
Rule-based modelling with the
XL/GroIMP software

Ole Kniemeyer

okn@informatik.tu-cottbus.de

Brandenburgische Technische Universität Cottbus

Institut für Informatik

Lehrstuhl Praktische Informatik / Grafische Systeme

Co-Workers: Gerhard Buck-Sorlin, Winfried Kurth

Funded by Deutsche Forschungsgemeinschaft, Research Group Virtual Crops

The XL/GroIMP software – 1/22

Motivation

Models of biology or ALife are often specified in a
rule-based manner.

This natural choice of specification is lost in a
conventional implementation:

PSfrag replacements

alivedead

3 living
neighbours

for (x = 0; x < n; x++) {
for (y = 0; y < n; y++) {

sum = 0;
for (dx = -1; dx <= 1; dx++) {

for (dy = -1; dy <= 1; dy++) {
if (((dx != 0) || (dy != 0))

&& state[(x + dx) % n][(y + dy) % n])
sum++;

}
}
if (!state[x][y] && (sum == 3))

newState[x][y] = 1;
}

}
tmp = newState;
newState = state;
state = tmp;

A rule-based language reflects the nature of such
models in a much more concise way.

The XL/GroIMP software – 2/22

Rule-based modelling: L-systems

L-systems, established in 1968, provide a rule-based
formalism. They are used in biological modelling.

Data structure: Linear string of symbols, e.g.,
F [+ F] [- F]

Turtle graphics interpretation leads to

3D-structures:PSfrag replacements F

F

F

String replacement rules implement dynamics:
A −→ F [+ A] [- A]
Thery are applied in parallel.

The XL/GroIMP software – 3/22

Von Koch curve as an L-system

The von Koch (snowflake) curve arises out of the
following L-system

α −→ F + + F + + F

F −→ F - F + + F - F

F++F++F

The software GroIMP displays these derivation steps.

The input is the L-system itself: Thus,
specification and implementation are congruent.

User interactions are possible.

The XL/GroIMP software – 4/22

L-system examples of biology

Main field of application of L-systems: Biological
modelling, especially of plant morphology.

Plant growth can suitably be described as a
rule-based process.

Realistic images can be produced.

* # f(-30) RL(90) f(800) RL(-90) a(10,1)
a(l,w) # D(w) F(l) [RL(a0) b(l*r2, w*wr)] RH(d) a(l*r1, w*wr)
b(l,w) # D(w) F(l) [RU(a2) $ c(l*r2, w*wr)] RH(d) c(l*r1, w*wr)
c(l,w) # D(w) F(l) [RU(-a2) $ b(l*r2, w*wr)] RH(d) b(l*r1, w*wr)

A parametric tree
⇒

The XL/GroIMP software – 5/22

Some L-system-generated images

The XL/GroIMP software – 6/22

Disadvantages of L-systems

L-systems have a number of disadvantages:

Linear (1D string) data structure.

Objects are simple symbols.

Expressiveness of rules is limited.

These drawbacks become essential when modelling
complex structures and interactions:

Complex structures do not fit well into the linear
world of strings.

Complex interactions on string-encoded structures
are not reasonably realizable.

The XL/GroIMP software – 7/22

Current solutions

Current solutions “outsource” the complexity:

Prusinkiewicz introduced open L-systems which
can be coupled to external programmes (software
cpfg, L-Studio).

Kurth introduced sensitive L-systems which
provide a number of predefined environment
functions (software GROGRA).

A better solution would be the enhancement of ex-

pressiveness of the rule-based language! This can be

achieved by the transition from strings to graphs.

The XL/GroIMP software – 8/22

Graphs and graph grammars

Graphs are sets of nodes and connecting edges.

This includes L-system-like strings as a subcase.

General structures can be encoded immediately.

Graph query languages extract information.

Graph grammars are rewriting systems that operate
on graphs.

Again, L-systems are a subcase.

Complex model dynamics can be implemented in
a concise way using graph transformations.

The XL/GroIMP software – 9/22

Relational Growth Grammars

Relational Growth Grammars (RGG) are graph
grammars, primarily tailored to the needs of
modelling plant growth.

Edge-labelled directed graphs build the data
structure, nodes are objects of the underlying
programming language.

A conventional programming language is included.

Graph queries can be formulated.

Relations can be defined and used in queries.

This general framework is also suitable for ALife.

The XL/GroIMP software – 10/22

XL: An implementation of RGG

XL is a Java-based implementation of RGG for the
use in practice.

Most constructs of Java have been integrated
(classes, methods, variables, loops, ...).

Graph transformation rules and queries can easily
be formulated.

Certain Java classes serve as turtle commands.

All existing Java runtime libraries can be used.

XL is integrated in the software GroIMP.

The XL/GroIMP software – 11/22

Von Koch curve as an RGG-system

The snowflake L-system as an RGG-system:
class Koch extends RGGSystem {

void run() [
Axiom ==> F(1) RU(120) F(1) RU(120) F(1);
F(x) ==> F(x/3) RU(-60) F(x/3) RU(120) F(x/3) RU(-60) F(x/3);

]
}

Specification and implementation are nearly
congruent:

An enclosing Java-like code is needed.

Apart from that, the L-system is implemented in a
1:1 fashion.

The XL/GroIMP software – 12/22

Game Of Life: Specification

Conway’s Game Of Life is specified as follows:

The world is a 2D two-state (dead or alive) cellular
automaton with Moore-neighbourhood.

A living cell dies if it has less than two, or more
than three living neighbours.

A dead cell becomes alive if it has exactly three
living neighbours.

The specification can be written down in three lines.

The XL/GroIMP software – 13/22

Game Of Life: Implementation

Geometrical definition of neighbourhood:
iterating Cell neighbours(Cell c1) {

yield (* c1 -+- #c2:Cell, (c1.distanceLinf (c2) < 1.1) *);
}

Transition rules:
void transition() [

x:Cell(1), (!(sum(neighbours(x).state) in {2..3})) ==>> x(0);
x:Cell(0), (sum(neighbours(x).state) == 3) ==>> x(1);

]

The original specification is reflected concisely in
the implementation.

The XL/GroIMP software – 14/22

Making use of relations

Definition of neighbourhood as a relation:
boolean neighbour(Cell c1, Cell c2) {

return (c1 != c2) && (c1.distanceLinf(c2) < 1.1);
}

Modified transition rules:
void transition() [

x:Cell(1), (!(sum((* x -neighbour-> #Cell *).state) in {2..3}))
==>> x(0);

x:Cell(0), (sum((* x -neighbour-> #Cell *).state) == 3) ==>> x(1);
]

Such a relational view may help to increase the
readability of implementation code.

The XL/GroIMP software – 15/22

The modelling platform GroIMP

GroIMP is designed as an integrated modelling
platform:

XL grammars can be interpreted.

Classes useful in modelling are provided: Turtle
commands, further geometrical classes, cells, ...

The outcome of a model is visualised.

User interaction during the simulation is possible,
even over a network.

GroIMP is still under development.

The XL/GroIMP software – 16/22

A simple ant model

A simplistic ant simulation is implemented easily:

Ants live in a rectangular grid world.

Ants release pheromone while moving.

Released pheromone decays by and by.

Ants remember the last twenty cells visited.

The movement is influenced by the reachable
pheromone values, a direction-preserving
tendency, the memory and a random effect.

There are food sources which stimulate the
pheromone deposition of ants.

The XL/GroIMP software – 17/22

Ant model implementation
class Ant extends Cylinder {

float dx, dy; // current moving direction
}

class AntSimulation extends RGGSystem {
const int memory = MIN_USER_EDGE; // a user-defined edge

boolean placeAntAt(int i, int j) { where to place ants initially... }

float evaluate(float pheromone, float dirdelta2) { evaluation of a possible move...
// pheromone: Pheromone content of the reached cell,
// dirdelta2: squared difference of the direction vectors }

void run() [
// move ant a to next cell, keep current cell c in memory with counter value 20
c:Cell a:Ant ==>> n:nextCell(c, a) a -memory-> 20 c

{ a.dx := n.x - c.x; a.dy := n.y - c.y; // update moving direction
float p = (a.length + c.state) * C_ANT; // amount of pheromone laid down
a.length :+= c.state - p; // update ant excitation status
c.length :+= p; // lay down pheromone };

// decrease the memory counter; if it has reached zero, the memory node is removed
m:int ==>> if (m > 0) m(m-1);

c:Cell ::> c.length :-= c.length * C_CELL; // decay of cell pheromone
]

Cell nextCell(Cell c1, Ant a) {
float dx, dy;
// find the neighbouring cell c2 not in memory with maximum evaluate-value:
Cell next = select((* c1 -+- #c2:Cell,

(c1.distanceLinf (c2) < 1.1),
(!exist((* a -memory-> int c2 *))) *),

(dx = (c2.x - c1.x) - a.dx, dy = (c2.y - c1.y) - a.dy,
evaluate(c2.length, dx * dx + dy * dy)) -> max);

return (next != null) ? next
: c1; // all neighbours are in memory, ant doesn’t move

}

void init() [
// create a 25 * 25 grid of cells, place the ants
Axiom ==>> ˆ for(i = 0 .. 24) for(j = 0 .. 24) ([Cell(i, j) if(placeAntAt(i, j)) Ant]);

]
}

The XL/GroIMP software – 18/22

Back to biology: ABC model

The ABC model predicts flower morphogenesis on
the basis of a genetic regulatory network.

Three genes, A, B and C, are used.

Their transcription factors determine the type of
flower organ to be formed.

Factor concentrations change in time.

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

A
B
C

⇒

[b] > 80, [c] > [a] −→ stamen

[b] > 80, [c] ≤ [a] −→ petal

. . .

⇒

The XL/GroIMP software – 19/22

ABC model implementation

The XL implementation of the ABC model benefits
from the new features of RGGs:

The regulatory network is represented as a graph.
agene:Gene(0.1) -encodes-> a:Factor(0, 0.3),
a Activate(1e-9, 50) agene, ...

Its dynamics is implemented using update rules.
f:Factor(c, d) ::> f.concentration :-= c * d;
f:Factor <-encodes- g:Gene(ct) ::> f.concentration :+= Math.max(0,

sum(((* Factor(c2,) Activate(s, m) g *), m*c2 / (s+c2))) + ct);

Morphogenesis is modelled in an L-system style.
m:Meristem (* -factors-> Factor(a,) Factor(b,) Factor(c,) *) ==>

{ int t = (b > 80) ? ((c > a) ? STAMEN : PETAL) : ...; }
if (t == SHOOT) (F(0.5, 0.6)) else if (t == PEDICEL) (...) ... m;

The XL/GroIMP software – 20/22

A barley model

Morphogenesis is modelled
in an L-System style.

Diploid genome controls ear
morphogenesis.

A metabolic network in each
internode organ controls
internode elongation.

The XL/GroIMP software – 21/22

Conclusion and outlook

In principle, RGGs provide a concise way of
implementing biological or ALife models:

Necessity of technical code has been reduced.

The structural view of L-systems is preserved.

Further models have to be checked.

For practice, runtime efficiency has to be acceptable.

Graph grammars introduce a runtime overhead.

Matching algorithm has to be improved, e.g.,
search order optimization or caching of matches.

Java byte-code generation is desirable.

The XL/GroIMP software – 22/22

	Motivation
	Rule-based modelling: L-systems
	Von Koch curve as an L-system
	L-system examples of biology
	Some L-system-generated images
	Disadvantages of L-systems
	Current solutions
	Graphs and graph grammars
	Relational Growth Grammars
	XL: An implementation of RGG
	Von Koch curve as an RGG-system
	Game Of Life: Specification
	Game Of Life: Implementation
	Making use of relations
	The modelling platform GroIMP
	A simple ant model
	Ant model implementation
	Back to biology: ABC model
	ABC model implementation
	A barley model
	Conclusion and outlook

