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1 Introduction

Most macroeconomic time series experience occasional breaks or trending behavior in

their unconditional variances. For instance, Sensier and van Dijk (2004) document that,

during the period 1959–1999, about 80% of 214 U.S. macroeconomic time series they

studied displayed breaks in their unconditional volatility. It is also well-known that

volatilities of several macroeconomic series were significantly lower during the period

1984–2007 than in earlier decades, a phenomenon called the ‘Great Moderation’ (see, for

instance, Stock and Watson, 2003). However, business cycle volatilities rose again during

the recent global economic and financial crises. Whether the ‘great recession’ marks

the end of the Great Moderation or was just a short interruption within an ongoing

Great Moderation is still debated.1 In any case, the debate—or even the very notion of

Great Moderation for that matter—underscores the fact that time-varying volatility of

macroeconomic series is more of a rule rather than an exception.

The potential consequences of variance shifts on univariate unit root tests have been

investigated by, among others, Hamori and Tokihisa (1997), Kim et al. (2002), Cavaliere

(2004), and Cavaliere and Taylor (2007). These studies find that the (augmented)

Dickey-Fuller (Dickey and Fuller, 1979) tests have seriously distorted empirical sizes—

and, hence, provide deceptive inference—if volatility varies over time. The same problem

carries over to panel unit root tests (PURTs), as shown in Demetrescu and Hanck

(2012a,b) and Herwartz et al. (2016). In particular, widely applied PURTs such as those

suggested in Levin et al. (2002) and Breitung and Das (2005) are no longer pivotal if the

homoskedasticity assumption is violated (Herwartz et al., 2016).

To deal with the above problem, a few heteroskedasticity-robust PURTs have been

proposed recently. In consecutive papers, Demetrescu and Hanck (2012a,b) suggest

PURTs that are built on the so-called Cauchy estimator. As the sign function of Cauchy

instrumenting reduces the lagged level series to -1 and 1—irrespective of the underlying

time varying volatility—these tests are argued to be robust to heteroskedasticity.

Herwartz et al. (2016) show that the non-Cauchy version of the test in Demetrescu

and Hanck (2012a), which was initially proposed in Herwartz and Siedenburg (2008), is

robust to volatility shifts. Another heteroskedasticity-robust PURT has been suggested

by Westerlund (2014). This test utilizes the information contained in group-specific

1See, for instance, Gadea-Rivas et al. (2014) for a concise survey on this debate.
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variances.

While these heteroskedasticity-robust tests also remain pivotal under a fairly general

form of cross-sectional and serial correlation, they, however, do not work for detrended

data. Namely, available detrending schemes introduce nuisance parameters that affect

the limiting distribution of the tests under variance breaks (Herwartz et al., 2016;

Westerlund, 2014). This problem significantly limits the applicability of the tests as

many macroeconomic time series exhibit trending behavior. In fact, Westerlund (2015,

p. 454) states that

“...for many economic time series, a linear trend, rather than a constant,

might be considered appropriate as the default specification, . . . . This is

certainly true for series such as GDP, industrial production, money supply

and consumer or commodity prices, where trending behavior is evident.”

In this paper, we propose a new heteroskedasticity-robust PURT. Most importantly,

the test can be applied to detrended data and its limiting distribution (under the null

hypothesis) is free of nuisance parameters. The construction of the test is simple. We

begin by detrending the data according to the method suggested in Demetrescu and Hanck

(2014), and trace the effects of the detrending scheme on the (detrended) integrated level

data. The drift term is estimated as the unconditional mean of first-differenced series.

Taking account of volatility breaks, level detrending and drift estimation, we construct a

test statistic that exhibits an asymptotic Gaussian distribution under the panel unit root

null hypothesis. To prove asymptotic normality we rely on central limit theory for near-

epoch dependent processes as discussed, e.g., in Davidson (1994). Simulation results

show that the proposed test works well in finite samples, and has satisfactory power

which is comparable with the power of the tests in Herwartz and Siedenburg (2008) and

Demetrescu and Hanck (2012a) under homoskedasticity.

As an empirical illustration, we examine whether energy use per capita is trend or

difference stationary. Using data from 23 OECD economies over the period 1960–2014,

we find that energy use per capita is generally integrated of order one. However, results

from unit root testing for rolling fixed-length time spans show that the series could be

characterized as trend stationary for forty-years windows that start between 1963 and

1968.

2



Section 2 sketches the panel unit root testing problem and describes two of the existing

heteroskedasticity-robust PURTs. Section 3 discusses ways of handling serial correlation

and deterministic terms. Section 4 introduces the proposed test statistic and states its

asymptotic distribution. The finite sample performance of the new test is evaluated by

means of a Monte Carlo study documented in Section 5. As an empirical illustration,

the stationarity of energy use per capita is examined in Section 6. Section 7 concludes.

Proofs of the asymptotic results are provided in the Appendix.

2 Homogeneous panel unit root testing

In this section we first describe the panel unit root testing problem and formalize

cross-sectional dependence and heteroskedasticity. Next, we present the White-type

heteroskedasticity-robust PURTs suggested in Herwartz and Siedenburg (2008) and

Demetrescu and Hanck (2012a).

2.1 The first order panel autoregression

A first order panel autoregression under nonstationary volatility and a linear trend can

be specified as

yt = µ+ (1− ρ)δt+ ρyt−1 + et, t = 1, ..., T, (1)

where yt = (y1t, . . . , yNt)
′, yt−1 = (y1,t−1, . . . , yN,t−1)

′, et = (e1t, . . . , eNt)
′ are N × 1

vectors, and et is heterogeneously distributed with mean zero and covariance Ωt.

Furthermore, the vector δ = (δ1, . . . , δN)
′ stacks panel-specific trend parameters, and

µ = (µ1, . . . , µN)
′ contains panel-specific intercepts. The specification in (1) formalizes an

empirically relevant panel unit root testing problem of distinguishing between a random

walk with drift on the one hand and a trend stationary process on the other hand (Pesaran,

2007). PURTs are used to test the hypothesis H0 : ρ = 1 against H1 : ρ < 1 in (1).

To formalize cross-sectional dependence and heteroskedasticity, we adopt the following

assumptions about the vector of error terms et as in Herwartz et al. (2016) with

strengthened moment conditions:

Assumptions A.

(i) et is serially uncorrelated with mean 0 and covariance Ωt.
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(ii) Ωt is a positive definite matrix with eigenvalues λ
(1)
t ≤ λ

(2)
t ≤ . . . ≤ λ

(N)
t and λ

(N)
t <

c < ∞, λ
(1)
t > c > 0 for all t.

(iii) E[up
itu

p
jtu

p
ktu

p
lt] < ∞ for all i, j, k, l and p = 1, 2, where u• t, • ∈ {i, j, k, l} denote

typical elements of ut = Ω
−1/2
t et. Here we set Ω

1/2
t = ΓtΛ

1/2
t Γ′

t, where Λt is a diagonal

matrix of eigenvalues of Ωt and the columns of Γt are the corresponding eigenvectors.

A(i) restricts the error terms to be serially uncorrelated. Ways of handling higher

order serial correlation will be described later. The assumption that the fourth order

moments of eit (or uit by implication of A(ii)) should be finite (A(iii) for p = 1) is

standard in the (panel) unit root literature. The stronger assumption of finiteness of

moments up to order eight (p = 2) will allow to apply asymptotic theory for near-

epoch dependent processes. While A(ii) captures so-called weak forms of cross-sectional

dependence such as spatial panel models (for more details on spatial panel models see,

e.g., Anselin, 2013) and seemingly unrelated regressions, it rules out strong forms of

cross-sectional dependence that might be traced back to the presence of common factors.

Since tr(Ωt) =
∑N

i=1 λ
(i)
t , A(ii) covers both discrete covariance breaks as well as smoothly

trending variances.

2.2 Heteroskedasticity-robust tests

2.2.1 The White-type test

Herwartz and Siedenburg (2008) propose a PURT based on a White-type covariance

estimator. Setting µ = δ = 0 in (1), the test statistic is given by

tHS =

∑T
t=1 y

′
t−1∆yt√∑T

t=1 y
′
t−1êtê

′
tyt−1

d→ N(0, 1), êt = ∆yt = et. (2)

Originally, tHS was proposed as an alternative to the test in Breitung and Das (2005)

for finite samples where the cross-sectional dimension is relatively large in comparison

with the time series dimension. Recently, Herwartz et al. (2016) show that time-varying

volatility does not affect the pivotalness of tHS.

2.2.2 The White-type Cauchy test

Demetrescu and Hanck (2012a) suggest a heteroskedasticity-robust PURT based on the
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‘Cauchy’ estimator which instruments the lagged level by its sign. This statistic reads as

tDH =

∑T
t=1 sgn(yt−1)

′∆yt√∑T
t=1 sgn(yt−1)′êtê

′
tsgn(yt−1)

d→ N(0, 1), (3)

where sgn(·) denotes the sign function.

Two further heteroskedasticity-robust PURTs that we are aware of are those proposed

in Demetrescu and Hanck (2012b) and Westerlund (2014). A common limitation of all

these PURTs, however, is that in the presence of linear trends (i.e., δ 6= 0 in (1)), applying

standard detrending schemes does not retain the pivotalness of the tests if the data exhibit

variance breaks.

3 Deterministic terms and serial correlation

In this section, we discuss how serial correlation and deterministic terms are handled in

panel unit root testing under variance breaks.

3.1 Short-run dynamics

To eliminate short-run serial correlation from the data, prewhitening is an important

procedure which leaves the limiting distribution of the tests unaffected (Breitung and

Das, 2005). This procedure requires estimating individual-specific autoregressions of the

first differences under H0, i.e.,

∆yit =

pi∑

j=1

bij∆yi,t−j + eit. (4)

Prewhitened data is then obtained as

ŷit = yit − b̂i1yi,t−1 − . . .− b̂ipiyi,t−pi , (5)

and

∆̂yit = ∆yit − b̂i1∆yi,t−1 − . . .− b̂ipi∆yi,t−pi . (6)

Any consistent lag-length selection criterion can be applied to decide upon the lag

orders pi. In cases where both short-run dynamics and deterministic patterns are present

in the data, prewhitening should precede detrending. The prewhitening regression should

include an intercept term if the model features linear time trends under the alternative

hypothesis.
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3.2 Deterministic terms

Removing the trend in (1) by means of popular schemes such as OLS, GLS or recursive

detrending renders the PURTs to depend on the drift terms in µ, and, hence, requires

bias-correction terms. Moreover, the bias-correction becomes highly complicated with

the presence of variance breaks. The detrending procedures in Breitung and Das (2005)

and Demetrescu and Hanck (2014) do not require bias adjustment terms as long as the

homoskedasticity assumption is maintained. With time-varying volatility, however, both

detrending methods affect the pivotalness of PURTs, including tHS and tDH . As the

test we are proposing utilizes the detrending scheme in Demetrescu and Hanck (2014),

we briefly outline it here. This method involves recursively detrending the lagged level

variable to obtain

ỹt−1 = yt−1 +
2

t− 1

t−1∑

j=1

yj −
6

t(t− 1)

t−1∑

j=1

jyj. (7)

Since ∆yt has non-zero mean, it has to be demeaned. One choice is to center ∆yt in the

usual way as

∆y∗
t = ∆yt −

1

T

T∑

t=2

∆yt, (8)

where T in the denominator replaces T − 1 for notational convenience. Demetrescu and

Hanck (2014) show that, under homoskedasticity, ∆yt could also be centered by means of

forward demeaning instead of (8). In the presence of heteroskedasticity, both full sample

centering and forward demeaning affect the pivotalness of even the heteroskedasticity-

robust tests tHS and tDH and, hence, invoke marked size distortions (see Demetrescu and

Hanck (2014) for rigorous arguments on this issue). As forward demeaning additionally

leads to relatively large power losses in comparison with full sample centering, the test

proposed in this work relies on full sample demeaning.

4 Panel unit root test for trending series with time-

varying volatility

The heteroskedasticity-robust test we propose builds upon the White-type test given in

(2) and the detrending scheme described by (7) and (8). Instead of providing the test

statistic in a compact form, we first consider a modified version of the numerator of tHS
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in (2). With (7) and (8) the summands of the numerator of this modification can be

rewritten as

ỹ′
t−1∆y∗

t = ỹ′
t−1êt =

t−1∑

i=1

(
ai,t−1e

′
iet −

1

T
ai,t−1

T∑

k=2

e′
iek

)
, (9)

where

∆y∗
t = êt = et −

1

T

T∑

t=2

et, (10)

and finite weighting coefficients ai,t−1 read as

ai,t−1 = 1 +
2

t− 1
(t− i)− 3

(
1− (i− 1)i

(t− 1)t

)
. (11)

Derived from data detrended according to (7) and (8), the expression in (9) has a non-zero

expectation in the absence of homoskedasticity under the null hypothesis of a panel unit

root. The theoretical version of the new test statistic, henceforth denoted by τ , can be

seen as a modification of tHS with adjustments for the non-zero mean in the numerator,

and corresponding changes for the variance (in the denominator). Specifically, the test

statistic with theoretical moments is given by

τ =

∑T
t=2

1√
NT

(
ỹ′
t−1∆y∗

t − νt
)

√
1

NT

(
E
[∑T

t=2 ỹ
′
t−1∆y∗

t

]2
−
(∑T

t=2 νt

)2)
, (12)

where νt = E[ỹ′
t−1∆y∗

t ].

Unlike in Herwartz and Siedenburg (2008) and Demetrescu and Hanck (2014), where

the White-type covariance estimator is applied, the more complicated form of ỹ′
t−1∆y∗

t

invokes the following representation of the variance of the numerator in (12):

s2NT :=
1

NT


E

[
T∑

t=2

ỹ′
t−1∆y∗

t

]2
−
(

T∑

t=2

νt

)2

 = ζ1− ζ2+ ζ3+ ζ4+ ζ5−

1

NT

(
T∑

t=2

νt

)2

.

(13)

The expansion of the expectation in (13) yields components ζ1, . . . , ζ5 which can be shown
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to correspond to the following quantities

ζ1 =
2

NT

T−1∑

i=1

T−1∑

j=i+1

T∑

s=i+1

T∑

t=j+1

āi,s−1āj,t−1 (tr(ΩiΩj) + tr(Ωi)tr(Ωj))

ζ2 =
2

NT

T−1∑

i=1

T∑

s=i+1

T∑

t=i+1

ãi,s−1āi,t−1tr(ΩiΩs)

ζ3 =
1

NT

T−1∑

i=1

T∑

t=i+1

ã2i,t−1tr(ΩiΩt) (14)

ζ4 =
1

NT

T−1∑

i=1

T∑

t=i+1

ā2i,t−1

(
E
[
(e′

iei)
2
]
+

T∑

j=1,j 6=i,t

tr(ΩiΩj)

)

ζ5 =
2

NT

T−2∑

i=1

T−1∑

s=i+1

T∑

t=s+1

āi,t−1āi,s−1

(
E
[
(e′

iei)
2
]
+

T∑

j=1,j 6=i,t,s

tr(ΩiΩj)

)
,

where ãi,t−1 =
(
1− 1

T

)
ai,t−1 and āi,t−1 = 1

T
ai,t−1 with coefficients ai,t−1 defined in (11).

Similarly,

νt = E[ỹ′
t−1∆y∗

t ] = −
t−1∑

i=1

āi,t−1tr(Ωi). (15)

The new test is then the empirical version of τ in (12), i.e.,

τ̂ =

∑T
t=2

1√
NT

(
ỹ

′

t−1∆y∗
t − ν̂t

)

ŝNT

, (16)

where estimators of νt and the variance components are based on the estimation of the

traces of the covariance matrices Ωi. More precisely, we replace tr(Ωi) by ê′
iêi, tr(ΩiΩj)

by ê′
iêjê

′
iêj and E [(e′

iei)
2] by (ê′

iêi)
2 where êi is a vector of centered residuals (first

differences) as defined in (10). Detailed representations of ν̂t and ŝ2NT are given in the

Appendix. The following proposition states the asymptotic normality of the statistic in

(16).

Proposition 1. Under assumptions A the test statistic in (16) is asymptotic normally

distributed, i.e., for N, T → ∞ with N/T 2 → 0

τ̂
d−→ N (0, 1). (17)

The proof of Proposition 1 is based on a central limit theorem for near-epoch

dependent sequences and is given in the Appendix. As it will turn out, the additional

requirement of N/T 2 → 0 is necessary for τ̂ to fulfill the conditions of the central limit

theorem, as well as for applying the test to prewhitened data (Herwartz et al., 2016).
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5 Monte Carlo study

5.1 The simulation design

To evaluate the finite sample properties of the proposed test τ̂ , we consider the following

DGPs taken from Pesaran (2007):

DGP1: yt = µ+ (j − ρ)⊙ βt+ ρ⊙ yt−1 + et, t = −50, . . . , T, (18)

DGP2: yt = µ+ (j − ρ)⊙ βt+ ρ⊙ yt−1 + ǫt, ǫt = b⊙ ǫt−1 + et, (19)

where bold entries indicate vectors of dimension N × 1, j is a vector of ones and ⊙
denotes the Hadamard product. The DGP1 formalizes AR(1) models with serially

uncorrelated innovations while DGP2 introduces AR(1) disturbances. Both DGPs

formalize a panel random walk with drift under the null hypothesis, and a panel of

trend stationary processes with individual effects under the alternative. Empirical size is

obtained by setting ρ = j and power is simulated as ρ = 0.9j.2 Individual effects, trend

parameters as well as serial correlation of innovations are modeled as in Pesaran (2007):

µ = (µ1, . . . , µN)
′, µi ∼ iidU(0, 0.02) and b = (b1, . . . , bN)

′, bi ∼ iidU(0.2, 0.4).

To separate the issue of cross-sectional correlation from variance breaks, we employ

the decomposition

Ωt = Φ
1/2
t ΨΦ

1/2
t ,

where Φt = diag(σ2
1t, . . . , σ

2
Nt) and Ψ is a (time invariant) correlation matrix

characterizing Ωt. Cross-sectional independence is obtained by setting Ψ to an identity

matrix of order N . We generate a weak form of cross-sectional correlation by means of

the spatial autoregressive (SAR) error structure used in Herwartz and Siedenburg (2008).

Specifically, we take ΨSAR that is implied by the SAR model

et = (IN −ΘW )−1ξt, with Θ = 0.8 and ξt ∼ iidN(0, IN),

where W is the so-called spatial weights matrix. In this particular case, W is a row

normalized symmetric contiguity matrix of the ‘g ahead and g behind ’ structure, with

2Results for DGPs with heterogeneous autogregressive coefficients under the alternative hypothesis,

i.e., ρ = (ρ1, . . . , ρN ), ρi ∼ iidU(0.85, 0.95), are qualitatively identical and available upon request.

Moreover, recent papers, e.g., Homm and Breitung (2012), also consider power against explosive

alternatives (ρ > 1). Using a right-sided testing, the proposed test τ̂ is powerful against the alternative

that ρ = 1.03j, even for T = 25. The corresponding simulation results are available upon request.
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g = 1 (see, e.g., Kelejian and Prucha, 1999). The resulting covariance matrix of et is

given by ΩSAR = ((IN −ΘW )′(IN −ΘW ))−1, and ΨSAR is the correlation matrix implied

by ΩSAR.

Cross-section specific volatility shifts are generated as

σ2
it =





σ2
i1, if t < ⌊γiT ⌋, (0 < γi < 1)

σ2
i2, otherwise,

where γi refers to the time a variance break occurs and ⌊γiT ⌋ denotes the integer part

of γiT . In the homoskedastic case, σi1 = σi2 = 1. We introduce heteroskedasticity by

changing the post-break variance to σi2 = 1/3, for a negative variance break, and to

σi2 = 3, for a positive one. Regarding the timing of the variance breaks, we consider

scenarios of homogeneously early (γi = 0.2) or late (γi = 0.8) variance breaks for all

panel units.3 Data are generated for all combinations of N ∈ [50, 100, 250] and T ∈
[25, 50, 100, 250]. To mitigate the potential impacts of initial values on our analysis, we

generate and discard 50 presample observations.

5.2 Simulation results

In the following we discuss simulation results on the finite sample performance of the

proposed test statistic τ̂ in comparison with two of the existing heteroskedasticity-robust

tests (tHS and tDH). For the new test, we also document results for its theoretical

counterpart τ determined from the true covariance matrices Ωt (see (12)). Presenting

simulation results for both τ̂ and τ is meant to highlight finite sample performance of τ̂

that can be traced back to the use of moment estimators.

5.2.1 Cross-sectionally independent panels

Simulation results for data generated according to DGP1 for cross-sectionally independent

panels are documented in Table 1. Results in the upper panel of this table show

that, under homoskedasticity, the recursive detrending scheme in Demetrescu and Hanck

(2014) leaves the pivotalness of heteroskedsticity-robust tests unaffected. With respect to

rejection frequencies under the alternative hypothesis, it can be seen that using estimated

3 Main findings of the simulation exercise remain qualitatively unaffected by consideration of randomly

distinct break moments γi ∼ iidU(0.1, 0.9). These results are available upon request.
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Table 1: Empirical rejection frequencies, cross-sectionally independent panels

5% 10%

size power size power

N T τ τ̂ HS DH τ τ̂ HS DH τ τ̂ HS DH τ τ̂ HS DH

Constant variance (HOM)
50 25 5.6 4.6 4.8 4.5 40.5 32.0 31.1 19.4 11.1 10.0 9.8 9.9 55.2 49.9 48.3 32.3
50 50 4.6 5.5 4.8 4.3 98.9 98.6 97.4 77.2 10.4 11.1 9.7 9.0 99.6 99.7 99.4 87.7
50 100 4.6 4.3 3.5 4.0 100.0 100.0 100.0 100.0 9.7 9.7 8.4 8.6 100.0 100.0 100.0 100.0
50 250 3.8 4.2 3.6 4.0 100.0 100.0 100.0 100.0 9.0 9.9 8.6 8.6 100.0 100.0 100.0 100.0
100 25 5.4 3.4 4.3 4.7 63.8 50.8 49.6 28.9 11.4 8.2 9.5 9.5 76.1 68.4 67.8 45.6
100 50 5.2 5.5 4.7 4.7 100.0 100.0 100.0 96.2 11.0 10.8 9.7 9.9 100.0 100.0 100.0 98.8
100 100 4.5 4.9 3.7 4.4 100.0 100.0 100.0 100.0 9.4 10.2 8.8 8.7 100.0 100.0 100.0 100.0
100 250 4.9 4.6 3.7 4.4 100.0 100.0 100.0 100.0 10.3 10.0 8.4 9.0 100.0 100.0 100.0 100.0
250 25 5.4 2.0 4.5 4.8 92.7 81.0 83.2 54.2 10.8 5.9 9.5 9.7 96.1 92.1 93.4 70.1
250 50 4.9 4.1 3.8 4.2 100.0 100.0 100.0 100.0 10.4 9.5 9.0 9.2 100.0 100.0 100.0 100.0
250 100 4.7 4.7 3.6 4.1 100.0 100.0 100.0 100.0 9.6 9.5 8.0 8.7 100.0 100.0 100.0 100.0
250 250 4.6 5.0 3.9 4.0 100.0 100.0 100.0 100.0 10.1 10.3 8.4 9.0 100.0 100.0 100.0 100.0

Early negative variance shift (NEG)
50 25 4.9 1.4 0.0 0.0 9.6 4.3 0.0 0.0 10.2 4.4 0.0 0.0 17.3 12.1 0.0 0.0
50 50 5.1 3.0 0.0 0.0 48.8 48.2 0.0 0.1 10.7 7.9 0.0 0.0 63.8 66.2 0.1 0.6
50 100 4.7 4.0 0.0 0.0 99.9 99.9 37.8 36.1 10.0 8.9 0.0 0.0 100.0 100.0 54.4 51.4
50 250 4.6 4.5 0.0 0.0 100.0 100.0 100.0 100.0 9.9 10.2 0.0 0.0 100.0 100.0 100.0 100.0
100 25 5.4 0.4 0.0 0.0 12.5 3.3 0.0 0.0 10.5 2.6 0.0 0.0 22.3 12.3 0.0 0.0
100 50 5.2 2.3 0.0 0.0 75.5 72.4 0.0 0.0 10.6 6.0 0.0 0.0 85.8 87.1 0.0 0.1
100 100 4.9 3.9 0.0 0.0 100.0 100.0 57.0 57.5 10.6 8.9 0.0 0.0 100.0 100.0 73.7 73.0
100 250 5.2 4.5 0.0 0.0 100.0 100.0 100.0 100.0 10.5 10.3 0.0 0.0 100.0 100.0 100.0 100.0
250 25 5.0 0.0 0.0 0.0 18.6 0.8 0.0 0.0 10.1 0.4 0.0 0.0 29.2 6.9 0.0 0.0
250 50 5.0 1.0 0.0 0.0 97.8 96.1 0.0 0.0 10.7 4.4 0.0 0.0 99.2 98.9 0.0 0.0
250 100 5.0 3.4 0.0 0.0 100.0 100.0 84.4 87.1 10.1 7.9 0.0 0.0 100.0 100.0 93.4 94.0
250 250 5.0 4.8 0.0 0.0 100.0 100.0 100.0 100.0 10.0 9.3 0.0 0.0 100.0 100.0 100.0 100.0

Late positive variance shift (POS)
50 25 4.6 1.6 17.7 11.0 57.7 35.6 77.8 50.8 9.9 7.0 30.7 21.3 73.6 64.3 92.3 68.4
50 50 3.3 3.2 26.0 13.1 99.0 98.8 99.8 95.4 8.2 8.2 39.6 23.4 99.9 99.9 100.0 98.7
50 100 3.1 3.3 21.0 12.2 100.0 100.0 100.0 100.0 7.6 8.4 35.0 21.9 100.0 100.0 100.0 100.0
50 250 2.6 2.7 18.4 12.3 100.0 100.0 100.0 100.0 7.3 8.0 32.1 22.4 100.0 100.0 100.0 100.0
100 25 4.7 0.5 29.1 15.6 85.5 55.6 92.7 72.9 10.0 3.7 44.7 27.0 92.6 83.4 99.0 86.9
100 50 4.6 2.9 34.4 17.4 100.0 100.0 100.0 99.9 9.4 7.8 50.8 29.6 100.0 100.0 100.0 100.0
100 100 3.5 2.9 30.0 16.3 100.0 100.0 100.0 100.0 8.0 7.2 46.7 28.1 100.0 100.0 100.0 100.0
100 250 3.4 3.1 28.8 15.4 100.0 100.0 100.0 100.0 8.3 8.1 45.3 26.8 100.0 100.0 100.0 100.0
250 25 4.4 0.1 57.3 29.4 99.7 85.0 99.7 94.6 10.4 1.1 72.3 44.1 99.9 98.3 100.0 98.8
250 50 3.4 1.9 56.0 27.7 100.0 100.0 100.0 100.0 9.0 6.3 73.7 42.0 100.0 100.0 100.0 100.0
250 100 4.0 3.7 53.7 26.8 100.0 100.0 100.0 100.0 9.0 8.7 71.8 41.7 100.0 100.0 100.0 100.0
250 250 3.1 3.3 57.3 29.1 100.0 100.0 100.0 100.0 7.4 8.1 72.3 44.0 100.0 100.0 100.0 100.0

Notes: τ , τ̂ , HS and DH refer to the PURT statistics given in (12), (16), (2) and (3) respectively. Power
is not size adjusted. All results are based on 5000 replications. Data is generated according to DGP1 in
(18) and all tests are computed on detrended data.
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covariance matrices induces considerable power loss under a small time dimension T = 25.

However, this power loss vanishes with increasing T . Furthermore, the new test τ̂ is

generally as powerful as tHS and more powerful than tDH . Hence, it is worthwhile noting

that our adjustment for obtaining robustness to time-varying volatility does not come at

a cost of reduced power. In view of the fact that the reported empirical powers are not

size adjusted, the power estimates for τ̂ are rather remarkable.

When early negative variance breaks are introduced, tHS and tDH display zero

rejection frequencies under the null hypothesis. On the contrary, τ̂ holds remarkable

size control, except for small T (T = 25) where it is substantially undersized. These size

distortions, however, improve markedly as the time dimension increases to T = 50. The

new test also has significant power under early variance breaks although it is less than

the power under homoskedasticity. In comparison with τ̂ , the White-type tests tHS and

tDH have substantially weaker power, with both tests showing almost zero probability of

rejecting the alternative hypothesis until the time dimension increases to T = 100.

Size distortions of tHS and tDH are also observed when a late positive volatility shift

is considered, but this time with huge oversizings. On the contrary, τ̂ displays a fairly

good size precision. Consistent with results in Herwartz et al. (2016) for non-trending

data, power seems to be unaffected by late positive variance breaks but reduced by

early negative volatility shifts. In general, simulation results documented in Table 1

demonstrate not only the risk of using tHS and tDH for trending time series, but also the

satisfactory finite sample performance of τ̂ for trending heteroskedastic data.

5.2.2 DGPs with cross-sectionally correlated panels

The left-hand side block of Table 2 documents simulation results for τ̂ applied on data

generated according to DGP1 for weakly correlated panels. Results available upon request

show that size distortions of tHS and tDH observed for cross-sectionally independent panels

(Table 1) carry over to panels with weak forms of cross-sectional correlation. Hence, we

focus on the implications of cross-sectional correlation for the new test τ̂ . Confirming the

asymptotic considerations, a relatively larger cross-sectional dimension N is required for

the empirical size of τ̂ to come closer to the nominal significance levels. Moreover, the

statistic τ̂ is less powerful under the SAR(1) model than under independent panels—a

result consistent with those documented in Herwartz et al. (2016) for non-trending series.
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Table 2: Empirical rejection frequencies of τ̂ , diverse scenarios

DGP1, SAR(1) model DGP2, Independence DGP2, SAR(1) model

5% 10% 5% 10% 5% 10%

N T size power size power size power size power size power size power

Constant variance (HOM)
50 25 4.3 16.2 11.2 28.9 0.0 0.0 0.0 0.1 0.0 0.1 0.5 0.7
50 50 3.8 60.4 10.3 78.0 0.1 29.7 0.8 50.3 0.2 8.1 1.2 20.6
50 100 3.6 100.0 9.3 100.0 1.3 100.0 3.7 100.0 1.2 95.4 4.1 98.7
50 250 3.2 100.0 8.6 100.0 2.9 100.0 6.7 100.0 1.9 100.0 5.5 100.0
100 25 4.8 24.7 10.6 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2
100 50 4.4 89.7 10.5 95.6 0.1 58.7 0.3 77.6 0.1 17.7 0.9 36.8
100 100 4.2 100.0 10.0 100.0 1.0 100.0 3.0 100.0 1.0 100.0 4.0 100.0
100 250 3.8 100.0 9.2 100.0 2.5 100.0 6.0 100.0 2.2 100.0 6.4 100.0
250 25 3.7 42.6 8.9 61.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
250 50 4.5 99.9 9.9 100.0 0.0 94.0 0.1 98.3 0.1 48.1 0.6 68.4
250 100 4.1 100.0 9.1 100.0 0.4 100.0 1.3 100.0 0.8 100.0 2.9 100.0
250 250 4.5 100.0 10.2 100.0 2.6 100.0 5.9 100.0 2.5 100.0 6.4 100.0

Early negative variance shift (NEG)
50 25 2.9 5.1 7.7 13.7 0.0 0.0 0.0 0.0 0.1 0.0 0.5 0.3
50 50 3.3 20.8 8.9 38.1 0.1 0.4 0.4 2.0 0.3 0.9 1.4 3.0
50 100 3.7 79.2 9.6 90.4 0.7 87.7 3.0 95.9 0.8 30.3 3.1 55.3
50 250 3.5 100 8.5 100.0 3.0 100.0 8.0 100.0 1.7 100.0 6.3 100.0
100 25 2.0 4.8 5.7 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
100 50 3.3 35.3 8.5 53.4 0.0 0.2 0.1 0.7 0.2 0.5 0.6 2.1
100 100 4.6 97.7 10.1 99.3 0.6 99.6 2.0 100.0 0.9 66.3 2.9 84.8
100 250 4.4 100.0 9.5 100.0 3.7 100.0 8.5 100.0 2.3 100.0 6.0 100.0
250 25 0.6 3.6 3.1 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
250 50 3.0 61.9 6.9 78.1 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.9
250 100 4.2 100.0 9.2 100.0 0.2 100.0 1.2 100.0 0.5 97.9 2.0 99.5
250 250 4.6 100.0 9.8 100.0 3.9 100.0 9.5 100.0 2.5 100.0 7.6 100.0

Late positive variance shift (POS)
50 25 1.8 14.8 7.9 34.7 0.0 0.3 0.4 4.4 0.2 0.7 1.5 4.5
50 50 1.8 56.7 7.1 80.1 0.8 63.1 4.7 83.6 0.6 16.4 3.8 37.9
50 100 1.4 99.0 6.0 99.8 2.2 100.0 6.6 100.0 0.9 85.8 4.8 96.8
50 250 1.1 100.0 5.6 100.0 2.8 100.0 7.1 100.0 0.9 100.0 4.9 100.0
100 25 2.0 24.8 7.2 50.0 0.0 0.2 0.2 3.2 0.1 0.5 0.8 4.4
100 50 2.6 89.8 7.6 97.0 1.2 91.9 4.4 98.4 1.0 39.9 4.1 66.0
100 100 2.6 100.0 7.7 100.0 3.0 100.0 8.2 100.0 1.6 99.7 5.8 100.0
100 250 2.2 100.0 7.0 100.0 3.1 100.0 8.3 100.0 2.0 100.0 6.0 100.0
250 25 0.8 48.1 4.3 77.4 0.0 0.0 0.0 1.1 0.0 0.2 0.1 2.9
250 50 3.1 99.9 8.0 100.0 0.4 100.0 3.7 100.0 0.8 85.0 4.2 95.7
250 100 3.0 100.0 8.2 100.0 3.1 100.0 9.0 100.0 2.1 100.0 6.3 100.0
250 250 2.8 100.0 7.7 100.0 4.1 100.0 10.1 100.0 2.5 100.0 7.8 100.0

Notes: Data is generated according to DGP1 in (18) for results in the left-hand side block, while DGP2 in
(19) is used to generate data for results documented in the middle and right-hand side blocks of the table.
Testing is performed on detrended data. For DGP2, detrending is preceded by prewhitening. Power is
not size adjusted and all results are based on 5000 replications.
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5.2.3 DGPs with serially correlated innovations

To evaluate how the proposed test τ̂ performs for data with serially correlated

disturbances, we generate data according to DGP2 in (19) and subject it to prewhitening

before detrending. The corresponding simulation results are documented in the middle-

and right-hand side blocks of Table 2. The results show that serial correlation and the

ensuing prewhitening procedure entail marked size distortions for small time dimensions.

This result could be explained by noting that estimation errors arising from the

prewhitening procedure introduce finite sample correlations between the lagged level and

first differenced series, thereby inducing a non-zero mean to the numerator of the test

statistic in (16). However, size distortions vanish as T grows, and empirical power grows

in T and N .

5.2.4 Summary of simulation results

The simulation results reported in Table 1 show that existing heteroskedasticity-robust

PURTs exhibit huge size distortions (either undersizing or oversizing) when applied

to detrended data with time-varying volatility. The proposed test, however, performs

remarkably well in this scenario. Results documented in Table 2 show that the new test

has fairly good finite sample properties even when the data are not only trending and

heteroskedastic, but also cross-sectionally and serially correlated. Therefore, the new test

should be helpful in (often complex) empirical applications. However, results not reported

here for space considerations show that τ̂ does not remain pivotal under strong forms of

cross-sectional dependence such as factor structures (Pesaran, 2007). An effective way of

panel unit root testing under strong forms of cross-sectional correlation is to remove the

common factor from the data (see for example Bai and Ng, 2004 and Moon and Perron,

2004). While the test in Westerlund (2014) uses this approach, it is, however, not pivotal

in the presence of linear trends.
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6 Is energy use per capita trend or difference

stationary?

6.1 Background

Whether energy use per capita is trend or difference stationary has been intensively

investigated in the past two decades. The growing interest in testing the stationarity

of per capita energy consumption is attributed to three main reasons (e.g., Hsu et al.,

2008; Narayan and Smyth, 2007). First, knowing the direction of causality between per

capita energy use and economic growth has gained significant policy relevance as it has

direct implications on governments’ involvement in global efforts to reduce greenhouse

gas emissions. On the one hand, if causality runs from energy consumption to growth,

reductions in energy use will have adverse effects on economic growth and, hence,

generates reluctance on the part of policy makers to commit to substantial energy use

reductions. On the other hand, if causality runs from growth to energy use, and not vice

versa, reductions in energy consumption will not be harmful for economic growth. The

order of integration of energy use per capita has implications on testing and interpreting

the (causal) relationship between energy use and GDP per capita. For instance, Granger

causality tests employing level vector autoregressions could be misleading if the series are

nonstationary and not cointegrated. Conversely, Granger causality testing by means of

variables in levels will be appropriate if the series are either stationary or cointegrated.

Consequently, unit root testing is routinely performed before testing for cointegration

between energy use and GDP per capita.

Second, stationarity of energy use per capita has implications for the effectiveness

of energy policies such as import tariffs on fuels and vehicles or carbon taxes on

transportation fuels. In particular, if energy consumption is a stationary process, it will

return to its trend after a policy shock. This implies that energy saving policies will have

transitory effects only. On the other hand, if energy consumption contains a unit root,

such policies will have a permanent impact. Furthermore, nonstationarity implies that

(permanent) shocks to energy use are more likely to affect other sectors of the economy

as well as macroeconomic aggregates (Narayan and Smyth, 2007).

Third, the order of integration of energy consumption has implications for forecasting
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energy demand. For instance, if energy consumption is trend stationary, its past

behaviour offers valuable information to forecast future energy demand. However, if

energy consumption is a unit root process, it does not follow a predictable path and,

hence, forecasting energy demand will be more difficult than in the stationary case.

Efforts to test for a unit root in energy use per capita have initially relied on univariate

tests.4 Most of these studies, including Glasure and Lee (1998), Beenstock et al. (1999)

and McAvinchey and Yannopoulos (2003) report that the null hypothesis of an I(1)

energy consumption series can not be rejected at conventional levels of significance. As

an exception to this general conclusion, Altinay and Karagol (2004) document evidence

in favor of characterizing energy use in Turkey during 1950–2000 as a trend stationary

process. However, given the low power of univariate tests in finite samples, it is not

clear if the failure to reject the null of a unit root is an evidence of a truly I(1) series.

To circumvent this problem, a few studies have recently applied PURTs to examine the

stationarity of energy use per capita. Results have been generally mixed, however. For

instance, Joyeux and Ripple (2007) employ the PURTs suggested in Levin et al. (2002)

and Im et al. (2003) and find that energy consumption measures are I(1). Narayan and

Smyth (2007), on the other hand, report that the unit root null hypothesis can be rejected

at the 10% level of significance for 56 of the 182 countries they considered. However, they

find strong evidence of a (trend) stationary energy consumption by employing the PURT

of Im et al. (2003). Nevertheless, these results should be seen with caution as the studies

employ standard PURTs, which are not pivotal if the series exhibit volatility shifts.

6.2 Panel unit root test results

In this section, we study the order of integration of energy use per capita using the

heteroskedasticity-robust test suggested in this paper, τ̂ , vis-a-vis heteroskedasticity-

robust tests of Herwartz and Siedenburg (2008) and Demetrescu and Hanck (2012a).

We analyse annual data of energy use per capita (kilogram of oil equivalent per capita)

obtained from World Development Indicators.5 In this data set, energy use refers to

“use of primary energy before transformation to other end-use fuels, which is equal to

4See Hsu et al. (2008) for a review of the empirical literature on unit root testing of energy use per

capita.
5www.data.worldbank.org. Accessed on September 23, 2016.
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indigenous production plus imports and stock changes, minus exports and fuels supplied

to ships and aircraft engaged in international transport.” The study covers 23 OECD

economies that are selected according to data availability, from 1960 to 2014.6 As

transforming the series into natural logarithms before undertaking unit root testing is

a standard practice in the literature, we test for unit roots both on original series as well

as their logarithmic values.

To get an impression if variances in the energy use per capita series exhibit significant

changes over time, we plot variance profiles in Figure 1. Variance profiles ϑ̂i(w) are

computed as

ϑ̂i(w) =

∑⌊sT ⌋
t=1 η̂2it + (wT − ⌊wT ⌋)η̂2i⌊wT ⌋+1∑T

t=1 η̂
2
it

, 0 ≤ w ≤ 1, (20)

where the η̂it’s are obtained as residuals from AR(1) regressions of the series. Plotting

ϑ̂i(w) against w, it is straightforward to see that a homoskedastic series would fall on

the 45◦ line and deviations from the diagonal indicate time varying variances. Figure 1

reveals that time-varying variances characterize energy per capita series in most cross

section members.

Panel unit root test results are reported in Table 3. Results for all the tests

overwhelmingly show that energy use per capita has a unit root. This evidence is

consistent with the findings of most of the empirical studies on the area, except, e.g.,

Narayan and Smyth (2007). However, it is well-known that unit root test results often

depend on the specific time period chosen for study. To address this caveat, we perform

panel unit root testing on rolling windows of 40 years. Corresponding results depicted

in Figure 2 show that while energy use per capita is difference stationary for most of the

period, it could be considered trend stationary—at least at the 10 percent significance

level—for the sample periods starting between 1965 and 1968. It is worthwhile noting

that τ̂ has the lowest p−value of the three tests in almost all the considered periods and

could suggest an inferential outcome which is distinct from that of the other two tests.

In particular, for the period spanning 1966-2005 and based on the 5 percent significance

level, τ̂ implies that log energy per capita series can be considered trend stationary while

the other two tests suggest to treat the series as difference stationary. Moreover, our

6The economies are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany,

Greece, Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Poland, Portugal, Spain, Sweden,

Switzerland, Turkey, United Kingdom and the United States.
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Table 3: Is energy use per capita trend or difference stationary?

Energy use p.c. Ln (energy use p.c.)

Period y ∆y y ∆y

τ̂ HS DH τ̂ HS DH τ̂ HS DH τ̂ HS DH

Full period

1960-2014 0.71 0.55 1.36 -2.79 -3.18 -2.56 1.56 1.24 1.37 -2.86 -2.88 -2.64

50 years window

1960-2009 0.46 0.43 1.24 -2.65 -2.82 -2.17 0.86 0.91 1.39 -2.64 -2.40 -2.13

1961-2010 -0.18 -0.01 0.93 -2.82 -2.81 -2.21 0.77 0.84 1.34 -2.81 -2.59 -2.02

1962-2011 -0.18 0.00 0.40 -2.71 -2.81 -2.32 0.73 0.83 1.04 -2.69 -2.56 -2.01

1963-2012 -0.29 -0.10 0.18 -2.69 -2.85 -2.57 0.28 0.55 0.64 -2.76 -2.66 -2.17

1964-2013 -0.57 -0.36 -0.31 -2.67 -3.25 -2.61 0.04 0.39 -0.33 -2.84 -2.91 -2.74

1965-2014 -0.27 -0.14 -0.66 -2.70 -3.11 -2.18 0.19 0.48 -0.85 -2.79 -2.83 -2.51

Notes: Reported numbers are estimates of the panel unit root tests τ̂ , tHS and tDH . Testing is performed
on data that is first prewhitened and then recursively detrended. The lag order used for prewhitening is
selected based on the AIC criterion, with the maximum lag lenth set to two. ‘Ln’ denotes the natural
logarithmic transformation. Bold entries represent cases in which the panel unit root null hypothesis is
rejected with 5% significance.
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Figure 1: Estimated variance profiles
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Notes: ‘Ln’ denotes the natural logarithmic transformation.

results also highlight the risk of deciding on stationarity of series using one specific time

window.

Figure 2: Panel unit root testing over 40-years windows
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Notes: The figures depict p−values from the panel unit root tests τ̂ (HMW), tHS and tDH . ‘Year’

represents the year at which the 40-years sample period begins. For further notes, see Table 3.
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7 Conclusions

In this paper, we suggested a new panel unit root test (PURT) that works well when the

series are trending and exhibit time-varying volatility. The test makes use of the recursive

detrending scheme suggested in Demetrescu and Hanck (2014), and the construction of

the test statistic fully accounts for non-zero expectation of the pooled panel regression

estimator and the variance of its centered counterpart. Accordingly, the resulting test

statistic has a Gaussian limiting distribution. Monte Carlo simulation results show that

the test has satisfactory finite sample properties. In particular, the test tends to be

conservative, while it shows remarkable power. Hence, this test should be useful in panel

unit root testing of several trending macroeconomic and financial time series such as GDP

per capita, industrial production, money supply and commodity prices.

The empirical illustration examined the order of integration of energy use per capita.

Results using data from 23 OECD economies for the period 1960-2014 show that energy

use per capita is often difference stationary. Yet, there are also a few sub-periods for

which the series could be considered as trend stationary.

A particular limitation of the suggested test is that it does not perform well under

a strong form of cross-sectional dependence. An effective way of panel unit root testing

under strong forms of cross-sectional correlation is to remove the common factor from the

data (Bai and Ng, 2004; Moon and Perron, 2004). Consequently, it appears worthwhile

to see in a future research if such an approach would yield a panel unit root test that

works for strongly correlated panels with trending and heteroskedastic time series.

20



Acknowledgements

We thank Jörg Breitung and Matei Demetrescu for helpful comments and suggestions.

Appendix

In order to prove Proposition 1 we proceed in three steps. First, stating Lemmas 1 and

2 below we are explicit on the order properties of the variance s2NT in (13) and define a

mixing array which is essential to prove the asymptotic result for our test statistic (Part

A.1). Second, before we derive asymptotic normality for τ̂ defined in (16), we establish

a corresponding result for τ assuming that time specific expectations and variances are

known (A.2). Third, we discuss the stochastic properties of the estimated moments ν̂t

and ŝ2NT and build upon the result for τ to finally derive the Gaussian limit distribution

for τ̂ and thus, to prove Proposition 1 (A.3). The following derivations proceed under

the null hypothesis and assumptions A. Furthermore, we assume N/T 2 → 0 throughout.

A.1 - Variance order and mixing array

Recalling from Section 4, the detrending scheme in (7) and (8) obtains coefficients ai,t−1,

finite for all i < t and t ≤ T, i.e.,

ai,t−1 = 1 +
2

t− 1
(t− i)− 3

(
1− (i− 1)i

(t− 1)t

)
.

Let ãi,t−1 =
(
1− 1

T

)
ai,t−1 and āi,t−1 =

1
T
ai,t−1. The mean of ỹ′

t−1∆y∗
t is

νt = E
[
ỹ′
t−1∆y∗

t

]
= E




t−1∑

i=1


ãi,t−1e

′
iet − āi,t−1

T∑

k=2
k 6=t

e′
iek







= −
t−1∑

i=1

āi,t−1E [e′
iei]

= −
t−1∑

i=1

āi,t−1tr(Ωi), (21)

since E[e′
iek] = 0 for all i 6= k. For the variance, we have

s2NT =
1

NT


E

[
T∑

t=2

ỹ′
t−1∆y∗

t

]2
−
(

T∑

t=2

νt

)2

 = ζ1 − ζ2 + ζ3 + ζ4 + ζ5 −

1

NT

(
T∑

t=2

νt

)2

,

(22)
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where the sums ζi, i = 1, . . . , 5, are defined as in (14). Since

1

NT

(
T∑

t=2

νt

)2

=
1

NT

T−1∑

i=1

T∑

t=i+1

ā2i,t−1tr(Ωi)
2 +

2

NT

T−1∑

i=1

T−1∑

t=i+1

T∑

s=t+1

āi,t−1āi,s−1tr(Ωi)
2

+
2

NT

T−1∑

i=1

T−1∑

j=i+1

T∑

s=i+1

T∑

t=j+1

āi,s−1āj,t−1tr(Ωi)tr(Ωj)

we can rewrite s2NT in (22) as

s2NT = ζ̃1 − ζ2 + ζ3 + ζ̃4 + ζ̃5, (23)

where ζ2 and ζ3 are defined in (14) and

ζ̃1 =
2

NT

T−1∑

i=1

T−1∑

j=i+1

T∑

s=i+1

T∑

t=j+1

āi,s−1āj,t−1tr(ΩiΩj)

ζ̃4 =
1

NT

T∑

i=1

T∑

t=i+1

ā2i,t−1

(
E[(e′

iei)
2]− tr(Ωi)

2 +
T∑

j=1 6=i,t

tr(ΩiΩj)

)

=
1

NT

T∑

i=1

T∑

t=i+1

ā2i,t−1

(
E[(e′

iei)
2]− tr(Ωi)

2
)
+

1

NT

T∑

i=1

T∑

t=i+1

ā2i,t−1

T∑

j=1 6=i,t

tr(ΩiΩj)

= ζ̃41 + ζ̃42

ζ̃5 =
2

NT

T−2∑

i=1

T−1∑

s=i+1

T∑

t=s+1

āi,t−1āi,s−1

(
E[(e′

iei)
2]− tr(Ωi)

2 +
T∑

j=1 6=i,t,s

tr(ΩiΩj)

)

=
2

NT

T−2∑

i=1

T−1∑

s=i+1

T∑

t=s+1

āi,t−1āi,s−1

(
E[(e′

iei)
2]− tr(Ωi)

2
)

+
2

NT

T−2∑

i=1

T−1∑

s=i+1

T∑

t=s+1

āi,t−1āi,s−1

T∑

j=1 6=i,t,s

tr(ΩiΩj)

= ζ̃51 + ζ̃52.

The following lemma characterizes the variance in more detail.

Lemma 1. Under assumptions A the variance s2NT is of order O(T ). Moreover, s2NT/T >

0 for all N, T ≥ 1.

Proof. First, we determine the order of s2NT as provided in (23). Then, for instance,

ζ̃1
T

=
2

NT 4

T−1∑

i=1

T−1∑

j=i+1

T∑

s=i+1

T∑

t=j+1

ai,s−1aj,t−1tr(ΩiΩj)

is bounded in T and in N because tr(ΩiΩj) = O(N), i.e. ζ̃1 = O(T ). Analogously,

it follows ζ2 = O(T ), ζ3 = O(T ), ζ̃42 = O(1) and ζ̃52 = O(T ). Furthermore, since
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E[(e′
iei)

2] − tr(Ωi)
2 = O(N), one has ζ̃41 = O(T−1) and ζ̃51 = O(1). Altogether, s2NT =

O(T ).

Secondly, the variance is greater or equal to zero, s2NT ≥ 0, by definition (cf. equation

(22)). To see that s2NT/T strictly exceeds zero for all N, T ≥ 1, the variance of the

numerator

T∑

t=2

1√
NT

t−1∑

i=1

(
ai,t−1e

′
iet −

1

T
ai,t−1

T∑

k=2

e′
iek

)

=
T∑

t=2

1√
NT

t−1∑

i=1

ai,t−1e
′
iet

︸ ︷︷ ︸
=:X1

−
T∑

t=2

1√
NT

t−1∑

i=1

1

T
ai,t−1

T∑

k=2

e′
iek

︸ ︷︷ ︸
=:X2

can be rewritten as s2NT = Var[X1 − X2] = Var[X1] + Var[X2] − 2 · Cov[X1,X2].

The components of Var[X1] consist of terms tr(ΩiΩt)/N which are strictly positive,

tr(ΩiΩj)/N ≥ λ
(1)
i (
∑N

l=1 λ
(l)
j )/N > 0 for all i, j = 1, . . . , T , N ≥ 1, and eigenvalues

λ
(1)
i , λ

(l)
j > 0 (from assumption A(ii)). Hence, it can be shown that Var[X1]/T > 0 for all

N, T ≥ 1. Furthermore, the variance terms Var[X1] + Var[X2] can be shown to dominate

the covariance term 2 ·Cov[X1,X2] so that s2NT/T = Var[X1−X2]/T > 0 for all N, T ≥ 1.

To show the asymptotic normality of τ̂ in (16), we employ a central limit theorem for

near-epoch dependent sequences. For this, we define a mixing array7

VT,t =

(
et,

T∑

k=t+1

ek

)
. (24)

The generated sigma algebra corresponds to

F t+m
T,t−m = σ(VT,s, t−m ≤ s ≤ t+m) = σ(et−m, . . . , et+m, ET,t−m, . . . , ET,t+m),

where ET,t+m :=
∑T

k=t+m+1 ek. In particular, F t
T,−∞ = σ(. . . , et, . . . , ET,t). This definition

of the sigma algebra is similar to the one used in Lemma 3 of Demetrescu and Hanck

(2014), but contains the vector (et, ET,t) instead of the sum of the two entries. Using the

notation of Davidson (1994) we state the following result:

Lemma 2. VT,t in (24) is α-mixing of size −β for 0 ≤ β < ∞.

7For simplicity the subscript N is omitted here, since the process is near-epoch dependent with respect

to the time dimension.
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Proof. To show the mixing property of VT,t consider the sequence

αm = sup
t

sup
A∈F∞

T,t+m
,B∈Ft

T,−∞

∣∣P (A ∩B)− P (A)P (B)
∣∣

for all T ≥ 1 and events A and B. The second supremum is taken with respect to

the sigma algebras F t
T,−∞ = σ(. . . , et, . . . , ET,t) and F∞

T,t+m = σ(et+m, . . . , ET,t+m, . . .).

Noticing that the ei’s are uncorrelated, dependence between A and B (i.e., |P (A ∩B)−
P (A)P (B)

∣∣ > 0) can only occur by involving terms of ET,t. More precisely, the sums

ET,t =
∑T

k=t ek and ET,t+m =
∑T

k=t+m+1 ek both include error terms {et+m+1, . . . , eT}
such that αm 6= 0 for events

A,B ∈ F t
T,−∞ ∩ F∞

T,t+m = σ (ET,t+m, ET,t+m+1, . . .) ⊆ σ (et+m+1, et+m+2, . . . , eT ) . (25)

For increasing m the number of random variables generating the sigma algebra decreases.

For m > T − t − 1 the generated sigma algebra in (25) is the empty set. Thus, αm = 0

for m > T − t − 1 for all T ≥ 1 and −∞ ≤ t ≤ ∞. It follows αm = O(m−β) for all

0 ≤ β < ∞.

A.2 - Asymptotic distribution with true moments

In the following, ν̂t and ŝNT are substituted by their theoretical counterparts so that

asymptotic normality of τ defined in (12) is shown first. To prove asymptotic normality

of τ we rewrite the numerator from (12) as

T∑

t=2

1√
NT

(ỹ′
t−1∆y∗

t − νt) =
T∑

t=2

1√
NT

(
t−1∑

i=1

(
ãi,t−1e

′
iet − āi,t−1

T∑

k=2,k 6=t

e′
iek

)
− νt

)
.

From the variance

s2NT = E



(

T∑

t=2

1√
NT

t−1∑

i=1

(
ãi,t−1e

′
iet − āi,t−1

T∑

k=2,k 6=t

e′
iek

)
− νt

)2

 ,

a standardized sequence is given by

XNT,t :=
1√
NT

(ỹ′
t−1∆y∗

t − νt)
/
sNT

=
1√
NT

t−1∑

i=1

(
ãi,t−1e

′
iet − āi,t−1

T∑

k=2,k 6=t

e′
iek + āi,t−1tr(Ωi)

)/
sNT . (26)

A central limit theorem (CLT) for τ =
∑T

t=2 XNT,t that controls for near-epoch

dependence (NED) ofXNT,t holds if the following conditions of Corollary 24.7 in Davidson

(1994) are fulfilled:
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(a) XNT,t is F t
T,−∞ measurable with E [XNT,t] = 0 and E

[(∑T
t=2 XNT,t

)2]
= 1.

(b) There exists a constant array {cNT,t} such that supT,t ||XNT,t/cNT,t||r < ∞ for r > 2.

(c) XNT,t is L2-NED of size −1 on VT,t which is α-mixing of size −r/(r − 2).

(d) supT{T (max1≤t≤T cNT,t)
2} < ∞.

Lemma 3. Under assumptions A on the error terms and N/T 2 → 0 the conditions

(a)-(d) are fulfilled for the sequence XNT,t in (26) and the mixing process VT,t in (24).

From Corollary 24.7 in Davidson (1994) and Lemma 3 asymptotic normality of τ in

(12) follows directly and can be stated as

Corollary 1. Under assumptions A and N/T 2 → 0,

τ =
T∑

t=2

XNT,t
d−→ N (0, 1), N, T → ∞.

Remark. The CLT in T holds for all N ≥ 1, in particular for N → ∞. The joint limit

N, T → ∞, furthermore, provides convergence of the sums of e′
iet and thus, ensures that

the assumptions of the CLT are fulfilled. Note that we show asymptotic normality in the

joint limit N, T → ∞ instead of the sequential limit applying the convergence properties

following, for instance, from Theorem 4.4 of Billingsley (1999).

Proof of Lemma 3. Condition (a): As it is a function of measurable random variables,

XNT,t = f(e1, . . . , et, Et) is measurable with respect to F t
T,−∞. The sequence XNT,t is

centered and standardized such that E[XNT,t] = 0 and E

[(∑T
t=2 XNT,t

)2]
= 1 follow

directly.

Condition (b): Let the array of constants be equal to {cNT,t} = {1/sNT} and set r = 4.
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Then,

∣∣∣
∣∣∣XNT,t/cNT,t

∣∣∣
∣∣∣
4
= E

[∣∣∣XNT,t

∣∣∣
4/

c4NT,t

] 1

4

= E

[∣∣∣XNT,t

∣∣∣
4

· s4NT

] 1

4

=

[
E
∣∣∣ 1√

NT

t−1∑

i=1

(
ãi,t−1e

′
iet − āi,t−1

T∑

k=2,k 6=t

e′
iek + āi,t−1tr(Ωi)

)∣∣∣
4
] 1

4

=
(
E
∣∣∣ 1√

NT

t−1∑

i=1

ãi,t−1e
′
iet −

t−1∑

i=1

āi,t−1

T∑

k=2
k 6=t

e′
iek +

t−1∑

i=1

āi,t−1tr(Ωi)
)∣∣∣

4) 1

4

≤
( 1

N2T 2
E
∣∣∣
t−1∑

i=1

ãi,t−1

N∑

l=1

elielt

∣∣∣
4) 1

4

+
( 1

N2T 6
E
∣∣∣
t−1∑

i=1

ai,t−1

T∑

k=2
k 6=t

N∑

l=1

elielk

∣∣∣
4) 1

4

+
( 1

N2T 6
E
∣∣∣
t−1∑

i=1

ai,t−1tr(Ωi)
)∣∣∣

4) 1

4

< ∞ for all N, T. (27)

The inequality holds by virtue of the Minkowski inequality. The first part in (27) is

finite with similar reasoning as in equation (19) of Herwartz et al. (2016), i.e. nonzero

expectations arise only from terms involving (elielt)
4 or e2lie

2
lje

4
mt, i 6= j. The second and

the third term contain the product of error terms from the same time period (elielk with

i = k). Thus, for finiteness we need to assume finiteness up to order eight, E|elt|8 < ∞,

which was formulated in assumption A(iii). Furthermore, noticing that N and T can

be related by means of N/T 2 → 0, the denominator controls for increasing N and T

adequately.

Condition (c): To verify this condition, XNT,t is shown to be near-epoch dependent on

VT,t meaning that

(
E
[
XNT,t − E[XNT,t

∣∣ F t+m
T,t−m]

]2)1/2 ≤ cNT,tρm, (28)

where ρm is a sequence of order O(m−1) and cNT,t is the positive constant defined in

condition (b).

The expectation of XNT,t conditioned on the m neighboring sigma algebras is

E
[
XNT,t

∣∣ F t+m
T,t−m

]
= E

[
1√
NT

(
t−1∑

i=1

(
ãi,t−1e

′
iet − āi,t−1

T∑

k=2,k 6=t

e′
iek

)
− νt

)
/
sNT

∣∣∣ F t+m
T,t−m

]

=
1√
NT

(
t−1∑

i=1

E

[
ãi,t−1e

′
iet − āi,t−1

T∑

k=2,k 6=t

e′
iek

∣∣∣ F t+m
T,t−m

]
− νt

)/
sNT ,

(29)
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with

t−1∑

i=1

E

[
ãi,t−1e

′
iet − āi,t−1

T∑

k=2,k 6=t

e′
iek

∣∣∣ F t+m
T,t−m

]

=
t−1∑

i=1


ãi,t−1E

[
e′
iet

∣∣ F t+m
T,t−m

]
− āi,t−1E

[
e′
i

T∑

k=2
k 6=t

ek

∣∣∣ F t+m
T,t−m

]


=
t−1∑

i=t−m

ãi,t−1e
′
iet −

t−m−1∑

i=1

ãi,t−1E(e′
iei)−

t−1∑

i=t−m

āi,t−1e
′
i

T∑

k=t−m,k 6=t

ek. (30)

Here, parts of the conditional expectations cancel out because of measurability or zero

covariance of the corresponding random variables. Inserting (30) into (29) obtains

E
[
XNT,t|F t+m

T,t−m

]
=

1√
NT

(
t−1∑

i=t−m

ãi,t−1e
′
iet −

t−m−1∑

i=1

ãi,t−1E(e′
iei)

−
t−1∑

i=t−m

āi,t−1e
′
i

T∑

k=t−m
k 6=t

ek +
t−1∑

i=1

āi,t−1tr(Ωi)



/
sNT

=
1√
NT

t−1∑

i=t−m

(
ãi,t−1e

′
iet − āi,t−1

T∑

k=2,k 6=t

e′
iek

+ āi,t−1tr(Ωi)− āi,t−1e
′
i

t−m∑

k=2

ek

)/
sNT .

Hence, the condition for NED sequences in (28) is fulfilled by noticing

(
E
[
XNT,t − E[XNT,t|F t+m

T,t−m]
]2) 1

2

=

(
1

sNT

√
NT

E

[ t−1∑

i=1

(
ãi,t−1e

′
iet − āi,t−1

T∑

k=2,k 6=t

e′
iek

)
− νt

−
t−1∑

i=t−m

(
ãi,t−1e

′
iet − āi,t−1

T∑

k=2,k 6=t

e′
iek + āi,t−1tr(Ωi)− āi,t−1e

′
i

t−m∑

k=2

ek

)]2) 1

2

=
1

sNT

√
NT

(
E

[ t−m−1∑

i=1

(
ãi,t−1e

′
iet − āi,t−1

( T∑

k=2
k 6=t

e′
iek − tr(Ωi)

))
+

t−1∑

i=t−m

āi,t−1e
′
i

t−m∑

k=2

ek

]2) 1

2

= cNT,t

(
1

NT
E

[ t−m−1∑

i=1

(
ãi,t−1e

′
iet − āi,t−1

( T∑

k=2
k 6=t

e′
iek − tr(Ωi)

))
+

t−1∑

i=t−m

āi,t−1e
′
i

t−m∑

k=2

ek

]2) 1

2

=: cNT,t ρm.
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In order to show that ρm = O(m−1), we apply Minkowski’s inequality:

ρm =

(
1

NT
E

[ t−m−1∑

i=1

(
ãi,t−1e

′
iet − āi,t−1

( T∑

k=2
k 6=t

e′
iek − tr(Ωi)

))
+

t−1∑

i=t−m

āi,t−1e
′
i

t−m∑

k=2

ek

]2) 1

2

≤ 1√
T


 1

N
E

[
t−m−1∑

i=1

(
ãi,t−1e

′
iet − āi,t−1

( T∑

k=2,k 6=t

e′
iek − tr(Ωi)

))]2



1

2

︸ ︷︷ ︸
=O(

√
t−m−1)

+
1√
T


 1

N
E

[
t−1∑

i=t−m

t−m∑

k=2

āi,t−1e
′
iek

]2


1

2

︸ ︷︷ ︸
=O((m−1)(t−m)/T )

. (31)

The error terms have finite fourth order moments and, hence, dividing by
√
T the L2-

norms are bounded for all m, t, T ≥ 1. Furthermore, for m ≥ t−1 the sums are zero such

that ρm = 0. Consequently, for 0 ≤ β < ∞ we have mβρm = O(1) if m < t− 1, because

both m and ρm are bounded, and if m ≥ t− 1 because ρm = 0. Thus, ρm = O(m−β) for

every 0 ≤ β < ∞ and especially, for β = 1 such that ρm = O(m−1).

Furthermore, from Lemma 2 it follows that VT,t is mixing of size −β for β ≥ 0. In

particular, for r = 4 the order of convergence is −β = −r/(r − 2) = −2 as considered in

condition (b) of Theorem 24.6 in Davidson (1994).

Condition (d): To show that this condition holds for cNT,t = 1/sNT , notice that s
2
NT is

of order O(T ) following Lemma 1. Together with s2NT/T > 0 this directly indicates the

finiteness required by condition (d):

sup
T

{
T

(
max
1≤t≤T

cNT,t

)2
}

= sup
T

T

s2NT

< ∞.

A.3 - Asymptotic distribution with estimated moments

Mean estimation

The representation in (21) reduces the estimation of νt to the estimation of terms such as

tr(Ωi) so that convergence is assured by the increasing panel and time dimensions N and

T . For the model residuals evaluated under the null hypothesis êt = ∆y∗
t the estimator

is explicitly given as

ν̂t = −
t−1∑

i=1

āi,t−1ê
′
iêi.
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The following lemma states convergence of 1√
NT

(ν̂t − νt) so that the theoretical

counterpart νt can be used to prove asymptotic normality of τ̂ .

Lemma 4. Under assumptions A,

1√
NT

(ν̂t − νt)
p−→ 0, for N, T → ∞.

Proof. To show the convergence in probability, we rewrite

1√
NT

(ν̂t − νt) =
1√
NT

(
t−1∑

i=1

1

T
ai,t−1 (ê

′
iêi − E[e′

iei])

)
.

From (10) we have êi = ei − 1
T

∑T
t=2 et. For finite T the variance and covariance of

the estimator êi differ from corresponding moments of ei. However, asymptotically they

are equivalent. For instance, for any i = 1, . . . , T,

E [ê′
iêi] = E

[(
ei −

1

T

T∑

t=2

et

)′(
ei −

1

T

T∑

t=2

et

)]

= E [e′
iei]− 2E

[
e′
i

( 1
T

T∑

t=2

et

)]
+ E

[( 1
T

T∑

t=2

et

)′( 1
T

T∑

t=2

et

)]

=
(
1− 2

T

)
E [e′

iei] +
1

T 2

T∑

t=2

E[e′
tet] → E [e′

iei] , T → ∞. (32)

Similarly, the higher moments converge, i.e. E[(êi
′êi)

2] → E[(e′
iei)

2] for T → ∞.
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Applying these results and the Markov inequality we have

P

(∣∣∣ ν̂t − νt√
NT

∣∣∣ > ε

)
<

E
[

1
NT

(ν̂t − νt)
2]

ε2

=
1

ε2
E



(

1√
NT

t−1∑

i=1

1

T
ai,t−1 (ê

′
iêi − E[e′

iei])

)2



=
1

ε2NT 3
E



(

t−1∑

i=1

ai,t−1(ê
′
iêi − E[e′

iei])

)2



=
1

ε2NT 3

[
t−1∑

i=1

a2i,t−1E
[
(ê′

iêi − E[e′
iei])

2
]

+2
t−1∑

i=1

t−1∑

j=i+1

ai,t−1aj,t−1E
[
(ê′

iêi − E[e′
iei])

(
ê′
jêj − E[e′

jej]
)]
]

=
1

ε2T 3

t−1∑

i=1

a2i,t−1

1

N

(
E[(ê′

iêi)
2
]− (tr(Ωi))

2
)

︸ ︷︷ ︸
O(T )

+
2

ε2NT 3

t−1∑

i=1

t−1∑

j=i+1

ai,t−1aj,t−1 E
[
ê′
iêiê

′
jêj − E[e′

iei]E[e′
jej]
]

︸ ︷︷ ︸
=0

−→ 0 for ε > 0, N, T → ∞.

Variance estimation

According to the representation of s2NT in (23) the variance estimator is

ŝ2NT = ˆ̃ζ1 − ζ̂2 + ζ̂3 +
ˆ̃ζ4 +

ˆ̃ζ5, (33)
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where

ˆ̃ζ1 =
2

NT

T−1∑

i=1

T−1∑

j=i+1

T∑

s=i+1

T∑

t=j+1

āi,s−1āj,t−1(ê
′
iêj)

2

ζ̂2 =
2

NT

T−1∑

i=1

T∑

s=i+1

T∑

t=i+1

ãi,s−1āi,t−1(ê
′
iês)

2

ζ̂3 =
1

NT

T−1∑

i=1

T∑

t=i+1

ã2i,t−1(ê
′
iêt)

2

ˆ̃ζ4 =
1

NT

T−1∑

i=1

T∑

t=i+1

ā2i,t−1


(ê′

iêi)
2 − (ê′

iêi)
2

︸ ︷︷ ︸
=0

+
T∑

j=1,j 6=i,t

(ê′
iêj)

2




ˆ̃ζ5 =
ˆ̃ζ51 +

ˆ̃ζ52

=
2

NT

T−2∑

i=1

T−1∑

s=i+1

T∑

t=s+1

āi,t−1āi,s−1

(
(ê′

iêi)
2 − (ê′

iêi)
2
)

︸ ︷︷ ︸
=0

+
2

NT

T−2∑

i=1

T−1∑

s=i+1

T∑

t=s+1

āi,t−1āi,s−1

T∑

j=1,j 6=i,t,s

(ê′
iêj)

2.

However, unlike 1√
NT

(ν̂t − νt)
p→ 0, the difference ŝ2NT − s2NT does not converge in

probability. To determine the order of this difference, we consider the components in

(33) separately. For N, T → ∞, the orders of the differences of ˆ̃ζ1, ζ̂2, ζ̂3 and ˆ̃ζ52 from

their theoretical counterparts can be derived in the same form. As an example, we

consider

ζ̂3 − ζ3 =
T−1∑

i=1

1

NT

T∑

t=i+1

ã2i,t−1

[
(ê′

iêt)
2 − tr(ΩiΩt)

]
. (34)

To define the order of ζ̂3 − ζ3 we use E [(ê′
iêt)

2] → E [(e′
iet)

2] and E [(ê′
iêt)

2(ê′
iês)

2] →
E [(e′

iet)
2(e′

ies)
2] which can be derived similarly to (32). Accordingly, the difference in
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(34) has mean zero but its variance does not vanish. More precisely,

E



(

T−1∑

i=1

1

NT

T∑

t=i+1

ã2i,t−1

[
(ê′

iêt)
2 − tr(ΩiΩt)

]
)2



=
1

N2T 2




T−1∑

i=1

E



(

T∑

t=i+1

ã2i,t−1

[
(ê′

iêt)
2 − tr(ΩiΩt)

]
)2



+2
T−2∑

i=1

T−1∑

j=i+1

E

[(
T∑

t=i+1

ã2i,t−1

[
(ê′

iêt)
2 − tr(ΩiΩt)

]
)(

T∑

t=j+1

ã2j,t−1

[
(ê′

jêt)
2 − tr(ΩjΩt)

]
)])

=
1

N2T 2

(
T−1∑

i=1

T∑

t=i+1

ã4i,t−1

[
E
[
(ê′

iêt)
4
]
− (tr(ΩiΩt))

2]

+
T−1∑

i=1

2
T∑

t=i+1

T∑

s=t+1

ã2i,t−1ã
2
i,s−1

[
E
[
(ê′

iêt)
2(ê′

iês)
2
]
− tr(ΩiΩt)tr(ΩiΩs)

]

+ 2
T−2∑

i=1

T−1∑

j=i+1

E

[(
T∑

t=i+1

ã2i,t−1

[
(ê′

iêt)
2 − tr(ΩiΩt)

]
)(

T∑

t=j+1

ã2j,t−1

[
(ê′

jêt)
2 − tr(ΩjΩt)

]
)])

=
1

N2T 2

(
O(NT 2) +O(NT 3) +O(NT 4)

)

= O
(
T 2/N

)
. (35)

Assuming weak cross-sectional dependence the order in N follows similarly to the

derivation of the order tr(ΩiΩt) = O(N). Consequently, ζ̂3 − ζ3 = Op

(√
Var[ζ̂3]

)
=

Op(T/
√
N). Similar arguments apply for ζ̃1, ζ2 and ζ̃52. Moreover, we obtain

ˆ̃ζ51 − ζ̃51 =
2

NT

T−2∑

i=1

T−1∑

s=i+1

T∑

t=s+1

āi,t−1āi,s−1

(
tr(Ωi)

2 − E[(e′
iei)

2]
)
= Op(1),

because we have (tr(Ωi)
2 − E[(e′

iei)
2]) /N = O(1) from the proof of Lemma 1. Combining

these arguments, convergence of the remaining term ˆ̃ζ4 − ζ̃4
p→ 0 follows directly. By

implication, (ŝ2NT − s2NT ) = Op(T/
√
N) +Op(1).

Proof of Proposition 1. Asymptotic normality of τ̂ stated in Proposition 1 follows from

the asymptotic behaviour of ν̂ and ŝ2NT , Corollary 1 and a Taylor approximation of τ̂

in the true variance s2NT . Noticing that 1√
NT

(ν̂t − νt) = op(1), we define the empirical

version of the test statistic τ̂ as a function of ŝ2NT as

τ̂ = τ(ŝ2NT ) =
T∑

t=2

1√
NT

(ỹ′
t−1∆y∗

t − νt)
/
ŝNT .
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Applying the first-order Taylor expansion in s2NT , asymptotic normality of τ̂ follows as:

τ̂ =
T∑

t=2

1√
NT

(ỹ′
t−1∆y∗

t − νt)
/
ŝNT = τ(s2NT + (ŝ2NT − s2NT ))

= τ(s2NT ) + (ŝ2NT − s2NT ) ·
∂ τ

∂(s2NT )
+ op(1)

= τ(s2NT ) + (ŝ2NT − s2NT )

(
−1

2

T∑

t=2

1√
NT

(ỹ′
t−1∆y∗

t − νt)

)
· (s2NT )

−3/2 + op(1)

d−→ N (0, 1) +
(
Op

(
T/

√
N
)
+Op(1)

)
Op

(√
T
)
(O(T ))−3/2 + op(1),

= N (0, 1) + op(1), for N, T → ∞.

Convergence of the first term to the standard normal distribution is stated in Corollary 1,

and, hence Proposition 1 follows.8

8To see that the remainder term is op(1), consider, for instance, the expansion of second order
(
ŝ2NT − s2NT

)2 · ∂ τ
∂2(s2

NT
)
=
(
Op

(
T/

√
N
)
+Op(1)

)2
Op(

√
T )(O(T ))−5/2 = op(1) for N,T → ∞.
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