure as instrument for mobility in order

to make causal inferences. Chiou and Tucker (2018) argue that access to high-speed broadband

alleviates social distancing and work from home and show that people in U.S. regions with high-

speed internet (and with high income) are more likely to comply to social-distancing directives.

Kapoor et al. (2020) argue that people are less outgoing on rainy days and use (unexpected)

rainfall in U.S. regions to assess the impact of social distancing on COVID-19 infections. Dehning

et al. (2020) and Donsimoni et al. (2020) use epidemiological simulations to assess the impact

of social distancing interventions in Germany and conclude that the official interventions were

effective in curbing the spread of the disease (and, in case of Donsimoni et al.) necessary in

stopping the growth of infections. Greenstone and Nikam (2020) use an epidemiological model

to estimate the (huge) monetary benefit from social distancing that accrues through avoided

deaths.

2. Data

The Robert Koch Institute provides data on COVID-19 infection cases and death tolls down

to the level of NUTS III regions which are the German 401 district-free cities and districts

(Kreise und kreisfreie Staedte). We extract data on the total number of cases per region and

on the number of cases per 1000 inhabitants. The data are from May 5th, 2020, 23 days after

Easter Sunday. This ensures that time passed by regarding the incubation time, doctor’s visits,

testing and getting test results. Figure 2 displays in Panel A the total number of COVID-19

infections. It shows main hubs of infectious activity, like the region Heinsberg in the very West,

several regions in the South-West, South, and in city areas, like Berlin, Munich, Hamburg, and

Hannover. Panel B displays infections per capita (multiplied by a thousand). The map shows

that many regions in East Germany have low numbers of infections per capita, while Bavaria

and Baden-Wuertemberg in the South and South-West have the most infections per capita. It

also reveals that there is only a weak association between population density and infections per

capita. In particular, some large cities such as Berlin and Hannover display comparatively low

levels of infections per capita.
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Figure 2. COVID-19 Infections – Regional Distribution in Germany

(a) COVID-19 infections, total (b) COVID-19 infections per 1000
population

Note: The figure shows the regional distribution of COVID-19 infections across the German NUTS III regions
(district-free cities and districts). Data as of May, 5th, 2020 from RKI (2020a).

Our main explanatory variable is the accessibility of regions by means of road infrastructure

(Erreichbarkeit von Oberzentren) which is the average travel time by car (in minutes) from all

communities of a NUTS III region to the next major urban center. These data are obtained

from the German Federal Institute for Research on Building, Urban Affairs and Spatial Develop-

ment (BBSR, 2020) through its INKAR database (Indicators and Maps for Spatial and Urban

Development). Major urban centers (Oberzentren) are agglomerations of the highest level of

centrality. They are classified by functionality. In contrast to smaller agglomeration centers

(Mittel- and Unterzentren) they provide services and infrastructure that satisfy non-essential

and non-periodic needs such as theaters, museums, universities, special clinics, special shopping

centers, and administration centers. Usually, larger cities are classified as major urban center.

Germany consists of 401 NUTS III regions and by definition of the BBSR of 85 major urban

centers (Oberzentren). Notice that, by construction, the accessibility indicator is lowest (namely

zero = best accessibility) for cities that are classified as major urban centers and the indicator
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Figure 3. Accessibility by Road Infrastructure

(a)

Note: The figure shows the regional distribution of accessibility on road infrastructure across the German NUTS
III regions (district-free cities and districts), measured by travel time on roads (in minutes) to reach a major
urban center. Darker colors reflect higher travel times. Data for the year 2018 from the BBSR (2020).

increases with remoteness of the region. Figure 3 displays the accessibility of the German NUTS

III regions. It becomes apparent that especially in the East German regions, travel times are

higher. Travel times on roads are lower in the South, especially in Bavaria.

As regional control variables we source from the INKAR data base information on outward

job commuters in percent, the number of general practitioners (medical doctors) per 10000

population, and regional GDP per worker. We always use, for each explanatory variable, data

from the latest available year, which, for example, is from the year 2018 for accessibility. Since

these control variables are persistent characteristics of regions, values from the recent past are

good proxies for the present. We corroborate this claim by computing the correlations between

the latest available data and previous years’ data in Table A.4. These correlations are very

high, between 92 and 99 percent, strongly suggesting that past values are reliable proxies of a

region’s current performance. A description of the variables and sources can be found in Table
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Figure 4. Change in Mobility

(a)

Note: The figure shows the regional distribution of changes in mobility on Easter Sunday 2020 across the
German NUTS III regions (district-free cities and districts). Mobility change is defined as the percentage change
in mobility for a chosen day (here Easter Sunday 2020) as compared to the mobility on an average Sunday in
April 2019 (the previous year). Dark green colors reflect a small reduction or even an increase in the mobility
rate; light green colors reflect a large reduction in the mobility rate. Data from Mobility Monitor (2020a) by
Robert Koch Institute and Humboldt University Berlin.

A.1. Descriptive statistics are shown in Table A.2. Correlations between variables are shown in

Table A.3.

To measure mobility we use a novel dataset collected by the Robert Koch Institute and

Humboldt University Berlin (Mobility Monitor, 2020a). From the Mobility Monitor website

we extracted data on mobility profiles of individuals from the German NUTS III regions for

Easter Sunday 2020 across the 401 NUTS III regions. The Mobility Monitor website displays

in an online monitor ’how much more or less are people on the go’, that is the change in trip

frequency as compared to an average day of the same month in the year 2019. The mobility

data are constructed from mobile phone data and make use of the information on the number

of trips within and between areas (NUTS III regions) but do not trace single individuals and

their movements. This is important, as every institution in the process of the data generation

and aggregation process guarantees full anonymity. According to Mobility Monitor (2020a), ”a
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movement is registered by the mobile phone provider when an individual switches cell tower

areas, and ends when the person becomes stationary again. The start- and end-tower can be the

same.” The data they use comes from the German Telekom and from Telefonica and is provided

by the firms Teralytics and Motionlogic.

Figure 4 displays the change in mobility for Easter Sunday 2020 as compared to an average

Sunday in April 2019. As can be seen, the highest reductions in mobility as compared to

the previous year (light green colours) took place in the South German regions, especially in

Bavaria. The smallest reductions or even small increases in mobility took place in the East

German regions.

In Table A.6 we collect the top 10 of the German regions regarding i) the highest number

of total COVID-19 infections, ii) the highest numbers of infections per capita, iii) the largest

decreases in mobility between Easter 2020 and April 2019, and iv) regions with high accessibility

(few minutes of travel time). It becomes apparent that the regions with the highest numbers

of infection cases per capita are located in the South, in Bavaria (BY) especially. Mobility

reductions are also largest (more negative value) in various regions of Bavaria. In Table A.7

we present the bottom 10 regions according to the same criteria, but with lowest mobility

reductions and the worst road accessibility. The ranking shows that the number of cases per

capita is especially low for some East German regions, located in the federal states of Sachsen-

Anhalt (SA), Brandenburg (BB), and Mecklenburg-Vorpommern (MV), as well as for regions

in Northern Germany, located in Schleswig-Holstein (SH) and Niedersachsen (N). Likewise, the

lowest values for mobility reductions and the worst accessibility by road infrastructure are also

found in the East and the North of Germany.

3. Empirical Analysis

3.1. The Benefit of Remoteness. We first run a regression of the impact of road infrastruc-

ture (accessibility) on the log of the number of infected cases per capita (times 1000). The

regression equation is given by

log(Cases− per − capita)r = β0 + β1Accessibilityr +Xrβ2 + θi + ǫr (1)
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where r is the NUTS III region, X is a vector of explanatory factors including job commuters as

a share of employees, general practitioners per population, GDP per worker, and metropolitan

area, θ are regional fixed effects, and ǫ is an idiosyncratic error term.

The results are shown in Table 1. In the first column, infection cases are regressed only on

accessibility. We see a negative relationship that is statistically highly significant. A larger

degree of remoteness per NUTS III region by 1 more minute travel time on roads to reach

a major urban center is associated with a decrease in the number of per-capita infections by

about 1.18 percent. In column 2 we add further explanatory variables at NUTS III level. We

see an increase in the coefficient for accessibility (in absolute terms) of up to -1.66 percent.

Per capita infections are significantly positively associated with the share of job commuters

(therewith supporting evidence from Mense and Michelsen, 2020), as well as with regional GDP

and general practitioners.

Table 1. The Impact of Accessibility by Road Infrastructure on COVID-19 Cases in Germany

(1) (2) (3) (4) (5)
Dependent variable: log(Cases-per-capita)

Accessibility -0.0118*** -0.0166*** -0.0166*** -0.0085*** -0.0056**
(0.0022) (0.0025) (0.0025) (0.0022) (0.0022)

GDP 0.0133*** 0.0131*** 0.0003 -0.0002
(0.0025) (0.0024) (0.0026) (0.0026)

Medical doc 0.1078*** 0.1113*** -0.008 -0.0624
(0.0401) (0.041) (0.0345) (0.0417)

Job commuters 0.0135*** 0.0138*** 0.0062*** 0.0041**
(0.0021) (0.0022) (0.0020) (0.0020)

Metropolitan area 0.1269 0.0579 0.1416
(0.1278) (0.1457) (0.1521)

Laboratory tests 0.1759*** 0.0897***
(0.0132) (0.021)

Regional Fixed Effects no no no no yes
Number of observations 401 401 401 401 401
R2 0.070 0.205 0.206 0.458 0.504

Note: The table displays estimates for the impact of regional road infrastructure (accessibility) on infected
cases in Germany. The dependent variable is the logarithm of the number of infected COVID-19 cases
per capita. The regional level of the analysis is the district-free cities and districts (NUTS III regions) in
Germany. Data sources: Robert Koch Institute, INKAR/ BBSR. Robust standard errors were computed
and are displayed in parentheses. *** denotes significance at the 1 percent level, ** denotes significance
at the 5 percent level, * denotes significance at the 10 percent level.
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In column (3) we add a dummy for metropolitan area (defined as the 10 largest cities in

Germany according to population size). We see that, controlling for accessibility and other

confounders, metropolitan areas contribute insignificantly to infections per capita. In column

(4) we add the percentage of positive results from laboratory tests, a statistic, which is available

at the state (Bundesland) level. See Table A.5 for a list of testing levels, and the share of

positive tests. As can be seen, the size of all confounders and the coefficients of regional GDP

and medical docs become statistically insignificant. The coefficient of medical docs switches

sign, indicating that the previous positive association with infections (in specification 2 and 3)

took up the impact of laboratory tests. Most importantly, the coefficient on accessibility remains

significantly negative, albeit of smaller size. Including further fixed effects at the level of regions

of North, North-West, North-East, West, South-East and South (South Germany as reference

category) further reduces the coefficient of accessibility but it remains statically significant and

negative (-0.0057, and p-value of 0.012). According to the point estimate of specification (6), 1

more minute travel time on roads to reach a major urban center is associated with a decrease

in the number of per-capita infections by about 0.57 percent. This means that a one standard

deviation increase in remoteness explains a 9 percent lower level of infections per capita.

3.2. The Effect of Mobility Reduction on Infections. To identify the effect of mobility

on the number of infected COVID-19 cases, we follow the strategy outlined in Section 1. We

use the accessibility measure, i.e. the travel time on road infrastructure to reach a major urban

center to instrument for changes in mobility on Easter Sunday 2020, compared to an average

Sunday in April 2019, denoted by ∆Mobility. For the IV regressions, we estimate the following

equations:

log(Cases− per − capita)r = γ0 + γ1 ̂∆Mobilityr +Xrγ2 + θi + ǫr (2)

∆Mobilityr = δ0 + δ1Accessibilityr +Xrδ2 + θi + ηr. (3)

The results are shown in Table 2, along with simple OLS regressions of the log of infected cases

per capita on mobility. The results in columns 1 to 5 suggest a negative association between

the change of mobility and infections, which is robust to the addition of potential confounders

(regional GDP, general practitioners, job commuters, a metropolitan dummy, laboratory tests

and regional fixed effects). The results suggest that, ceteris paribus, the regions with the greatest
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reduction of mobility on Easter Sunday have accumulated the largest number of infections. The

intuition for this result is straightforward. In regions where mobility reduction is greatest,

mobility was greatest before the reduction and thus contributed to a faster spread of the disease

and a higher stock of infections as of May 2020. However, the results in columns 1 to 5 regarding

the mobility measure have to be interpreted carefully since, as argued in the Introduction,

mobility is likely an endogenous regressor.

Table 2. The Impact of Mobility on COVID-19 Cases in Germany

(1) (2) (3) (4) (5) (6) (7)
Dependent variable:
Log(Cases-per-capita)

OLS OLS OLS OLS OLS First Stage IV

∆ Mobility -0.0245*** -0.0224*** -0.0223*** -0.0107*** -0.0071*** -0.0384**
(0.0022) (0.0024) (0.0024) (0.0023) (0.0026) (0.0193)

Accessibility 0.1469***
(0.049)

GDP 0.0088*** 0.0088*** 0.0002 0.0004 -0.0126 -0.0007
(0.0023) (0.0023) (0.0022) (0.0023) (0.0567) (0.0024)

Medical doc 0.0012 0.0022 -0.0462 -0.0769* -0.8061 -0.0934*
(0.0419) (0.0428) (0.036) (0.0421) (0.7797) (0.0495)

Job commuters 0.0056*** 0.0057*** 0.0025 0.0018 0.0015 0.0042*
(0.0017) (0.0018) (0.0017) (0.0017) (0.0393) (0.0022)

Metropolitan area 0.0350 0.0251 0.0977 -7.2473*** -0.137
(0.1109) (0.1309) (0.1457) (2.5863) (0.2125)

Laboratory tests 0.1552*** 0.0859*** -0.5166 0.0698***
(0.0147) (0.0203) (0.4528) (0.0266)

Regional Fixed Effects no no no no yes yes yes
Number of observations 401 401 401 401 401 401 401
R2 0.276 0.3090 0.3091 0.468 0.506 0.515 0.287
F-Stat 39.26

Note: The table displays estimates for the impact of the change in mobility (instrumented by regional road
infrastructure) on infected cases per capita in Germany. The dependent variable is the log of the number
of infected COVID-19 cases per 1000 population. The regional level of the analysis are the district-free
cities and districts (NUTS III regions) in Germany. Data sources: Mobility Monitor, Robert Koch Institute,
Humboldt University Berlin, INKAR/ BBSR. Robust standard errors were computed and are displayed in
parentheses. *** denotes significance at the 1 percent level, ** denotes significance at the 5 percent level, *
denotes significance at the 10 percent level.

Results from the first stage regressions of mobility on accessibility via road infrastructure are

shown in column (6) of Table 2. We obtain a significantly positive effect of accessibility and the

F-statistic of 39.26 indicates a strong instrumental variable. For the intuition it helps to recall

the metric of these variables. According to the point estimate, an increase of travel time to the
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next urban center by 1 minute explains a 0.15 percent increase of ∆ mobility. In other words, a 1

minute reduction in travel time explains a 0.15 decline of the mobility change (a larger mobility

reduction) on Easter Sunday 2020 (compared to 2019). Of the included potential confounders,

only metropolitan area exerts a statistically significant influence on mobility. Intuitively, it

makes sense that mobility reduction is higher in metropolitan areas because pre-disease mobility

was higher (having access to busses, subways, roads, etc.). It also agrees with our intuition

that medical docs, job commuters, and laboratory tests do not influence mobility. However,

it could be argued that regional GDP (from 2017) may have a (mild) impact on regional road

infrastructure (from 2018) and that the disease may spread faster among poorer individuals,

implying that it would be more prevalent in poorer regions. It is thus important that we

condition on regional GDP and shut down this potential backdoor path of causality. However,

as seen in column (6), we do not find a significant impact of regional GDP on mobility.

The IV estimation results are shown in column (7). The mobility change significantly and

negatively impacts the number of infected cases per capita. An increase in the change of mobility

value by 1 percent (for Easter Sunday 2020 as compared to an average Sunday in April 2019)

explains a decline in the number of infected cases per capita by 3.8 percent. Again, it is helpful

to recall the metric of the variables and that mobility declined by more in the well-connected

regions where pre-pandemic mobility was highest. The results thus indicate that infections

would have been by 3.8 percent higher if mobility at the outbreak of the pandemic would have

been 1 percent higher than it actually was. Or, in other words, if the pre-pandemic mobility in

a region was one standard deviation larger, infections per capita would have been 58 percent

higher.

The mobility coefficient in the IV regressions is substantially larger than the coefficient in

OLS regressions. This feature indicates that reverse causality is not the greatest cause of bias in

the OLS regressions. Aside from measurement error, the OLS estimate is biased downward by

omitted variables that either affect mobility positively and infections negatively, or vice versa. It

is easy to imagine omitted variables of this kind (like the availability of masks). The IV approach

overcomes this problem and suggests a large effect of mobility on infections. Of the included

confounders, laboratory tests remain strongly positively associated with infections and medical

docs and job commuters remain (weakly) significant with the expected signs (the p-value for job

commuters is 0.061).
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Table 3. Simulations: Effects of a 1 Percent Pre-Disease Mobility Reduction on Infections

(1) (2) (3) (4) (5) (6) (7)

Cases Population Cases 3.84 percent New cases Counterfactual Counterfactual
per 1000 decrease per 1000 total cases reduction of cases

Berlin 6042 3754418 1.6093 0.0618 1.5475 5810 232
Cologne 2323 1085664 2.1397 0.0822 2.0575 2234 89
Dresden 570 554649 1.0277 0.0395 0.9883 548 22
Ostallgaeu 489 140316 3.485 0.1338 3.3512 470 19
Goettingen 765 328074 2.3318 0.0895 2.2422 736 29
Hamburg 4644 1841179 2.5223 0.09686 2.4254 4466 178
Muenchen 5846 1471508 3.9728 0.1526 3.8202 5622 224
Rosenheim Landkreis 2081 260983 7.9737 0.3062 7.6675 2001 80

Note: The table shows the number of total cases, the size of the population, cases-per-1000 inhabitants,
the impact of a 3.8 percent decline in the cases-per-1000 ratio, the resulting counterfactual cases-per-1000-
inhabitants, the implied counterfactual number of total cases, and the counterfactual decline of infections.

In Table 3 we report results from simple calculations of the impact of mobility change on

infections for selected German regions. For Berlin, for example, the regressions predict that if

mobility at the onset of the disease were 1 percent lower (such that the mobility reduction on

Easter Sunday 2020 were 1 percent weaker), then the number of COVID-19 infections would

have been 5810 instead of 6042 on May, 5th, which means a decrease of 232 cases. An overview

of the respective mobility and accessibility values is given in Table A.8 in the Appendix. In

total, for entire Germany, the regressions predict that if mobility at the onset of the disease

were 1 percent lower, then instead of the 163,860 cases as of May 5th 2020, there would have

been 157568 cases in total, i.e. 6292 cases less. In other words, if mobility were 10 percent lower,

there would have been 62,920 cases less.

4. Conclusion

In this paper, we analyzed the regional distribution of COVID-19 infections in Germany and

the regional factors that explain its distribution. We made use of a novel, innovative digital

technology dataset which traces mobility profiles of the inhabitants of the 401 German regions.

Our analysis showed that COVID-19 infections are spread unevenly across regions. There exists

a distinct divide between the East and North German regions - which show lower infection rates

- and the West and South German regions with higher infection rates.

We showed that in times of pandemics there exists a benefit of remoteness. Controlling for

potential confounders, regions that are far away from major urban centers (by means of travel

time on roads) display less infections. In order to make inferences on the causal effect of mobility
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reductions on infections, we use road infrastructure as an instrument for the change of mobility

(on Easter Sunday 2020 compared to an average Sunday in 2019). Our results show that not

being very mobile is a benevolent factor for reducing COVID-19 infection rates. According to

the IV regression results, 1 percent less mobility reduction, which means a one percent lower

mobility level at the outbreak of the disease, explains a decline of infections by 3.8 percent.

Reaching other people, urban centers or meeting points contributes to an increase in infection

rates. Social distancing, here conceptualized as bad accessibility and mobility, appears to be a

main factor to hold infection rates down.
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Appendix

Table A.1. Description of variables

Variable Description and Measurement Data

Cases Infected COVID-19 cases as
of 5.5.2020, per NUTS III re-
gion, total

Robert Koch Institute

Cases-per-pop Infected COVID-19 cases
per 1000 population as of
5.5.2020, per NUTS III
region, logged measure

Robert Koch Institute

Digital Mobility Data Percentage change of trips un-
dertaken on Easter Sunday
(12.4.2020) compared to aver-
age Sunday in April in 2019,
at NUTS III level

COVID-19 Mobility Monitor by
Robert Koch Institute and Hum-
boldt University Berlin, data dis-
tributed and analyzed by Teralytics
and Motionlogic

Accessibility (Erreichbarkeit von

Oberzentren)
Average travel time from all
communities of the NUTS III
region by car to next ag-
glomeration centre, in min-
utes, 2018

INKAR / BBSR based on Erreich-

barkeitsmodell by BBSR

GDP GDP per worker in thousand
euros, in NUTS III region,
2017

INKAR / BBSR based on Ar-

beitskreis Volkswirtschaftliche

Gesamtrechnung der Laender,
Eurostat Regio Database

Medical doc General pratitioners per
10000 population (Allge-
meinarzt), in NUTS III
region, 2017

INKAR / BBSR based on Kasse-

naerztliche Bundesvereinigung

Job commuters Job commuters (outward) as a
share to social security related
employees at place of living, in
percent, in NUTS III region,
2017

INKAR / BBSR based on Pendler-

matrizen der Bundesagentur fuer

Arbeit

Metropolitan area The 10 largest German cities
according to their population
size, i.e. Berlin, Hamburg,
Munich, Cologne, Frankfurt
am Main, Stuttgart, Duessel-
dorf, Leipzig, Dortmund, Es-
sen

Regional Database GENESIS

Laboratory tests Positive Corona test results
per Bundesland, in percent

Robert Koch Institute
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Table A.2. Descriptive Statistics

Variable Mean Std. Dev. Min Max Obs.

Cases 408.6284 570.7205 13 6042 401
Cases-per-pop 1.994804 1.565289 .2789 15.4336 401
Digital Mobility Data -26.07481 15.34322 -71 47 401
Accessibility 22.56359 16.03361 0 69 401
GDP 69.25614 12.07636 51.83299 163.5925 401
Medical doc 4.180509 .7015702 2.042603 6.210037 401
Job commuters 64.0552 16.72825 13.88321 88.59399 401
Metropolitan area 0.0249 0.1561 0 1 401
Laboratory tests 6.7768 2.4075 1.9 10.7 401

Table A.3. Correlation Matrix

Cases Cases-per-pop GDP Med doc Commuters Mobility Metropol Laboratory
Cases-per-pop 0.3749
GDP 0.3056 0.1737
Med doc -0.1801 0.0539 -0.2093
Commuters -0.1622 0.1096 -0.0879 0.1378
Mobility -0.1589 -0.4165 -0.3015 -0.1387 -0.0080
Metropol 0.5757 -0.0067 0.2070 -0.1951 -0.3267 -0.0754
Laboratory 0.2538 0.5061 0.3896 0.1188 0.1341 -0.5767 0.0328
Accessibility -0.2060 -0.1772 -0.2856 0.1274 0.5047 0.3193 -0.2253 -0.2388

Table A.4. Correlation Matrix – Check for Persistence

Accessibility 2018 GDP 2017 Commuters 2017 Med doc 2017
Accessibility 2012 0.9210
GDP 2016 0.9907
Commuters 2016 0.9997
Med doc 2016 0.9781
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Table A.5. Laboratory Tests on SARS-CoV-2 as of 6.5.2020

Bundesland Total number Number positive Number positive Test share Population
results percent share

Baden-Wuerttemberg 63.092 6.763 10.7 7.77 13.32
Bayern 203.636 17.180 8.4 25.09 15.73
Berlin 66.255 3.563 5.4 8.16 4.52
Brandenburg 13.033 582 4.5 1.61 3.02
Bremen 1.126 21 1.9 0.14 0.82
Hamburg 6.540 433 6.6 0.81 2.21
Hessen 34.021 3.193 9.4 4.19 7.54
Mecklenburg-Vorpommern 5.416 112 2.1 0.67 1.94
Niedersachsen 66.917 3.247 4.9 8.25 9.6
Nordrhein-Westfalen 234.069 15.917 6.8 28.84 21.57
Rheinland-Pfalz 45.520 3.045 6.7 5.61 4.91
Saarland 300 14 4.7 0.04 1.19
Sachsen 15.336 772 5.0 1.89 4.91
Sachsen-Anhalt 31.341 833 2.7 3.86 2.66
Schleswig-Holstein 10.923 366 3.4 1.35 3.48
Thueringen 14.037 475 3.4 1.73 2.58
unknown 144.454 12.965 9.0 - -
Average - - 7.3 - -
Total 956.016 69.481 7.3 100 100

Note: Data from the Robert Koch Institute (RKI, 2020c) and Regional Database GENESIS. Last two
columns: computations by the authors. The percentage of positive tests displayed in the middle column
is taken for regressions.

Table A.6. The ’Top 10’ for Variables across Regions

Cases Cases per pop Mobility Accessibility

1 Berlin (B) Tirschenreuth (BY) Berchtesgadener Land (BY) Wunsiedel i.F. (BY)
2 Muenchen (BY) Wunsiedel i.Fg. (BY) Lindau (BY) RV Saarbruecken (S)
3 Hamburg (H) Neustadt a.d.Waldn. (BY) Bad Kissingen (BY) Altoetting (BY)
4 Koeln (NW) LK Rosenheim (BY) Erding (BY) Kulmbach (BY)
5 Rosenheim LK (BY) Straubing (BY) Garmisch Partenkirchen (BY) Dillingen a.D (BY)
6 Hannover (N) Rosenheim (BY) Frankfurt Oder (BB) Frankenthal Pf. (RP)
7 Aachen (NW) Weiden i.d.OPf. (BY) Ostallgaeu (BY) Oberallgaeu (BY)
8 Heinsberg (NW) Heinsberg (NW) Regen (BY) Herne (NW)
9 Esslingen (BW) Traunstein (BY) Rottal-Inn (BY) Deggendorf (BY)
10 Ludwigsburg (BW) Hohenlohekreis (BW) Miesbach (BY) Coburg (BY)

Note: The table displays the 10 NUTS III regions that have i) the highest values for the number of total COVID-
19 cases, ii) the highest values for the number of COVID-19 cases per 1000 population, iii) the largest decreases
in mobility as compared to April 2019, iv) the best regional accessibility which means a very low travel time in
minutes to reach an urban center (excluding NUTS III regions that are classified as major urban center with
zero travel time). Data sources: Mobility Monitor by Robert Koch Institute and Humboldt University Berlin,
INKAR/ BBSR.
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Table A.7. The ’Bottom 10’ for Variables across Regions

Cases Cases per pop Mobility Accessibility

1 Suhl (TH) Mansfeld-Suedh. (SA) Brandenburg a.d.H. (BB) Luechow D. (N)
2 Emden (N) Wilhelmshaven (N) Barnim (BB) Stendal (SA)
3 Luechow D. (N) Uckermark (BB) Jerichower Land (SA) Elbe-Elster (BB)
4 Eisenach (TH) Rostock LK (MV) Saalekreis (SA) Dithmarschen (SH)
5 Wilhelmshaven (N) Prignitz (BB) Suhl (TH) Prignitz (BB)
6 Prignitz (BB) Ludwigslust-P. (MV) Weimarer Land (TH) Ostprignitz-R. (BB)
7 Hildburghausen (TH) Ostholstein (SH) Salzlandkreis (SA) Uckermark (BB)
8 Wittmund (N) Friesland (N) Unstrut-H. K. (TH) Aurich (N)
9 Frankfurt Oder (BB) Emden (N) Schwerin (MV) G. Bentheim (N)
10 Pirmasens (RP) Salzlandkreis (SA) Emden (N)) Emsland (N)

Note: The table displays the 10 NUTS III regions that have i) the lowest values for the number of
total COVID-19 cases, ii) the lowest values for the number of COVID-19 cases per 1000 population, iii)
the lowest decreases, or even increases in mobility as compared to April 2019, iv) the worst regional
accessibility which means a high travel time in minutes to reach an urban centre. Data sources:
Mobility Monitor by Robert Koch Institute and Humboldt University Berlin, INKAR/ BBSR.

Table A.8. Mobility and Accessibility of Selected Regions

Mobility Accessibility

Berlin -25 0
Cologne -34 0
Dresden -17 0
Ostallgaeu -58 19
Goettingen -19 25
Hamburg -33 0
Muenchen -48 0
Rosenheim Landkreis -51 18
Jerichower Land 13 28
Ludwigslust-Parchim -2 42
Magdeburg -4 0

Note: The table shows mobility (the change in mobility between Easter Sunday 2020 and
an average Sunday in April 2019, in percent) and accessibility (the travel time in minutes
from all communities of a NUTS III region to reach the next major urban center) for
selected regions.
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