
General-Purpose Layout Algorithm for GroIMP
: Mathematical Background

The general-purpose layout algorithm of GroIMP includes an energy layout
which uses mainly two optimization methods : a modified-Newton algorithm
and a simulated annealing algorithm. This is a short summary of the mathe-
matical points involved.

This energy layout is mainly inspired from [1], [2] and [3]. More details
concerning the use of numerical optimization for graph drawing can be found in
[4], and precisions concerning numerical optimization methods in general in [5].

Energy Layout : overview

By analogy to atoms interactions and crystallography, the main idea of an en-
ergy layout is to define an energy function taking the position of the nodes as
parameter, and describing the quality of the layout (the higher the energy, the
worse the layout is). Thus the problem of finding a good layout configuration
is transformed into an optimization problem. We can without loss of generality
assume that the graph to layout is connected (if it is not the case, it can be
divided into several connected components, which can be in turn layouted). No
further assumptions are needed.

The energy is defined as the sum of terms which can be classified in two
types :

• ”edge energy” : any pair of linked nodes adds a spring-like term Ee =
k

2
· (d− l0)2 (d being the length of the edge, k the spring constant and l0

the rest length of the spring) ;

• ”node energy” : any pair of two different nodes adds a repulsive term

En =
λ

d
(λ being a constant and d the distance between the two nodes).

Thus energy function is defined as follow, with n the number of nodes, (xi, yi)
the coordinate of any node i, dij the distance between any pair (i, j) of nodes,
and de the length of the edge e :

Etot : D −→ R

(x1, y1, ..., xn, yn) −→
n−1∑
i=1

n∑
j=i+1

λ

dij
+
∑

e:edges

k

2
· (de − l0)2

With :

D = R2·n\{(x1, y1, ..., xn, yn) ∈ R2·n/∃(i, j) ∈ J1, nK2, i 6= j, st. (xi, yi) = (xj , yj)}

Remark that, given any node i0, the energy can be rewritten as Etot =
Etot

i0
+ Etot

n−{i0} with Etot
i0

a term taking into account all dependencies of Etot

into the node i0 and Etot
n−{i0} a term independent of the node i0 :
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Etot
i0 =

∑
j 6=i0

λ

di0j
+

∑
{e:edges/i0∈e}

k

2
· (de − l0)2

Etot
n−{i0} =

n−1∑
i=1 ; i6=i0

n∑
j=i+1 ; j 6=i0

λ

di0j
+

∑
{e:edges/i0 /∈e}

k

2
· (de − l0)2

The Etot
i0

term will therefore be referred to as the ”energy of the node i0”,
however one should note that it is in fact an interaction term and does not
strictly ”belongs” to the node i0. In particular, the total energy of the layout is
not the sum of the energy of each node. Whenever the position of only one node
i0 is modified, this decomposition enables one to recompute the total energy of
the layout in linear time – as only the Etot

i0
term has to be recomputed – rather

than in quadratic time.

A priori finding a minimum for the energy function is a high-dimension op-
timization problem, as it is defined on a 2 · n-dimensions space. However, a
heuristic is used to reduce the complexity of the problem : the energy is consid-
ered to be a function of the position of one node only – the other nodes being
”frozen” – and the position of this node is optimized accordingly (then the node
which is moving is changed, and this process iterated until convergence). There-
fore the optimization space is now of dimension 2.

In practice, two methods are used to optimize the energy function : a
modified-Newton algorithm, and a simulated annealing algorithm.

Modified-Newton algorithm : principle

When optimizing the layout with respect to the position of the node i0 and con-
sidering the other nodes as ”frozen”, the Etot

n−{i0} term in the energy function is
constant, and, as so, it is useless to take it into account. Thus, the function to
optimize is Etot

i0
, which is C∞(D).

Starting from an initial point x, the general principle of the modified-Newton
algorithm is the following :

1. choose a descent direction (that is a direction in which the energy function
is decreasing) : the direction chosen here satisfies B · p = −

−→
∇Etot

i0
, with

B a positive definite matrix based on the Hessian of Etot
i0

;

2. choose a step-length α for this direction : an Armijo backtracking line-
search is implemented ;

3. do x ≡ x + α · p, and iterate this scheme until reaching a minimum (in
practice : until the gradient is small enough)

See the detailed section at the end of this document for more precisions.
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Simulated Annealing

Simulated Annealing is a general meta-heuristic optimization method. It is use-
ful in this problem in order to find a ”good” minimum (i.e. a ”good” layout)
as classic optimization methods such as the modified-Newton algorithm imple-
mented converge towards local minima, and the energy function to optimize
indeed presents many local minima far from any ”good” configuration. The
implemented version is largely based on the algorithm described in [3] . The
principle of the simulated annealing optimization is the following :

1. define an initial ”high temperature” T for the system, a cooling schedule
for this ”temperature” and a maximum number of steps ;

2. starting from some configuration C0 of energy E0, randomly modify it,
and assess the new energy ;

3. if the energy E1 of the new configuration C1 is less than the initial energy
E0 , then do C0 ≡ C1 ;

4. else do C0 ≡ C1 with a probability e
E0−E1

T ;

5. apply the cooling schedule, and increment the number of steps. If the
maximum number is not reached, go back to step 2 ;

Modified-Newton algorithm : details and calculations

We have :

Etot
i0 =

∑
j 6=i0

λ

di0j
+ χi0j ·

k

2
· (di0j − l0)2

with : χi0j the number of edges between the nodes i0 and j, and :

di0j =
√

∆x
i0j

2 + ∆y
i0j

2 and

{
∆x

i0j = xi0 − xj

∆y
i0j = yi0 − yj

Gradient :

−→
∇Etot

i0 (xi0 , yi0) =


∂Etot

i0

∂xi0

(xi0 , yi0)

∂Etot
i0

∂yi0

(xi0 , yi0)

 =


∑
j 6=i0

(
−λ
di0j

2 + χi0j · k · (di0j − l0)
)
·

∆x
i0j

di0j∑
j 6=i0

(
−λ
di0j

2 + χi0j · k · (di0j − l0)
)
·

∆y
i0j

di0j



Hessian matrix :
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HEtot
i0

=


∂2Etot

i0

∂2xi0

(xi0 , yi0)
∂2Etot

i0

∂xi0∂yi0

(xi0 , yi0)

∂2Etot
i0

∂yi0∂xi0

(xi0 , yi0)
∂2Etot

i0

∂2yi0

(xi0 , yi0)


with :



∂2Etot
i0

∂2xi0

(xi0 , yi0) =
∑
j 6=i0

1
di0j

3 ·
(

∆x
i0j

2 ·
(

3 · λ
di0j

2 + χi0j · k · l0
)
− λ
)

+ χi0j · k ·
(

1− l0
di0j

)
∂2Etot

i0

∂2yi0

(xi0 , yi0) =
∑
j 6=i0

1
di0j

3 ·
(

∆y
i0j

2 ·
(

3 · λ
di0j

2 + χi0j · k · l0
)
− λ
)

+ χi0j · k ·
(

1− l0
di0j

)
∂2Etot

i0

∂xi0∂yi0

(xi0 , yi0) =
∂2Etot

i0

∂yi0∂xi0

(xi0 , yi0) =
∑
j 6=i0

(
3 · λ
di0j

2 + χi0j · k · l0
)
·

∆x
i0j ·∆

y
i0j

di0j
3

Descent Direction (dependence in (xi0 , yi0) left out thereafter):

with HE =
(
a b
b c

)
,

HE definite positive iif (a · c− b2) > 0, a > 0 and c > 0. If it’s the case, the
descent direction p is given by HE · p = −

−→
∇E (Newton Method).

In practice, to ensure that H is ”sufficiently” positive definite, we use the
matrix B (→ Modified-Newton Method), defined as (λ1 and λ2 being the
eigenvalues of H) :

B·p = −
−→
∇E with


H = Q ·D ·QT diagonalization of H by orthogonal matrices
B = Q ·M ·QT

M =

(
max (|λ1|, ε) 0

0 max (|λ2|, ε)

)
with ε ”small”

ie :

p = −(QT ·M−1 ·Q) ·
−→
∇E

NB : this possible because HE being a real symmetric matrix, it is diagonal-
izable by orthogonal matrices.

Diagonalization :

D =
(
λ1 0
0 λ2

)
with λ1,2 =

a+ c±
√

∆
2

eigenvalues, and ∆ = (a− c)2 + 4 · b2
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and :

Q =


b

n1

b

n2

λ1 − a
n1

λ2 − a
n2

 with n1,2 =
√
b2 + (λ1,2 − a)2

QT ·M−1·Q =


b2

n1
2 · v1

+
(λ1 − a)2

n1
2 · v2

b2

n1 · n2 · v1
+

(λ1 − a) · (λ2 − a)
n1 · n2 · v2

b2

n1 · n2 · v1
+

(λ1 − a) · (λ2 − a)
n1 · n2 · v2

b2

n2
2 · v1

+
(λ2 − a)2

n2
2 · v2


with v1 = max (|λ1|, ε), and v2 = max (|λ2|, ε)

Backtracking-Armijo linesearch :

Starting from a point xk, with a descent direction pk :

Let : αinit ∈ R∗+, (β, τ) ∈ ]0; 1[2, α = αinit

Do :

1. Let : x̃ = xk + α · pk :

2. If E(x̃) ≤ E(x) + β · α · < pk |
−→
∇E >, then xk+1 = x̃

3. Otherwise, let α = τ · α and iterate this scheme until the above condition
is satisfied.
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