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Abstract – “Growth grammars” are extended parametric Lindenmayer systems, enriched by some novel features (expand operator,
global sensitivity, interpretive rules, arithmetical-structural operators). They can serve as a formal basis for describing functional-
structural plant models from the literature. This is demonstrated on three well-known models having in common that they were origi-
nally developed without using any formal grammars: an early, but quite general structural plant simulator by Bell, a root model by
Pagès and Kervella, and an above-ground tree model (involving competition for light) by Takenaka. The study considers the special
extensions of L-systems necessary to rebuild some characteristic features of each of these models. The obtained degree of universali-
ty and the current limitations of the growth-grammar approach with respect to functional-structural tree models are discussed.

L-system / grammar / formalization / model specification / plant architecture

Résumé – Vers l’universalité des grammaires de croissance : une nouvelle rencontre entre les modèles de Bell, Pagès et
Takenaka. Les « grammaires de croissance » sont une version étendue de systèmes de Lindenmayer paramétrisés, élargi par
quelques propriétés nouvelles (opérateur d’expansion, sensitivité globale, règles interprétatives, opérateurs arithmétiques-structu-
raux). Ils peuvent servir comme une base formelle pour la déscription de modèles fonctionnels-structuraux déjà publiés. Cette possi-
bilité est démontrée par trois modèles bien connu qui ont en commun la qualité d’être développé sans utilisation de quelque grammai-
re formelle : un simulateur structural des plantes de Bell, un modèle de racines de Pagès et Kervella, et un modèle d’arbre sur-sol
(inclus la concurrence pour la lumière) de Takenaka. Cette étude considère les extensions spéciales de L-systèmes qui sont nécessaire
pour reconstruire quelques propriétés caractéristiques de chacun de ces modèles. Le degré d’universalité obtenu et les limitations
actuelles de l’approche de grammaires de croissance en relation avec les modèles fonctionnels-structuraux d’arbre sont discutées.

L-système / grammaire / formalisation / spécification de modèle / architecture des plantes 

1. INTRODUCTION

Lindenmayer systems (L-systems) are essentially sets
of rules, each rule stating “replace symbol a by string s”,
where s consists of symbols again. In most cases, the
symbols stand for botanical entities like internodes,
leaves, root segments etc., and for topological and geo-

metrical specifications about how these entities are inter-
connected. Some symbols can additionally have numeri-
cal parameters associated with them, and deterministic
conditions or stochastic laws can control the applica-
bility of rules. By applying the rules to the symbols of a
given start string in parallel and by repeating this rewrit-
ing process, a development of branching structures in
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discrete time steps is modelled. A precise mathematical
definition of L-systems and of rule application and string
interpretation can be found elsewhere [21, 39, 42].

L-systems and extensions of the formalism, described
under the name “growth grammars” by the author, have
had numerous applications in simulations of flowering
plants [39], tree architecture [25], shoot development
[41], crop plants [8, 12, 16], reaction to pruning [40],
root growth [31], competition for light [28, 31], and car-
bon allocation [26] – to mention only some examples.
For a more complete overview and discussion of the
applications, the reader is again referred to the literature
[36, 42].

Given the situation that a large variety of problems in
plant modelling have already been dealt with in the for-
mal framework of growth grammars, the mathematician
working on this formalism could be satisfied and lean
back. However, the crucial test for the universality (in
practical terms) of a formal tool comes when models are
to be reconstructed (using the formalism) which were
designed by people who did not have the considered for-
malism in mind. In fact, in the above-mentioned exam-
ples, the preoccupation of the model designers with the
grammar machinery could have biased the choice of
problems and methods, and then would have feigned a
genericness which doesn’t exist in practice.

To dispel this suspicion, the author is currently under-
taking efforts to rebuild several plant models from the
literature, old and new, using growth grammars and a
generic software tool named GROGRA (Growth
Grammar interpreter [21]) for their execution [24].
“Rebuilding a model” here means not just a reproduction
of the output, but of the way that the model works. For
the examples presented here, this was done with the
available literature about the chosen models as the sole
basis (with the exception of the models by Adrian Bell,
who offered the author the opportunity to get insight in
some unpublished material). The restriction to the litera-
ture was an interesting exercise: as an early experience it
became obvious that no verbal model description in the
literature is complete. Although there were considerable
differences in the precision of the papers, it was never
possible to reproduce the models accurately to a degree
of 100%. This fact demonstrates already a main advan-
tage of using a formalism like growth grammars for
model specification – such formalisms are much more
precise and shorter than verbal descriptions partially
merged with some equations.

In this short study, four of the examples from [24] are
presented. (Other examples of models from the literature
rebuilt with grammars can be found in [31, 42].) There
will not be enough space to explain the used grammars
for each model in full detail, neither can an exhaustive

general introduction into the syntax and semantics of
growth grammars be given here (see [21, 24] for such
material). Instead, the focus will be on some essential
feature of each model which required specific extensions
of the usual L-system formalism: expand operator, glob-
al sensitivity, interpretive rules, and arithmetical-struc-
tural operators, together resulting in that what we will
call “growth grammars”. For the rules in our examples,
we will use the notations from [21, 24]. A quick guide to
the notations is also given in [27]. Only those parts of the
formalism which are relevant for the discussed exten-
sions will be explained here. — Finally, we will discuss
the advantages of using grammars as well as some of the
current problems and limitations of the approach.

We will not address the issue of universality in the
sense of recursive function theory here. It is well known
that parametric L-systems (and hence growth grammars,
too) have the full computational power of a universal
programming language (see e.g. [37]; an overview of
results on L-systems from the viewpoint of formal lan-
guage theory is given in [20]). However, such a theoreti-
cal statement does not say much about the usefulness of
the formalism for practical purposes: Nobody will use a
Turing machine for programming, although it is a classi-
cal result that any calculation can be done on a Turing
machine.

2. EXAMPLE 1: BELL, ROBERTS & SMITH
(1979)

The modelling system by Bell et al. [4] was among
the first published dynamical, morphological plant
growth simulators with a certain generality and not using
L-systems. Their software, called RHIZOM, was able to
read formatted tables containing morphological
specifications of the growth behaviour of meristems, and
to produce graphical results. It was restricted to two
dimensions and was used primarily for rhizomatous
plants growing in a planar layer below ground: Alpinia
speciosa (Zingiberaceae), Medeola virginiana
(Trilliaceae), Maranta spp. (Marantaceae), Carex are-
naria and others. A further application was the seed dis-
persal from trees with exploding fruits. Later on, first
steps towards modelling tree crowns with the software
system were undertaken [18]. In all these cases, a table
in the input data file determined the production and
growth directions of daughter shoots from their respec-
tive mother shoots, and this had to be given for each type
of shoot occurring in the plant. Normally, the translation
of such a table into a set of L-system rules is straightfor-
ward. The only complication arises from one special fea-
ture of the specification system of RHIZOM: the poten-
tial daughter shoots of one shoot are given in a fixed
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order, and the success or failure of a daughter meristem
to produce a shoot can have influence on the fate of the
later sisters (cf. figure 1a). Such interactions between
potentially-growing morphological units in the same
vegetative developmental step do certainly exist in
nature, but they are not a normal part of the lineage-con-
trolled rewriting process of classical L-systems, where
the states of the daughter meristems could only be influ-
enced by the state of the mother shoot, not by the sisters.
Nor are classical context-sensitive rules appropriate here
since they do not take care of the given order among the
sisters.

However, it is easy to formalize the mechanism pro-
posed by Bell et al. in a Markov chain-like structure
(figure 1b), using a single parametric symbol for the
whole set of potentially-growing daughters. (The same
scheme easily extends to more than two daughter meris-
tems by using a larger list of parameters.) It would even
be easy to go beyond the linear scheme of interaction pro-
posed in [4], e.g. by letting “later” sister shoots compete
with earlier ones, leading to a reduction of growth. The
only remaining problem is that the complete process
sketched in figure 1 takes a variable number of steps,
depending on the number of daughter meristems, and has
to be considered at a time scale different to that of the
growth of the whole plant. To “compress” a sequence of
rule applications into a single, superior rule, an expand
operator “E” was introduced in [22]. It triggers a variable
number of applications of further rules, called decompo-
sition rules, which are in our case of a stochastic charac-
ter and control the development of m(0,0). The single rule
encompassing the whole interaction can now be stated as

bud → shoot E(3)  < m(0,0) > ,

where E(3) enforces three successive rule applications to
m(0,0), two of them according to figure 1 and the third

transforming m(i , j) into the appropriate number of
“bud” symbols. (We could also specify a variable num-
ber of rule applications here by an arithmetical expres-
sion containing stochastic or external variables.) The
same effect of performing several rule applications dur-
ing one step of vegetative development could also be
obtained using the instrument of “timed L-systems”
introduced in [39], but we feel that this would evoke an
inadequate complexity in a case where the focus is not
on modelling the underlying biological processes in a
more detailed way. – Decomposition rules were intro-
duced independently from [22] also in [30].

In the same manner, it was possible to rebuild the
other RHIZOM examples from [4] with growth gram-
mars as well (cf. [24]). Since the RHIZOM software and
its specification files today no longer exist in digital
form (D. Roberts, oral commun.), we abstained from
implementing an automatic translation interface between
the softwares, though this would have been easy.

However, this example is of more than historical
interest: Markov-chain constructions play an important
role also in advanced morphological simulators like
AMAPsim[1], cf. also [17]. The usage of (possibly nest-
ed) expand operators enables an integration of such
approaches in the grammar framework.

3. EXAMPLE 2: BELL (1984)

A later version of the RHIZOM system, called
SEED3 [2], involved the modelling of spatial interac-
tions between plants by allowing the growth of a shoot to
depend on the occurrence or non-occurrence of plant
parts in a neighbourhood of the meristem under consid-
eration. Bell used this feature in [2] to study the

Figure 1. (a) Interaction of daughter meristems of a shoot in Bell’s RHIZOM model. Long rectangle: mother shoot (segment of a rhi-
zome system), open triangles: potentially active meristems, filled triangles: inactive meristems, bold arrows: new shoots. The proba-
bilities attached to the possible developmental paths correspond to the values given in [4] for Alpinia speciosa. (b) Translation of the
process into a symbolic notation usable in a growth grammar. m stands for the whole set of daughter meristems, the numerical para-
meters encode the status: 0 = undecided, 1 = growing, –1 = inactive.
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colonizing habit of two prototypic rhizomatous plant
forms, which he called “clumps” and “runners” and
which were assumed to exhibit contrasting growth strate-
gies. The important property of both plant types which is
interesting in our context is their tendency to avoid sites
which are already occupied. A smaller “substitute” shoot
into another direction is formed if the place where a
shoot normally grows is occupied by some other shoot.
Such a dependence on the geometrical context can be
represented in a growth grammar by using globally-sen-
sitive functions, as defined in the GROGRA system [21];
in our case, calling a simple distance function (figure 2)
in a condition of a certain rule suffices. Such a sensitive
function gives back some value from the 3-dimensional
context of the considered element which is to be trans-
formed, taking the already-created structure into account.
Several predefined functions of this type are available in
GROGRA [24]. A similar extension of the L-system
concept was provided by Prusinkiewicz et al. [40] under
the name “environmentally sensitive L-systems”, and
later under the generalized notion of “open L-systems”
[31], which contain communication symbols for the
interaction of the grammar-controlled rewriting process
with other models representing the environment.

The central rule switching the state of a meristem
from normal growth to “grow a substitute shoot avoiding
an occupied site” can with the help of a predefined func-
tion “search” simply be expressed as

(search< = rad)  m → msub,

where rad is the threshold radius (cf.figure 2), m the
meristem in its normal state and msubthe meristem pro-
ducing the substitute shoot in the next step.

Although the model description in [2] was rather
incomplete compared with that of the previous model in
[4], it was possible with some additional information
from the author of the model to reconstruct the coloniz-
ing behaviour of both plant types discussed in [2] with
growth grammars. Figure 3 shows a colony of “clump”
plants, grown from one individual after 20 steps and
exhibiting an emergent “witches’ ring” structure, which
resembles very much the picture in [2].

Although the mechanism of avoidance realized in this
simple model is not “biological” in its functioning, simi-
lar mechanisms can serve as phenomenological rules for
stand development and competition, also in tree stands
[24, 28]. Just to give an impression of the amount of in-
formation needed for Bell’s “clump” model, we give the
complete growth grammar (readily interpretable by the
GROGRA software) in table I. Detailed explanations of
the used symbolic notations can be found in [21] or [24].

The most refined example which was implemented by
Bell with the help of his SEED3 system was a model of
growth and carbon transport in clover (Trifolium repens)
[3]. Here, casting of shadows and translocation of “pack-
ages” of assimilates in the plant were simulated.

Figure 2. The sensitive function “search” gives back the dis-
tance to the nearest neighbour shoot (with the exception of the
mother shoot itself). If this value falls below a certain thresh-
old, the rewriting process can switch to another rule, e.g. in-
hibiting further growth, or initiating the growth of a substitute
shoot elsewhere.

Figure 3. Result of the application of the sensitive growth
grammar “clump” (table I), obtained with the GROGRA soft-
ware and resembling Bell’s [2] original simulation. Sites of liv-
ing plants are symbolized by triangles, rhizome segments by
lines.
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However, rather artificial constructions and several hun-
dreds of lines in the original data format of SEED3 were
necessary to realize such mechanisms with nothing more
than the simple types of interaction and specification dis-
cussed so far. We will see in example 4 that more effi-
cient formal tools are at hand now to specify such a kind
of model (cf. also the L-system examples in [31]).

4. EXAMPLE 3: PAGES & KERVELLA (1990)

The root growth model of Pagès and Kervella [34],
based on morphometric data, was used to simulate a
variety of diverse root architectures (cf. also [33]). A
similar model was later exploited for numerical calcula-
tions of water uptake from the soil [9, 10]. The model
contains stochastic components, geotropism, differen-
tiation according to branching order, and a determination
of branching directions by the number of vascular bun-
dles in the mother axis. Here we concentrate again on
one feature which makes the representation of the model

structure by a growth grammar a non-trivial issue:
Among the model parameters, which are to be specified
for each branching order, are the length laz of the apical
non-branching zone(which is a morphological charac-
teristic of root tips), the distance dpr between consecu-
tive lateral roots, and the length of the growth increment
in each step, determining the speed of growth of the
respective axis (figure 4).

The crucial point is that laz and dpr can (theoretically)
have arbitrary values which are not necessarily multiples
of the elongation rate elong. Hence a grammar based on
symbols standing for growth units of length elong cannot
easily reproduce the model structure. However, an
approximate solution is quickly obtained when the whole
root system is discretized into small units of fixed length
dl, all length parameters of the model being assumed as
multiples of this smallest length unit. At first sight, this
seems to introduce a merely technical complication into
the model, making it less transparent. But nevertheless,
the model structure can be reproduced almost directly if
we introduce symbols az (for the apical non-branching
zone) and bseg(for a branched segment), and if we
rewrite these symbols into a multiplicity of elementary
units using a repetition operator, denoted by “&”,

Table I. The sensitive growth grammar “clump”, simulating
the spread of a rhizomatous model plant according to [2].

/* declarations: */
\const alpha1 72, /* branching angles */
\const alpha2 60,
\const beta 60,
\var sw distribution 0.5 0 0.5, /* value 0 or 2 with equal prob */
\var search function 2 2, /* function checking occupation */
\const rad 3, /* radius for search */
\const rot_age 5, /* age when rhizome begins to rot */
\const co 14, /* colour specification */

/* developmental rules: */
* → P(co) RL90 m, /* start rule */
m ⇒ Pl1 F(8), /* fictitious shoot for sensing occupation */
msub(p) ⇒ Pl1 F(5) f(-1) RU(p*beta) Pl1 F(16), 
(search(0, co) <= rad) m → msub(sw-1),         /* m = meristem */
m → p(0) [ RU(alpha1) m ] [ RH180 RU(alpha2) m ] ?0.5,
m → p(0) [ RU(alpha2) m ] [ RH180 RU(alpha1) m ] ?0.5,
(search(0, co) <= rad) msub(p) → ,        
msub(p) → psub(0, p) m, /* msub = substitution state of meristem */ 
p(t) → p(t+1), /* p = plant */
psub(t, p) → psub(t+1, p), /* psub = substitute plant */

/* graphical rules: */
(t < rot_age) p(t) ⇒ F(5) [ RU90 F(6) S(1) ] [ RU-90 F(6) S(2) ]

f(6) S(3) [ C(1,3) C(2,3) ], /* triangle */
(t >= rot_age) p(t) ⇒ f(11), /* rotted (invisible) shoot */
(t < rot_age) psub(t,p) ⇒ F(5) f(-1) RU(p*beta) F(13) 

[ RU90  F(4) S(1) ] [ RU-90 F(4) S(2) ]
f(4) S(3)[ C(1,3) C(2,3) ], 
/* small triangle */

(t >= rot_age) psub(t,p) ⇒ f(4) RU(p*beta) f(17)   
/* rotted shoot */

Figure 4. Basic morphometric parameters of Pagès’ &
Kervella’s root growth model.laz: length of apical non-branch-
ing zone, dpr: distance between consecutive lateral roots,
elong: elongation rate (after [34]). These numerical parameters
are not necessarily multiples of each other.
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followed by the repetition factor in parentheses and the
part to be iterated in < ... >; e.g.:

az(l) ⇒ &( l/dl) < F(dl) > (*)

(here, F(dl) generates a unit of the standard length dl).
Stated in this simple way, the right-hand side of (*) is
equivalent to F(l), but when we additionally insert a
rotation operator in the iterated part, an (approximately)
smooth curvature of the root can be obtained. 

However, this rule must not be applied in the rewriting
process leading to the description of the next develop-
mental step of the root, since az should survive and will
be used in the next step again – a rule rewriting az for the
next step could e.g. be az(l) → az(l + elong), which is
simple to understand and reflects the basic structure of
the growth process in the original model. The rule (*)

above is therefore only to be applied for interpretationof
az (which precedes the generation of the 3D structure
corresponding to the string), not for the generation of the
next string. Rules of this kind are called interpretive rules
and are distinguished in our notation by a double arrow.
Figure 5 summarizes the application of generative (nor-
mal) rules and interpretive rules of a growth grammar in
a general scheme. A variant of interpretive rules has
already been used in [15] for non-biological applications.
In [30] and [12] they were called “homomorphisms”, but
this terminology should be dropped because the genera-
tive rules can also be considered as homomorphisms in
the mathematical sense of the term.

Using this technique, it is possible to reproduce
growth patterns from the original paper [34] quite easily
(figure 6). Only some parameters in the declaration part

Figure 5 (from [21]). Way of function-
ing of a growth grammar with two class-
es of rules, generative rules (application:
horizontal arrows) and interpretive rules
(vertical double arrows). The interpre-
tive rules have no influence on the
development of the structure in time. α:
start word,  σi : string giving a symbolic
description of the structure Si at step i
of its development in time,  σi´: string
giving a more explicit description of Si.

Figure 6. Patterns obtained by GROGRA from the growth grammar “root”, resembling results from [34].
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of the growth grammar need to be changed to switch
from the left pattern to the right one.

We show again the complete grammar (with the dec-
larations for the example pattern shown in the left-hand

part of figure 6, alternative parameter values for the
right-hand part are indicated in the comments), just to
give an impression of the amount of necessary informa-
tion (table II).

5. EXAMPLE 4: TAKENAKA (1994)

The tree growth model by Akio Takenaka [45] repre-
sents a tree as a collection of woody axial elements and
spherical leaf clusters. The gross photosynthetic produc-
tion of a leaf cluster is assumed to be proportional to the
intercepted amount of photosynthetically-active radiation
(PAR). After subtracting a cost for maintenance, the
resulting net gain of assimilates is utilized in the next
growth step for the construction of new axial elements
and leaf clusters. Following the assumption of branch
autonomy, this surplus is used only for shoots emerging
from the shoot where it was obtained. No secondary
growth or consumption by roots is considered in the
model. – The architectural pattern of the modelled
monopodial tree follows a simple ternary/quaternary
branching scheme taken from an earlier model [11],
modified only by a dependence of number and length of
new shoots upon the amount of locally available photo-
synthates, and the grammar translation of this pattern is
straightforward. The only difficulty for the grammar for-
malism lies in the treatment of PAR transmittance and
interception. In [45], the PAR is assumed to emerge
from a discretized hemisphere consisting of 20 sectors
with brightnesses according to the model of the “stan-
dard overcast sky” [32], and from each of the sectors, a
ray is followed ending in the potentially-absorbing leaf
cluster under consideration and possibly crossing other
leaf clusters, reducing its intensity (figure 7).

Table II. The nonsensitive growth grammar “root”, simulating
root growth approximately according to [34].

\const idiam 1, /* initial diameter of all segments, | alt.: 2 */
\const ddiam 0, /* diameter increment of shoot | 0.6     */
\const c 0.2, /* delimits root-emerging proportion of shoot */
\var ia0 uniform 30 80,/* insertion angle of main roots at shoot */
\const rhy 1000, /* rhythm of emergence of main roots | 1 */
\const dl 2, /* discrete length unit of all axes      */
\const omax 3, /* maximal branching order    */ 
\const mainax 1, /* existence of central axis | 0 */
\var amax table 200 200 200 6, 

/* max. meristem age (per order) | 200 200 6 3     */
\var elong table 15 60 80 4, 

/* constant length increment | 15 60 6 2 */
\var laz table 400 400 120,  

/* length of apical unbranched zone | 160 160 10 2 */
\var dpr table 20 16 20, /* distance between branches | 20 14 6 */
\var nxp table 100 12 6, /* number of xylem poles | 100 5 3 */
\var ia table 80 88, /* insertion angle | 70 70 70 90     */
\var vt table 0,    /* vertical tendency | 0 0.01      */
\var lstiff table 100000, /* length of undeformed zone|600 600 0 */
\var rnd uniform 0 360, /* random rotation */
\var i index,
\axiom * 1-20,          /* start word | 1-32 */

* → D(idiam) dd(0) L(elong(0)) RL180 Pl4 F mainrts(0,0) 
[ RH(rnd) tip(if(mainax>0,1,omax+1)) ],

dd(t) → dd(t+1),
(r=rhy) mainrts(t,r) → [ @(5*(1-c)/(6+t)+c) RH(45+t*137.5)

RL(ia0) tip(1) ] mainrts(t+1,0),
mainrts(t,r) → mainrts(t,r+1),
(o<=omax) tip(o) → az(0,o,elong(o), floor(lstiff(o)/dl)),
(l <  laz(o)+dpr(o) && t < amax(o)) az(t,o,l,s) →

az(t+1,o,l+elong(o),s),
(l >= laz(o)+dpr(o) && t < amax(o)) az(t,o,l,s) →

&((l-laz(o))/dpr(o)) 
< bseg(0,o,dpr(o),s-i*floor(dpr(o)/dl)) 

[ RH(floor(rnd*nxp(o)/360)*(360/nxp(o))) 
RL(ia(o)) E(1) < tip(o+1) > ] >

az(t+1, o, l+elong(o)-floor((l-laz(o))/dpr(o))*dpr(o),
s-floor((l-laz(o))/dpr(o))*floor(dpr(o)/dl)),

(l <  laz(o)+dpr(o) && t >= amax(o)) az(t,o,l,s) → az(t+1,o,l,s),
(l >= laz(o)+dpr(o) && t >= amax(o)) az(t,o,l,s) →

&((l-laz(o))/dpr(o)) 
< bseg(0,o,dpr(o),s-i*floor(dpr(o)/dl)) >
az(t+1, o, l-floor((l-laz(o))/dpr(o))*dpr(o),
s-floor((l-laz(o))/dpr(o))*floor(dpr(o)/dl)),

/* interpretive rules: */
dd(t) ⇒ Dl+(t*ddiam),           /* diameter increment of aerial part */
az(t,o,l,s) ⇒ P14 &(l/dl) < RV(if(i<s,0,vt(o))) F(dl) >,  

/* apical zone */
bseg(t,o,l,s) ⇒ P(3+o) &(l/dl) < RV(if(i<s,0,vt(o))) F(dl) >

/* branched segment */

Figure 7. Light absorption by a leaf cluster in Takenaka’s
model [45]. Competing leaf clusters can reduce the amount of
available light from the sky sector under consideration.
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This mechanism is represented in the grammar in the
form of a sensitive function npp which calculates the
amount of intercepted PAR and gives back, after sub-
tracting a respiration term, the net photosynthetic pro-
duction of the leaf cluster lc. This leaf cluster is “loaded”
by applying the rule

lc(x)  → lc(npp).

The only change made in comparison with the original
model [45], which was done for technical reasons, was
the replacement of the 20-sector sky by a 46-sector dis-
cretization of the hemisphere which was already used in
other models [5, 7]. – In later steps of the grammar
application, the obtained assimilates are distributed itera-
tively to new shoots, each one first satisfying its own
demand and then leaving the rest to the next one, until
the assimilates are exhausted or the maximal number of
new shoots is reached. This mechanism was realized in
the grammar again by using an expand operator like in
Example 1. – The light absorption algorithm, together
with a pruning rule for branches with insufficient pro-
duction, leads to the emergence of competition effects
when tree stands are modelled, as was already observed
in [45] (figure 8).

In [45], Takenaka introduced also an alternative vari-
ant of his model which used an equal sharing of assimi-
lates among all potentially-growing new shoots of the
whole tree, replacing the branch-autonomy principle. For
the grammar form of this model version, it was neces-
sary to use local register variables(one for each tree,
representing the carbon pool of the whole plant) and an
arithmetical-structural operatorwhich sums up all
obtained assimilates in the global pool of the tree in each
step. These formal concepts, which are again extensions

of the classical L-system formalism, were introduced in
[26] and are explained in full detail in [23, 24]. (The
“local variables” in [37] have a different, more technical
meaning.) The resulting trees – figure 9 shows again the
central one out of a stand of 25 trees – show a quite dif-
ferent habit and lack the adaptation of their leaf mass
distribution to the local light environment.

To give again an impression of the size of the neces-
sary formal description in our grammar language, we
show in table III the growth grammar specification of
the “equally sharing” version of the model. (A listing of
the other version can be found in [24].) Note that the

Figure 8. Trees resulting from the GROGRA real-
ization of Takenaka’s model [45] after 8 annual
steps, taken from a stand of 5 × 5 trees planted in a
square pattern. Left: Tree from the edge of the stand,
right: central tree. The filled circles represent the
leaf clusters.

Figure 9. Tree generated by GROGRA according to the
“equally sharing” version of Takenaka’s model [45]. Like in
figure 8 (right side), the tree is taken from the center of a stand
of 25 trees. No visible local competition effect on shape occurs,
in contrast to the branch-autonomy version of the model.
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calculation of PAR transmittance and absorption is “hid-
den” in the sensitive function named “npp”. — Mech
and Prusinkiewicz [31] did also present an L-system
based on ideas from Takenaka’s model, but their model
deviated considerably from the original one.

6. DISCUSSION

The models which were taken here from the literature
and translated into growth grammars belong certainly to
the simpler ones in the realm of functional-structural
plant models. The functional part was only weakly
developed, or missing completely. Only Takenaka’s
model contained a carbon budget, but important pro-
cesses like secondary growth are still omitted.

However, it was felt that it makes sense to start the
process of rebuilding models in the grammar language
with simple examples, and then to proceed to more
advanced ones. In this way, experiences gained from the
first examples can be used for the more complicated
models which are attacked later. E.g., we were able to
reuse the tool of the “expand operator”, introduced to
manage the first example from Bell, for handling assimi-
late distribution in the grammar version of Takenaka’s
model.

Advanced and complex models like LIGNUM [35],
TRAGIC++ [19], INCA [29], AMAPsim [1] and
AMAPpara [44] are not only characterized by a greater
degree of genericness (ability to simulate a multitude of
species under a variety of different conditions etc.), but
they have normally also undergone a kind of “historical
development” which makes the reconstruction nontrivial.
E.g., some features were tailored to computer platforms
or systems which are now outdated; several software
developers have left some remnants of their sometimes
differing philosophies of programming. However, the
possibility to express at least the earlier, more structural-
ly-oriented versions of the AMAP software [43] in terms
of grammars was already noted rather early [13]. For the
LIGNUM model [35], a “partial” realization by gram-
mars was described in [24]. A rather complex root
growth model proposed in [6] has been rebuilt with an L-
system in [31], but in a simplified way. — These and
other examples from the literature (see e.g. [42]) support
the conclusion derived from our work that grammars are
a possible general tool to specify plant models of quite
different characteristics.

The advantages of a formalization of models are: a
greater precision of the model specification, enhanced
reproducibility and comparability of models, a better
separation of the essential causalities and laws of the
model from unimportant boundary conditions, and

Table III. The sensitive growth grammar “takenaka_sharing”,
simulating the version of the model from [45] which distributes
the assimilates evenly.

\const Nmax 3,  /* maximal number of daughter shoots  */
\const Nmax0 4, /* same for the stem axis (order 0)   */
\const lwpbuw 0.5, /* leaf weight per branch unit weight */
\const stlpstw 200, /* stem length per stem weight */
\const larpw 10000, /* leaf area per weight */
\const sconst 1.5, /* parameter for leaf density in cluster */
\const smin 0.3, /* min. amount of assim. for shoot growth */
\const smax 1.0, /* max. amount of assimilates for one shoot */
\const smax0 2.0, /* same for order 0 */
\const leafcolor 10,
\var de depth,
\var an table 5 -50 60, /* branching angle */
\var ro uniform 0 360, /* random rotation */
\var npp function 20 1, /* sensitive function

for PAR capture and npp  */
\const start 0.3, /* start reserve of assimilates */
\var lwgh n_value, /* leaf weight */
\var carb carbon, /* locally available amount of assimilates */
\var col color,
\var pool local 0, /* assimilate pool of plant */
\var nb local 1, /* number of leaf clusters  */
* → Pl0 F(0) K(pool) K(nb) z0 s(0,start,0) lc(0,start,0,0),
z0 → A(pool, sum(carb)) A(nb, sum(col>9 && col<13, 1)), 

/* assignments */
/* assimilative step: */
(de=0 && j<2) lc(t,p,a,j) → lc(t,p,npp(leafcolor),j+2),
(de=0 && j=0 && sum(lwgh)<=0) s(t,p,j) → %,
(de=0 && j=0) s(t,p,j) → s(t,p,1),
/* growth step: */
(de=0 && j=1) s(t,p,j) → s(t+1,p,0),
(de=0 && j=2) lc(t,p,a,j) → E(Nmax0) < rrt m0(pool/nb,0) >, 

/* stem */
(de=0 && j=3) lc(t,p,a,j) → E(Nmax) < lrt $ m(pool/nb,0) >, 

/* laterals */
(de=0) m0(p,t) →,
(de=0) ml(p,t) →,
(de=0) m(p,t) →,
(p < smax0 && p>=smin) m0(p,t)→ [ s(0,p,0) lc(0,p,0,0) ],
(p >=smax0)    m0(p,t)→ [ s(0,smax0,0) lc(0,smax0,0,0) ] 

ml(p-smax0, t+1),
(p < smax && p>=smin) ml(p,t)→ [ RU60 s(0,p,0) lc(0,p,0,1) ],
(p >=smax)        ml(p,t)→ [ RU60 s(0,smax,0)

lc(0,smax,0,1) ] 
vrt ml(p-smax, t+1),

(p < smax && p>=smin) m(p,t) → [ RU(an(t)) s(0,p,0) 
lc(0,p,0,1) ],

(p >=smax)          m(p,t) → [ RU(an(t)) s(0,smax,0) 
lc(0,smax,0,1) ] 

m(p-smax, t+1),
rrt → RH(ro),
vrt → RH135,
lrt → RH180 ?0.5,
lrt → ?0.5,
/* interpretive rules: */
s(t,p,j) ⇒ P(if(t=0,14,15)) L(stlpstw*(1.-lwpbuw)*p) C(0) F,
lc(t,p,a,j) ⇒ P(if(j<2,leafcolor,12)) N(lwpbuw*p) 

Dl(sconst*sqrt(larpw*lwpbuw*p/3.14))
Cl(if(j<2,p,a)) F(0)
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possibly the applicability of general theorems (in the
case of grammars: from formal language theory, see [38]
for an example). The language of growth grammars pro-
vides a markedly versatile formalism which is capable to
represent stochastic as well as causal models, in contrast
to more restricted mathematical tools like e.g. linear
regressions. However, the formal framework can certain-
ly not ensure a consistency of the models with physical
or physiological principles. Due to their generality,
growth grammars give a great degree of freedom, and it
lies in the responsibility of the modeller to use it the
right way.

Some limitations of the present growth grammars can
also be stated. First of all, some parts of the syntax of the
grammars can certainly be improved further to enhance
transparency. A combination with interactive, graphical
tools to specify the grammar rules should also be consi-
dered in the future. The whole formal framework as well
as the software GROGRA [21] and other softwares
working with L-systems (cf. [31]) are still being extend-
ed, and user-friendly interfacing is an important issue in
this development.

A more substantial question concerns the handling of
interactions of the modelled plant with the environment,
and (more generally) the interfacing with process-orient-
ed models. Is it the right way to exclude the treatment of
the processes and interactions from the grammars, like
we did with our “sensitive functions” in the examples 2
and 4? Potentially, with sensitive functions, or with
“open L-systems” [31], all thinkable process-oriented
models can be linked to a grammar. The rationale behind
this concept is to separate plant growth (modelled by the
grammar) from processes in the environment (taken care
of in external functions or software modules). However,
it may be asked whether such a borderline can always be
drawn clearly. Furthermore, we give up a certain part of
the advantage of transparency of the model specification
brought by the grammar formalism if we exclude essen-
tial parts of the model from the grammar, making it
unavoidable to refer to verbal descriptions or to lengthy
computer code again if one wants to have access to the
whole, precise model specification. This is the situation
in the grammar-based realization of Takenaka’s model,
where the important part describing PAR transmittance
and absorption had to be “externalized” in a sensitive
function. It should therefore be considered whether some
extensions of the grammar formalism could be capable
to represent more explicitely some of the calculations
which some of the sensitive functions do in the present
version. — On the other hand, for a number of process-
oriented models, particularly those based on large sys-
tems of differential equations, a realization with classical
modelling techniques will probably remain superior to

the grammar-based approach, at least in terms of calcula-
tion efficiency.

A further useful extension of L-systems concerns the
handling of multiscale structures, which often occur in
plants (cf. [14]). The introduction of a “hierarchy
counter” in growth grammars [24], i.e. an integer indi-
cating the entrance into an entity on a higher scale, is a
first step into this direction.

The development of models and of abstract for-
malisms for model description are interacting processes.
A formalization of more advanced functional-structural
plant models will lead to new improvements of the
grammar machinery, and this will in turn enable an easi-
er construction of models which will be more transparent
and better to document and to compare with each other
than today.
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