# Deformation of Maps between Euclidean Spaces

Felix Lubbe

January 24, 2017

References:

Calc. Var. PDE 55:104 (2016) arXiv:1608.05394



## Motivation

 $f: M \to N$  smooth map between Riemannian manifolds  $(M, g_M)$  and  $(N, g_N)$ .



#### Homotopy of maps

Two maps  $g, h: X \to Y$  are homotopic iff there is  $H \in C^0(X \times [0,1], Y)$  satisfying H(x,0) = g(x) and H(x,1) = h(x)



 $\rightsquigarrow$  How to deform the map?

# How to deform a map? - The Setup

Manifolds: Smooth embedding:

$$M = \mathbb{R}^m \text{ and } N = \mathbb{R}^n$$
$$F := \mathrm{id}_{\mathbb{R}^m} \times f : \mathbb{R}^m \hookrightarrow \mathbb{R}^m \times \mathbb{R}^n$$

# Graph of f

$$\Gamma(f) \coloneqq F(\mathbb{R}^m) \coloneqq \{(x, f(x)) : x \in \mathbb{R}^m\} \quad \subset \mathbb{R}^m \times \mathbb{R}^n$$

## Projections

$$\pi_{\mathbb{R}^m} : \mathbb{R}^m imes \mathbb{R}^n o \mathbb{R}^m, \ \pi_{\mathbb{R}^m}(x, y) \coloneqq x$$
  
 $\pi_{\mathbb{R}^n} : \mathbb{R}^m imes \mathbb{R}^n o \mathbb{R}^n, \ \pi_{\mathbb{R}^n}(x, y) \coloneqq y$ 

## Metrics

$$\begin{split} \langle \cdot, \cdot \rangle \, &= \pi^*_{\mathbb{R}^m} g_{\mathbb{R}^m} + \pi^*_{\mathbb{R}^n} g_{\mathbb{R}^n} \\ g &\coloneqq \textit{\textbf{F}}^* \langle \cdot, \cdot \rangle \end{split}$$



# How to deform a map? - The Setup

Induced metric on  $\mathbb{R}^m$ :  $g = g_{\mathbb{R}^m} + f^* g_{\mathbb{R}^n}$ 

Levi-Civita Connections: (flat) D on  $\mathbb{R}^m \times \mathbb{R}^n$   $\nabla \coloneqq \nabla^g$  on  $\mathbb{R}^m$ 

## Second Fundamental Tensor (*extrinsic curvature*)

$$\begin{aligned} & A \in \mathsf{\Gamma} \big( \mathrm{Sym}(\, \mathcal{T}^* \mathbb{R}^m \otimes \mathcal{T}^* \mathbb{R}^m) \otimes \mathcal{F}^* \, \mathcal{T}(\mathbb{R}^m \times \mathbb{R}^n) \big) \\ & A(u, v) \coloneqq \mathrm{D}_{\mathsf{d} \mathcal{F}(u)} \, \mathsf{d} \mathcal{F}(v) - \mathsf{d} \mathcal{F}(\nabla_u v) \end{aligned}$$

#### Mean curvature vector:

 $\{e_1,\ldots,e_m\}$  local g-orthonormal frame. Then

$$ec{\mathcal{H}}\coloneqq \sum_{k=1}^m \mathcal{A}(e_k,e_k) \qquad \in \Gamma(\mathcal{T}^{\perp}\mathbb{R}^m)$$

Minimal map:

 $\vec{H} = 0$ 

Minimal representative



# How to deform a map? – Mean Curvature Flow

Time-dependent family of immersions:

$$F: \mathbb{R}^m \times [0, T) \to \mathbb{R}^m \times \mathbb{R}^n, \qquad F_t(x) \coloneqq F(x, t)$$

for some T > 0.

 $F_t(\mathbb{R}^m)$  evolves under mean curvature flow, if

$$\begin{cases} \partial_t F(x,t) = \vec{H}(x,t) & \forall (x,t) \in \mathbb{R}^m \times [0,T) \\ F_0(x) = (x, f(x)) \end{cases}$$

# (Some) Questions:

- Short-time existence?
- Regularity / singularities?
- **3** Does  $F_t(M)$  stay graphic?
- 4 Long-time existence?

5

 $(\mathbb{R}^m \text{ is non-compact})$ 

I.e. is  $F_t \circ \varphi_t(x) = (x, f_t(x))$ ? Convergence to minimal representative?

# The Mean Curvature Flow Equation

In local coordinates:  

$$\frac{\partial F}{\partial t} = \vec{H} = \sum_{k=1}^{m} A(e_k, e_k) = \sum_{i,j=1}^{m} g^{ij} (\nabla dF)(\partial_i, \partial_j) = \Delta_g F$$

## **Observations:**

- Equation is invariant under tangential diffeomorphisms
- $g^{ij}$  = inverse metric, depends on F and dF

## Type of Equation

The mean curvature flow equation is a (degenerate) quasilinear parabolic PDE

#### Short Time Existence

Known for compact manifolds.

## Short-Time Existence

MCF system:  $\partial_t F = \vec{H}$ ,  $F(x) = (x, f_0(x))$ 

Fix parametrization, i. e.  $F \circ \varphi_t(x) = (x, f_t(x))$ :

$$\frac{\partial f}{\partial t}(x,t) = \sum_{i,j=1}^{m} \widetilde{g}^{ij} \frac{\partial^2 f}{\partial x^i \partial x^j}, \qquad f(x,0) = f_0(x) \qquad (pMCF)$$

$$\begin{split} f &= (f^{\alpha})_{\alpha=1}^{n} = \text{height functions of the graph} \\ \widetilde{g}^{ij} &= \text{inverse of } \widetilde{g}_{ij} \coloneqq \delta_{ij} + g_{\mathbb{R}^{n}}(\partial_{i}f, \partial_{j}f). \\ & \text{[parametric mean curvature flow]} \end{split}$$

#### Theorem (Chau, Chen, He, 2012)

Suppose  $f_0 : \mathbb{R}^m \to \mathbb{R}^n$  is a smooth function such that  $\sup_{\mathbb{R}^m} \|D^l f_0\| < \infty$  for each  $l \ge 1$ . Then (pMCF) has a short-time smooth solution f(x, t) with initial condition  $f_0$ , such that  $\sup_{x \in \mathbb{R}^m} \|D^l f(x, t)\| < \infty$  for each  $l \ge 1$  and t.

# Solutions with Bounded Geometry

Definition

 $f: \mathbb{R}^m \times [0, T) \to \mathbb{R}^n$  has bounded geometry, if  $\sup_{x \in \mathbb{R}^m} \|D^l f(x, t)\| < \infty$  for each  $l \ge 1$  and  $t \in [0, T)$ .

#### Definition

 $F : \mathbb{R}^m \times [0, T) \to \mathbb{R}^m \times \mathbb{R}^n$  has bounded geometry, if  $\forall t \in [0, T)$  and  $k = 0, 1, 2, \ldots$ 

$$\sup_{x\in\mathbb{R}^m}\|\nabla^k A(x,t)\|<\infty\,,\qquad C_1(t)\mathrm{g}_{\mathbb{R}^m}\leq\mathrm{g}\leq C_2(t)\mathrm{g}_{\mathbb{R}^n}$$

with  $0 < C_1(t) \le C_2(t) < \infty$ .

[Def's equivalent for  $F_t \circ \varphi_t(x) = (x, f_t(x))$ ]

**Note:** For  $t \rightarrow T$  ...

- ...  $C_1(t)$  may approach 0,
- ...  $C_2(t)$  may become unbounded,
- ...  $\sup_{x \in \mathbb{R}^m} \|\nabla^k A(x, t)\|$  may become unbounded.

1 Introduction

## **2** Length-Decreasing Maps $f : \mathbb{R}^m \to \mathbb{R}^n$



# Length-Decreasing Maps

Definition (Length-decreasing maps)

A map  $f : \mathbb{R}^m \to \mathbb{R}^n$  is strictly length-decreasing iff

```
\|\operatorname{\mathsf{d}} f(v)\|_{\mathbb{R}^n} \leq (1-\delta)\|v\|_{\mathbb{R}^m}
```

for some (fixed)  $\delta \in (0,1]$  and all  $v \in \Gamma(T\mathbb{R}^m)$ .

## Example 1

- f(x) := Ax + b,  $A \in \operatorname{Hom}(\mathbb{R}^m, \mathbb{R}^n)$ ,  $b \in \mathbb{R}^n$
- $A^t A$  symmetric  $\rightsquigarrow A^t A$  is diagonalizable
- if  $\sigma(A^t A) \in [0, 1 \delta]$ , f is length-decreasing

### Example 2

- $f: \mathbb{R}^m \to \mathbb{R}^n$  with  $\| df(v) \|_{\mathbb{g}_{\mathbb{R}^n}}^2 \leq c(1-\delta) \|v\|_{\mathbb{g}_{\mathbb{R}^m}}^2$  for c > 0
- Define  $\widetilde{g}_{\mathbb{R}^m} \coloneqq cg_{\mathbb{R}^m}$  and  $\widetilde{g}_{\mathbb{R}^n} \coloneqq c^{-1}g_{\mathbb{R}^n}$
- f is strictly length-decreasing w.r.t.  $\widetilde{\mathrm{g}}_{\mathbb{R}^m}$  and  $\mathrm{g}_{\mathbb{R}^n}$
- f is strictly length-decreasing w.r.t.  $g_{\mathbb{R}^m}$  and  $\widetilde{g}_{\mathbb{R}^n}$

#### Theorem (FL, Calc. Var. PDE 55:104 (2016))

Suppose  $f_0 : \mathbb{R}^m \to \mathbb{R}^n$  is a Lipschitz continuous function and that there exists a fixed  $\delta \in (0, 1]$ , such that

$$\|\operatorname{\mathsf{d}} f_0({{m v}})\|_{\operatorname{g}_{\mathbb{R}^n}} \leq (1-\delta) \|{{m v}}\|_{\operatorname{g}_{\mathbb{R}^m}}$$

a.e. on  $\mathbb{R}^m$  and for all  $v \in \Gamma(T\mathbb{R}^m)$ . Then MCF has a long-time smooth solution for all t > 0 with initial condition  $F_0(x) := (x, f_0(x))$ , such that the following statements hold.

- Along the flow, the evolving submanifold stays the graph of a strictly length-decreasing map f<sub>t</sub>.
- **2** The mean curvature vector of the graph satisfies the estimate  $t \|\vec{H}\|^2 \leq C$ .
- **3** The spatial derivatives satisfy

$$t^{k-1} \sup_{x \in \mathbb{R}^m} \| \mathrm{D}^k f_t(x) \|^2 \leq C_{k,\delta} \qquad \textit{for all} \quad k \geq 2 \,.$$

Moreover,  $\sup_{x\in\mathbb{R}^m} \|f_t(x)\|^2 \leq \sup_{x\in\mathbb{R}^m} \|f_0(x)\|^2$  for all t > 0.

If in addition  $f_0$  satisfies  $f_0 \xrightarrow{\|x\| \to \infty} 0$ , then  $\|f_t(x)\| \to 0$  smoothly on compact sets of  $\mathbb{R}^m$  for  $t \to \infty$ .

# Length-decreasing property is preserved

**Recall:** 
$$f : \mathbb{R}^m \to \mathbb{R}^n$$
 (strictly) length-decreasing  
 $\Leftrightarrow f^* g_{\mathbb{R}^n}(v, v) \le (1 - \delta) g_{\mathbb{R}^m}(v, v)$  for some  $\delta \in (0, 1]$   
**Idea:** Set  $s := g_{\mathbb{R}^m} - f^* g_{\mathbb{R}^n}$  and show  $s \ge \varepsilon_1 g$ 

Lemma

Let  $f : \mathbb{R}^m \to \mathbb{R}^n$  have bounded geometry and assume  $s \ge \varepsilon_1 g$  for  $\varepsilon_1 > 0$  at t = 0. Then  $s \ge \varepsilon_1 g$  for  $t \in [0, T)$ .

### Corollary

Any  $F_t(\mathbb{R}^m)$  is the graph of a map  $f_t : \mathbb{R}^m \to \mathbb{R}^n$ .

## Idea of the proof:

- Modify tensor s s.t. only a compact set needs to be considered.
- ---- Usual (for compact domain) maximum principle applies!

# [Proof of the Lemma]

**1** Rewrite the condition:

f length-decreasing  $\Leftrightarrow 0 \leq g_{\mathbb{R}^m}(v, v)|_p - f^* g_{\mathbb{R}^n}(v, v)|_p$ 2  $\mathbf{s}_{\mathbb{R}^m \times \mathbb{R}^n} := \pi_M^* \mathbf{g}_M - \pi_N^* \mathbf{g}_N$ . Then:  $g_{\mathbb{R}^m}(v,v)|_p - f^* g_{\mathbb{R}^n}(v,v)|_p = F^* s_{\mathbb{R}^m \times \mathbb{R}^n}(v,v)|_p =: s(v,v)|_p$ [Pullback of constant tensor] 3 Show  $s > \varepsilon g$ : 1 Set  $\psi_{|(x,t)} \coloneqq e^{\sigma t} \phi_R(x) s_{|(x,t)} - \varepsilon g_{|(x,t)},$ where  $\phi_R(x) := 1 + ||x||_{mm}^2 / R^2$ **2** Assume  $s \geq \frac{\varepsilon}{2}g$ . [will be removed]  $\Rightarrow \psi > 0$  outside some compact  $K \subset \mathbb{R}^m$  for all  $t \in [0, T)$ . 3 Inside  $K \times [0, T']$  for any  $T' \in [0, T)$ , at a minimum at  $(x_0, t_0)$  we have  $(\nabla_{\partial_{\nu}}\psi)(v,v) < 0$  and  $(\Delta\psi)(v,v) > 0$ . **4** By calculation, it is  $(\nabla_{\partial_t} \psi)(v, v) - (\Delta \psi)(v, v) > 0$  for any  $R \ge R_0 > 0$  and a (chosen, but fixed)  $R_0$ .

5 The claim follows by letting  $R \to \infty$ ,  $\sigma \to 0$  and  $T' \to T$ .

# Decay Estimate for $\|\vec{H}\|^2$

#### Idea:

Consider restriction of  $s_{\mathbb{R}^m \times \mathbb{R}^n}$  onto normal bundle. Compare with  $\vec{H} \otimes \vec{H}$ .

## Normal Bundle Geometry

Fibers:

$$T_{\rho}^{\perp}\mathbb{R}^{m} \coloneqq \{\xi \in T_{F(\rho)}(\mathbb{R}^{m} \times \mathbb{R}^{n}) : \langle \xi, \nu \rangle = 0, \forall \nu \in \mathsf{d}F(T_{\rho}\mathbb{R}^{m})\}$$

Projection onto normal bundle:

$$\mathrm{pr}^{\perp}:F^{*}\mathcal{T}(\mathbb{R}^{m} imes\mathbb{R}^{n}) o\mathcal{T}^{\perp}\mathbb{R}^{m},\qquad\mathrm{pr}^{\perp}(v)\coloneqq v-\sum_{k=1}^{m}\langle v,\mathsf{d}F(e_{k})
angle\,\mathsf{d}F(e_{k})
angle$$

 $[\{e_1,\ldots,e_m\}$  local g-ON-frame for  $T\mathbb{R}^m]$ 

Normal connection:

$$abla^{\perp}_{\mathbf{v}}\xi\coloneqq \mathrm{pr}^{\perp}\left(
abla^{\mathrm{g}_{\mathbb{R}^m imes\mathbb{R}^n}}_{dF(\mathbf{v})}\xi
ight),\qquad \mathbf{v}\in\Gamma(\mathcal{T}\mathbb{R}^m),\ \xi\in\Gamma(\mathcal{T}^{\perp}\mathbb{R}^m)$$

### Definition:

$$\vartheta(\xi,\eta) \coloneqq \langle \vec{H}, \mathrm{pr}^{\perp}(\xi) 
angle \langle \vec{H}, \mathrm{pr}^{\perp}(\eta) 
angle$$

## Idea for M = N compact (Smoczyk, 2004):

Use isomorphism  $J: TM \to T^{\perp}M$  and consider

$$\widetilde{\phi}(v,w) \coloneqq \mathbf{s}(v,w) - \varepsilon_2 \vartheta(J \, \mathrm{d}F(v), J \, \mathrm{d}F(w)).$$

Show  $\widetilde{\varphi} \ge 0$ .

Restriction of  $\mathrm{s}_{\mathbb{R}^m\times\mathbb{R}^n}$  to normal bundle:

$$\mathrm{s}^{\perp}(\xi,\eta) \coloneqq \mathrm{s}_{\mathbb{R}^m imes \mathbb{R}^n}(\mathrm{pr}^{\perp}(\xi),\mathrm{pr}^{\perp}(\eta))$$

 $s^{\perp} < 0$ 

with  $\xi, \eta \in \Gamma(F^*T(\mathbb{R}^m \times \mathbb{R}^n)).$ 

Observation:

$$s \ge 0$$
  $\Rightarrow$  length-decr. map

Consider

$$\phi(\xi,\eta) := -\mathbf{s}^{\perp}(\xi,\eta) - \varepsilon_2 t \vartheta(\xi,\eta).$$

Show  $\varphi \ge 0$ .

# Decay Estimate for $\|\vec{H}\|^2$

#### Lemma

Let F(x, t) be a smooth solution to the mean curvature flow with bounded geometry and suppose  $s - \varepsilon_1 g \ge 0$  for some  $\varepsilon_1 > 0$  at t = 0. Then there exists a constant  $\varepsilon_2 > 0$  depending only on  $\varepsilon_1$  and the dimension  $m = \dim \mathbb{R}^m$ , such that

$$\phi = -\operatorname{s}^{\perp} - \varepsilon_2 t\vartheta \ge 0$$

on  $\mathbb{R}^m \times [0, T)$ .

#### Corollary

Under the assumptions of the lemma, it is

 $t\|\vec{H}\|^2 \leq C$ 

on  $\mathbb{R}^m \times [0, T)$  for some constant  $C \ge 0$  depending only on  $\varepsilon_1$  and the dimensions dim  $\mathbb{R}^m$  and dim  $\mathbb{R}^n$ .

# Higher-Order Estimates I

#### Lemma

Let F(x) = (x, f(x, t)) be a smooth solution of the non-parametric mean curvature flow equation

$$\frac{\partial f}{\partial t}(x,t) = \sum_{i,j=1}^{m} \tilde{g}^{ij} \frac{\partial^2 f}{\partial x^i \partial x^j}$$

satisfying the bounded geometry condition. Suppose that

 $\|\mathrm{D}f\| \leq C_1$  and  $\|\mathrm{D}^2f\| \leq C_2$ 

on  $\mathbb{R}^m \times [0, T)$  for some  $C_1, C_2 \ge 0$ . Then for every  $l \ge 3$  there is a constant  $C_l$ , such that

$$\sup_{x\in\mathbb{R}^m}\|\mathrm{D}^l f(x,t)\|^2\leq C_l$$

for all  $t \in [0, T)$ .

Proof relies on blow-ups.

# Higher-Order Estimates II

#### Lemma

Let F(x) = (x, f(x, t)) be a smooth solution of the non-parametric mean curvature flow equation

$$\frac{\partial f}{\partial t}(x,t) = \sum_{i,j=1}^{m} \tilde{g}^{ij} \frac{\partial^2 f}{\partial x^i \partial x^j}$$

satisfying the bounded geometry condition. Suppose that

 $f^* \mathrm{g}_{\mathbb{R}^n} \leq (1-\delta) \mathrm{g}_{\mathbb{R}^m}$  and  $\|ec{H}\| \leq C$ 

on  $\mathbb{R}^m \times [0, T)$  for some  $\delta \in (0, 1]$  and  $C \ge 0$ . Then for every  $l \ge 1$  there is a constant  $C_l$ , such that

$$\sup_{x\in\mathbb{R}^m}\|\mathrm{D}^l f(x,t)\|^2\leq C_l$$

for all  $t \in [0, T)$ .

# Height Estimate

#### Lemma

Suppose f is a smooth solution to the non-parametric mean curvature flow equation

$$\frac{\partial f}{\partial t}(x,t) = \sum_{i,j=1}^{m} \tilde{g}^{ij} \frac{\partial^2 f}{\partial x^i \partial x^j}$$

on a time interval [0, T) that satisfies the bounded geometry condition. Then

$$\sup_{x\in\mathbb{R}^m}\|f(x,t)\|^2\leq \sup_{x\in\mathbb{R}^m}\|f(x,0)\|^2$$

holds for all  $t \in [0, T']$ , where  $T' \in [0, T)$  is arbitrary.

#### Proof:

Calculate

$$\left(\frac{\partial}{\partial t} - \sum_{i,j=1}^{m} \tilde{g}^{ij} \partial_{ij}^{2}\right) \|f\|^{2} \leq 0$$

and apply a non-compact maximum principle.

# Approximation of Initial Data

Set

and

$$\begin{split} \mathcal{K}(x,y,t) &\coloneqq \frac{1}{(4\pi t)^{m/2}} \exp\left(-\frac{\|x-y\|_{\mathbb{R}^m}^2}{4t}\right) \\ f_0^k &: \mathbb{R}^m \to \mathbb{R}^n, \qquad f_0^k(x) \coloneqq \int_{\mathbb{R}^m} f_0(y) \mathcal{K}\left(x,y,\frac{1}{k}\right) \mathrm{d}y. \end{split}$$

If  $f_0$  is Lipschitz continuous and strictly length-decreasing, then  $\ldots$ 

$$\blacksquare \ f_0^k \xrightarrow{k \to \infty} f_0 \text{ in } \mathscr{C}^{0+\alpha}(B(0,R)) \text{ for any } R \ge 0 \text{ and } 0 < \alpha < 1,$$

$$2 \| df_0^k(v) \|_{g_{\mathbb{R}^n}} \leq (1-\delta) \|v\|_{g_{\mathbb{R}^m}} \text{ for any } k,$$

**3** sup<sub> $\mathbb{R}^m$ </sub>  $\|\mathbf{D}^I f_0^k\| < \infty$  for every  $I \ge 2$  and k.

# Higher-Order Estimates III

#### Lemma

Consider the sequence  $\{f_0^k(x)\}$ , where  $f_0 : \mathbb{R}^m \to \mathbb{R}^n$  is Lipschitz continuous and strictly length-decreasing. Then, for each k, the non-parametric mean curvature flow equation has a smooth solution  $f^k(x,t)$  on  $\mathbb{R}^m \times [0,\infty)$  with initial condition  $f_0^k(x)$ , such that

$$\mathbb{I} \hspace{0.1 cm} \| \hspace{0.1 cm} \mathsf{d} f^k( {m v}) \|_{ {\mathrm{g}}_{\mathbb{R}^n}} \leq (1-\delta) \| {m v} \|_{ {\mathrm{g}}_{\mathbb{R}^m}} \, .$$

2 for all  $l \ge 2$  we have the estimate

$$t^{l-1} \sup_{x \in \mathbb{R}^m} \|\mathrm{D}^l f^k(x,t)\|^2 \leq C_{l,\delta}$$

for some constant  $C_{l,\delta} \ge 0$  depending only on l and  $\delta$ .

1 Introduction

**2** Length-Decreasing Maps  $f : \mathbb{R}^m \to \mathbb{R}^n$ 

**3** Area-Decreasing Maps  $f : \mathbb{R}^2 \to \mathbb{R}^2$ 

# Area-Decreasing Maps

# Definition (Area-decreasing maps)

A map  $f : \mathbb{R}^2 \to \mathbb{R}^2$  is strictly area-decreasing iff

$$\| \mathsf{d} f(\mathsf{v}) \wedge \mathsf{d} f(\mathsf{w}) \|_{\mathsf{A}^2 \mathcal{T} \mathbb{R}^2} \leq (1-\delta) \| \mathsf{v} \wedge \mathsf{w} \|_{\mathsf{A}^2 \mathcal{T} \mathbb{R}^2}$$

for some (fixed)  $\delta \in (0, 1]$  and all  $v, w \in \Gamma(T\mathbb{R}^2)$ .

## Example

- Let  $B \in \operatorname{Hom}(\mathbb{R}^2, \mathbb{R}^2)$  with  $|\det(B)| < 1 \delta$ ,  $b \in \mathbb{R}^2$ .
- $f(x) \coloneqq Bx + b$  is strictly area-decreasing

### Theorem (FL, arXiv:1608.05394)

Suppose  $f : \mathbb{R}^2 \to \mathbb{R}^2$  is a smooth strictly area-decreasing function satisfying  $\| df(v) \| \le c \|v\|$ . Then the mean curvature flow with initial condition F(x) := (x, f(x)) has a long-time smooth solution for all t > 0. Further:

- Along the flow, the evolving surface stays the graph of a strictly area-decreasing map  $f_t : \mathbb{R}^2 \to \mathbb{R}^2$  for all t > 0.
- 2 The mean curvature vector of the graph satisfies the estimate  $t \|\vec{H}\|^2 \leq C$  for some  $C \geq 0$ .
- **3** All spatial derivatives of  $f_t$  of order  $k \ge 2$  satisfy the estimate

$$t^{k-1} \sup_{x \in \mathbb{R}^2} \|\mathrm{D}^k f_t(x)\|^2 \leq C_{k,\delta} \quad \textit{for all} \quad k \geq 2$$

and for some constants  $C_{k,\delta} \ge 0$  depending only on k and  $\delta$ . Moreover,

$$\sup_{x\in\mathbb{R}^2}\|f_t(x)\|^2\leq \sup_{x\in\mathbb{R}^2}\|f(x)\|^2$$

for all t > 0.

If in addition f satisfies  $||f(x)|| \to 0$  as  $||x|| \to \infty$ , then  $||f_t(x)|| \to 0$  smoothly on compact subsets of  $\mathbb{R}^2$  as  $t \to \infty$ .