
Demonstration of the GroIMP
software

Ole Kniemeyer, Gerhard Buck-Sorlin, Winfried Kurth

{okn,wk}@informatik.tu-cottbus.de

buck@ipk-gatersleben.de.

Brandenburgische Technische Universität Cottbus

Department of Computer Science

Chair for Practical Computer Science / Graphics Systems

Funded by Deutsche Forschungsgemeinschaft, Research Unit Virtual Crops

[GroIMP demo – 1/25]

I Overview

Features of the GroIMP software:
� L-system modelling
� User interaction
� Networking
� Java implementation
� Graph grammar modelling
� Network modelling
� Open data model

[GroIMP demo – 2/25]

I L-system modelling

� Data structure: Linear string of symbols, e.g.,
F [+ F] [- F]

� Turtle graphics interpretation leads to geometrical

structures:PSfrag replacements F

F

F

� String replacement rules implement dynamics:
A −→ F [+ A] [- A]
They are applied in parallel.

� Plant growth can be suitably described by such a
rule-based process.

� Realistic images can be produced.

[GroIMP demo – 3/25]

I A 2D tree stand model

� Monopodial growth: X → F [+X] [-X] X

� Phototropism: Shoots bend towards a light
source.

� Growth condition: A light cone emerging from the
tip of a meristem has to be free.

� Reproduction: Production of seeds, spreading,
germination.

Implementation in XL is straightforward.

[GroIMP demo – 4/25]

I Tree stand model: Implementation
�Monopodial growth �Parametrization �Growth termination �Phototropism �Shading

x:X(r, l) ==>

if(r == 2) (

if (!isShaded(x)) (

tropism(x, sun.basis, 0.2f)

F(l, 0.02f) Leaf

)

) else if ((l > minLength[r]) && !isShaded(x)) (

tropism(x, sun.basis, 0.2f) F(l, 0.02f)

[RU(angle[r]) X(r+1, l*c2)]

[RU(-angle[r]) X(r+1, l*c2)]

X(r, l*c1)

);

[GroIMP demo – 5/25]

I Tree stand model: Reproduction
�Seed production �Seed spreading �Germination

n:Leaf, (random(0, 1) < 0.005) ==>>

n, ˆ Seed(getGlobalOrigin(n));

Seed(b) ==>>

if (b.z <= 0) (

{b.z = 0;}

ˆ TranslationNode(b) Tree(0) X(0, 1)

) else {

b.x += random(-1, 1);

b.z -= random(0.1, 0.3);

break;

};

[GroIMP demo – 6/25]

I Software demonstration I

� Simulation of tree stand model within GroIMP
� Object inspection
� User interaction: Tree cutting
� User interaction: Movement of light source
� Networking

[GroIMP demo – 7/25]

I Résumé I

� Models written in XL can be simulated within
GroIMP.

� “Symbols” are real Java objects.
� Methods can be defined in XL:

boolean isShaded(Node s) {...}

� Existing Java methods can be used:
intersectsFrustum(f, s, 40*DEG, 0.05, 1.1)

� Global queries can be formulated easily:
exist((* f:F, ((f != s) && ...) *))

[GroIMP demo – 8/25]

I Implementation of GroIMP/XL I

GroIMP and XL are implemented in Java.
� All available Java runtime libraries are accessible

within XL.
� By standard Java mechanisms, GroIMP/XL can

be coupled with non-Java software.
� Some software systems (e.g., MATLAB) have a

direct Java integration – hence a direct GroIMP/XL
integration.

� There exist native Java compilers (e.g., gcj)
which can combine Java and C code.

[GroIMP demo – 9/25]

I From strings to graphs

Numerous processes in biology can be described
more concisely using graphs instead of strings.

� Crossing over of two genomes:

⇒ L-system rule?

⇒ Graph rewriting rule

� Metabolic or gene regulatory network simulation:

⇒ L-system string encoding?

⇒ Representation as graph

[GroIMP demo – 10/25]

I Relational Growth Grammars

Relational Growth Grammars (RGG) extend the
established concept of L-systems:

� Graphs instead of strings
� Graph rewriting instead of string rewriting
� Objects instead of symbols
� Edges and relations instead of string

neighbourhood
� Multiple scales representable by specific edges
� Free mixing of rule-based and imperative

programming

[GroIMP demo – 11/25]

I XL: An implementation of RGG

XL is a Java-based implementation of RGG for the
use in practice.

� Imperative Java constructs (classes, methods,
variables, loops, ...)

� Graph rewriting rules and queries
� Integration in GroIMP
� Certain GroIMP Java classes as turtle commands

RGG/XL extend capabilities of L-systems towards

functional-structural modelling in an integrative way.

[GroIMP demo – 12/25]

I ABC model

The ABC model predicts flower morphogenesis on
the basis of a genetic regulatory network.

� Three genes, A, B and C
� Transcription factors determine type of flower

organ to be formed.
� Factor concentrations change in time.

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

A
B
C

⇒
[a] > 80; [b], [c] < 80 −→ sepal

[b] > 80, [c] ≤ [a] −→ petal

. . .

⇒

[GroIMP demo – 13/25]

I Model and implementation details

abc

agene

a

bgene

b

cgene

c

bcgene

bc

bc_actgene

bc_act

ccgene
cc

Network a

Activation of gene
Repression of gene

Quantification: Michaelis-Menten
equation V =

Vmaxcf

cf+Km

� Construction of network
agene:Gene(0.1) -encodes-> a:Factor(0, 0.3),
...,
c Activate(50, -100) agene, ...

� Michaelis-Menten kinetics
p:Factor <-encodes- g:Gene(v0) ::>

p.concentration :+= max(0,
sum(((* Factor(cf,) Activate(km, max) g *),

max*cf / (cf+km))) + v0);

aThis model is an XL translation of a model by Jan T. Kim.

[GroIMP demo – 14/25]

I Implementation of flower morphology

� Flower morphogenesis follows simple scheme
Meristem → Organ [Lateral]... Meristem.

� Type and parameters of flower organs to be
formed controlled by transcription factor
concentrations
m:Meristem(type, mass)

(* -factors-> Factor(a,) Factor(b,) Factor(c,) Factor(cc,) *) ==>
{

int t = ((c > 80) && (cc > 1)) ? TERMINATE
: (b > 80) ? ((c > a) ? STAMEN : PETAL) ...;

}
if (t == type) {m.mass++; break;} else (

if (type == SHOOT) (F(0.45*mass))
else if (type == SEPAL) (F(0.1) [sepal(0)] [sepal(2)]

[sepal(4)] [sepal(6)])
else if (type == ...) (...)
if (t != TERMINATE) (m(t, 1))

);

[GroIMP demo – 15/25]

I Software demonstration II

� Simulation of ABC model
� “Mutation” of source code: Modifying the network
� Simulation of mutants

Wild type “Loss of B” mutant

[GroIMP demo – 16/25]

I Hordeomorphs

Model of genotype-phenotype relationship using
RGG

� Virtual creatures resembling barley ears
� Idea based on R. Dawkins’ “biomorphs”
� Diploid genome of five genes
� Genetic operations mutation, selection by user,

asexual reproduction, sexual reproduction
� Morphology is modelled in an L-system style,

controlled by genome

[GroIMP demo – 17/25]

I Hordeomorph implementation

� Genome representation

PSfrag replacements

j

k

l

m

Genome -first-> Chromo [-first-> 1 1 0 1 0]
Chromo [-first-> 1 0 0 0 0]

� Mutation
int ==> if (prob(0.3)) irandom(0, 1) else break;

� Crossing over

PSfrag replacements

j k

l m

int j, k, l, m;
j k, l m, j -align- l, (* higher(j) -mate- higher(l) *)

==>> j m, l k

[GroIMP demo – 18/25]

I Software demonstration III

� Simulation of Hordeomorph model
� User selection: Asexual reproduction
� User selection: Sexual reproduction

PSfrag replacements

j

k

l

m

[GroIMP demo – 19/25]

I A barley model

� Morphogenesis is modelled in an L-System style.
� Diploid genome controls ear morphogenesis.
� Metabolic network (part of Gibberellic acid

biosynthesis) in each internode organ controls
internode elongation:
Cell [s:GA20] [p:GA1] ::> michaelisMenten(s, p, 0.2, 1);
...
i:Internode [s:GA1] ::> i.length :+= DT * C * s.concentration;

void michaelisMenten(Substance s, Substance p, double max, double km) {
double r = DT * max * s.concentration / (km + s.concentration);
s.concentration :+= -r;
p.concentration :+= r;

}

� Transport of metabolites

[GroIMP demo – 20/25]

I Software demonstration IV

� Simulation of barley model

PSfrag replacements
j
k
lm

PSfrag replacements
j
k
lm

PSfrag replacements
j
k
lm

Wild type Dwarf Slender

[GroIMP demo – 21/25]

I Implementation of GroIMP/XL II

At runtime, graphs are inspected and modified
through a graph data model interface.

� Default data model establishes link between
GroIMP objects and XL runtime library.

� Other data model implementations may enable XL
to operate on other data structures.

� Data model implementation for commercial
3D-modelling software CINEMA 4D (MAXON) is
in the works.

[GroIMP demo – 22/25]

I Résumé II

RGGs provide a concise way of implementing
biological models:

� Fundamental data structure is a graph.
� Complex relationships can be represented as a

graph.
� Needs of functional modelling are addressed.
� The structural view of L-systems is preserved.

[GroIMP demo – 23/25]

I Outlook I

Runtime efficiency is crucial
� Graph grammars introduce runtime overhead
� Improvement of matching algorithm
� Java byte-code generation

Enhancement of 3D-visualization
� Java 3D
� External 3D-rendering tools
� Smooth animation

Improvement of workflow

[GroIMP demo – 24/25]

I Outlook II

Data interfaces
� Reintegration of VRML, POV-Ray, MTG
� Digital Elevation Model (DEM)

Binary interfaces
� CINEMA 4D (MAXON)
� Delphi (Borland)

Publishing of GroIMP
� Website www.grogra.de
� Software will be made open-source

[GroIMP demo – 25/25]

	Overview
	L-system modelling
	A 2D tree stand model
	Tree stand model: Implementation
	Tree stand model: Reproduction
	Software demonstration I
	R'esum'e I
	Implementation of GroIMP/XL I
	From strings to graphs
	Relational Growth Grammars
	XL: An implementation of RGG
	ABC model
	Model and implementation details
	Implementation of flower morphology
	Software demonstration II
	Hordeomorphs
	Hordeomorph implementation
	Software demonstration III
	A barley model
	Software demonstration IV
	Implementation of GroIMP/XL II
	R'esum'e II
	Outlook I
	Outlook II

